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� the larger number of time-scales, the more complex behaviour

� Nature of time-scales
� equilibrium systems (complex)←→ many degrees of freedom
� nonequilibrium systems (driven by external signals)←→ independent

time-scales
� Adiabatic approach – well defined separation of time-scales tslow ≪ tfast

1. fast process with fixed values of slow variables
2. parametric evolution of slow variables

How to treat problems in which the relation between the time-scales of some
processes varies from t1 ≪ t2 through t1 ≈ t2 to t1 ≫ t2?

Partial noise-averaging method (PNAM)
applies for the whole range of time variability of the stochastic perturbation
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[
∂
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U ′(x) + q

∂2

∂x2

]

P (x, t) ≡ L0(x)P (x, t) ≡ − ∂

∂x
J(x, t)

probability current

J(x, t) = −U ′(x)P (x, t)− q
∂P (x, t)

∂x
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probability of remaining in the well up to time t:

P(t) =

∫ xmax

−∞

dx P (x, t)

probability for escape times:

Q(t) = −dP(t)

dt
= J(xmax, t)

mean escape time:

T =

∫ ∞

0

dt t Q(t) =

∫ ∞

0

dt

∫ xmax

−∞

dx P (x, t)
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relaxation inside the well
tr ∼ O(1) {+O(ln q)}

weak noise
approx.
q ≪ ∆U
tr ≪ T

first
thermalization inside the well

jump over the barrier
next

escape over the barrier

T ∼ exp
(

∆U
q

)
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Kramers problem – approach
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J(x, t) (∗)

ǫ0 :
∂P (x, t0, t1)

∂t0
= L0(x)P (x, t0, t1)

stationary solution: lim
t0→∞

P (x, t0; t1) = ρ(t1) · N−1 exp [−U(x)/q] ≡ ρ(t1)Pst(x)

quasiequilibrium =⇒ integrating (∗) over x from −∞ to xthr one gets

ǫ
dρ(t1)

dt1
= −J(xthr, t1) ≈ −kρ(t1) flux-over-population method

kinetic approx. – the escape process is described by a single kinetic coefficient k

and T = k−1 =
∫∞

0
dt ρ(t)
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Kramers problem – multivariable case

∂P (x, y, t)
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= [L0(x; y) + ǫL1(y)]P (x, y, t)
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parametric dependence slow variation along y
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ǫ0 :
∂P (x, y, t0, t1)

∂t0
= L0(x; y)P (x, y, t0, t1)

quasiequilibrium: lim
t0→∞

P (x, t0; y, t1) = ρ(y, t1)Pst(x; y)

ǫ
∂ρ(y, t1)

∂t1
= −J(xthr, y, t1) + ǫL1(y)ρ(y, t1) ≈ −k(y)ρ(y, t1) + ǫL1(y)ρ(y, t1)

mean escape time: T =

∫ ∞

0

dt

∫

dy ρ(y, t) k(y) = {T (y)}−1 ∼ ǫ
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Escape over a fluctuating barrier

T

k
τ

1. Large systems, many degrees of freedom
� chemical reaction with large molecules,

e.g. CO binding to myoglobine
� transport in membranes (stochastic

changes of channel shape)
� relaxation in compose materials, e.g. in

glasses

2. Fluctuations of external parameters
� dye laser pumped by an another laser
� Supeconducting QUantum Interference

Device acting under the external
magnetic field

� dynamics of populations of species in the
presence of external random factors, e.g.
climatic
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� Langevin equation

ẋ = −U ′(x)− z(t) V ′(x) +
√

2q ξ(t)

COLOURED noise z(t):

1. dichotomic – DN

2. Ornstein-Uhlenbeck – OUN

〈z(t)z(t′)〉 = D exp(−|t− t′|/τ)

τ – correlation time
D(τ) – variance
Q(τ) = τD(τ) – intensity

� Fokker-Planck equation

∂
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P (x, z, t) =

[

L0(x) + zLb(x) +
1

τ
Lz(z)

]

P (x, z, t) ≡ L(x, z)P (x, z, t)

Lb(x) =
∂
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V ′(x)

Problem: T (τ) for any τ ∈ [0,∞)
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= −1
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z +
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evolution
operator Lz =
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(
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)

Lz =
∂

∂z
z + D

∂2

∂z2

stationary
distribution

W0(z) =

{
1

2
for z = +

√
D

1

2
for z = −

√
D

W0(z) =
1√
2πD

exp(−z2/2D)

limit behaviour survival

τ → 0 C(t)→ Q δ(t) Q(τ)→ const 6= 0

τ →∞ C(t)→ D D(τ)→ const 6= 0
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Single escape event
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〈ξ (t)〉∆ t

t

 →  →  →  → →

T

k

T
dx

dt
= −U ′(x)+ ξ(t)

U(x) =
1

4
x4 − 1

2
x2

T = tw + tt

If the potential variations influence the escape process

this happens mostly during the time interval tt.
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Idea of Partial Noise–Averaging Method

f
i
g
s
/
f
t
r
a
j
.
e
p
s

z(t) = zs(t) + zf (t)

{

zs(t) slow component – constant within tt

zf (t) fast component – white noise within tt

zs(t0) ≡
〈

1

tt

∫ t0+tt

t0

ds z(s)

〉

〈...〉– noise realisations
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PNAM for OUN

zs(t0) =
1

∆

(
1− e−∆

)
z0 where ∆ = tt/τ
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zs(t0) =
1

∆

(
1− e−∆

)
z0 where ∆ = tt/τ

random gaussian number

Ds ≡ 〈z2
s〉 =

D

∆2

(
1− e−∆

)2 −−−−→
τ→∞

D

〈(
1

tt

∫ t+tt

tt

ds z(s)

)2
〉

= 〈z2
s〉+ 〈z2

f 〉 = Ds + 2
Df

∆

limit fast component slow component

τ → 0 Qf = Q Qs = O(τ2)

τ →∞ Df = O(1/τ2) Ds = D
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PNAM for OUN

zs(t0) =
1

∆

(
1− e−∆

)
z0 where ∆ = tt/τ

random gaussian number

Ds ≡ 〈z2
s〉 =

D

∆2

(
1− e−∆

)2 −−−−→
τ→∞

D

〈(
1

tt

∫ t+tt

tt

ds z(s)

)2
〉

= 〈z2
s〉+ 〈z2

f 〉 = Ds + 2
Df

∆

limit fast component slow component

τ → 0 Qf = Q Qs = O(τ2)

τ →∞ Df = O(1/τ2) Ds = D

z(t) = zs(t) + zf (t)

independent gaussian noises with
correlation time τ

{

zf exists for τ . tt

zs exists for τ & tt
– p.13/24



PNAM for DN

z(t) = zs(t) + zf (t)
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PNAM for DN

z(t) = zs(t) + zf (t)

� zs(t) and zf (t) are not independent dichotomic noises

BUT...
� similarities between OUN and DN

SO...
� assume this is true

RESULT
� Ds, Df , Qs, Qf the same as for OUN

What is tt?
For equilibrium systems tt=tr, so one can estimate tr =

(∆x)2

∆U
,

or take tr =MFPT(xthr → xmin).
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3D Fokker–Planck equation

∂

∂t
P (x, yf , ys, t) = L(x, yf , ys)P (x, yf , ys, t) normalized noise: z(t) =

√

D(τ)y(t)

L(x, yf , ys) = L0(x) +

√

Qf (τ)

τ
yfLb(x) +

√

Qs(τ)

τ
ysLb(x) +

1

τ
Lyf

(yf )
︸ ︷︷ ︸

+
1

τ
Lys

(ys)

∂P

∂t0
+

1

τ

∂P

∂t1
=

[

Λ(x, yf ; ys) +
1

τ
Lys

(ys)

]

P

P ≡ P (x, yf , ys, t0, t1) −−−−→
t0→∞

ρ(ys, t1)Pst(x, yf ; ys)

Λ(x, yf ; ys)Pst(x, yf ; ys) = 0 with U(x, ys) ≡ U(x) +
√

Ds(τ) ysV (x)

1

τ

∂

∂t1
̺(ys, t1) = −J (ys, t1; xthr) +

1

τ
Lys

(ys)̺(ys, t1) ≈
[

1

τ
Lys

(ys)− k(ys)

]

̺(ys, t)
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Quasiequilibrium

Ways of solution:
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Quasiequilibrium

Ways of solution:

� DN: (almost) exact solution – weak noise approximation

� OUN: path integral method with Padé approximant

Result:
ẋ(t) = −U ′

eff (x(t)) +
√

2G(x(t))ϑ(t)

mean first passage time:

−1 = L+(x; ys)T (x; ys)

T (x; ys) =

∫ xthr

x

du
1

√

G(u; ys)

1

Ψ(u; ys)

∫ u

−∞

dv
1

√

G(v; ys)
Ψ(v; ys)

Ψ(x; ys) = exp

(

−
∫ x

du
U ′

eff (u; ys)

G(u; ys)

)
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Quasiequilibrium

Ways of solution:

� DN: (almost) exact solution – weak noise approximation

� OUN: path integral method with Padé approximant

Result:
ẋ(t) = −U ′

eff (x(t)) +
√

2G(x(t))ϑ(t)

mean first passage time:

−1 = L+(x; ys)T (x; ys)

T (x; ys) =

∫ xthr

x

du
1

√

G(u; ys)

1

Ψ(u; ys)

∫ u

−∞

dv
1

√

G(v; ys)
Ψ(v; ys)

Ψ(x; ys) = exp

(

−
∫ x

du
U ′

eff (u; ys)

G(u; ys)

)

kinetic rate
k(ys) ∼ {T (xin; ys)}−1
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Kinetic approach

Ways of solution:
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Kinetic approach

Ways of solution:

� DN: exact (trivial) solution

∂

∂t

(

̺+

̺−

)

=

(

−γ − k+ γ

γ −γ − k−

)(

̺+

̺−

)

, γ =
1

2τ

T (τ) =
2T+T− + τ(T+ + T−)

T+ + T− + 2τ
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Kinetic approach

Ways of solution:

� DN: exact (trivial) solution

∂

∂t

(

̺+

̺−

)

=

(

−γ − k+ γ

γ −γ − k−

)(

̺+

̺−

)

, γ =
1

2τ

T (τ) =
2T+T− + τ(T+ + T−)

T+ + T− + 2τ

� OUN: PROBLEMS!!!

∂

∂t
̺(ys, t) =

[
1

τ
Lys

(ys)− k(ys)

]

̺(ys, t)

Solutions known only for limiting cases τ → 0 and τ →∞.
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WANTED

solution of the simplest case

∂

∂t
̺(y, t) =

[
1

τ

(
∂

∂y
y +

∂2

∂y2

)

− k0 e−∆V y
]

̺(y, t)

diffusion in the parabolic potential with exponentially distributed sink
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WANTED

solution of the simplest case

∂

∂t
̺(y, t) =

[
1

τ

(
∂

∂y
y +

∂2

∂y2

)

− k0 e−∆V y
]

̺(y, t)

diffusion in the parabolic potential with exponentially distributed sink

REWARD
100’s citations
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PNAM at work I

Doering–Gadoua problem — exact results for triangle barrier driven by DN
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PNAM at work II
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PNAM at work III
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PNAM at work IV
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What is in resonance?
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What is in resonance?

minima τ ∼ tr resonant activation

maxima system dependent (non-resonant) inhibition of activation

crossing points τ ∼ Ts depend on the perturbation
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Conclusions

� PNAM for different problems with coloured noise

� How to deal with deterministic perturbation or e.g. QMN?

� General approach to multi-time-scales problems
1. consider all the processes
2. find the relation between their time scales
3. decompose processes into the simple parts
4. use adiabatic approach

THE END
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