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1. Introduction

The Vandermonde determinant plays a crucial role in the Quantum Hall Effect

via Laughlin’s wavefunction ansatz[1] and in the description of One Component

Plasmas (Tellez and Forrester[2]). This has resulted in considerable interest in the

expansion of the Laughlin wavefunction as a linear combination of Slater determinantal

wavefunctions for N particles (Dunne[3], Di Francesco et al[4]). It is the even powers of

the Vandermonde determinant that play the crucial role in determining the coefficients

of the expansion of the Laughlin wavefunction as a linear combination of Slater

determinantal wavefunctions. Indeed, the relevant coefficients are directly related to

the signed integers that arise in the expansion of the even powers of the Vandermonde

alternating function into Schur symmetric functions (Dunne[3], Di Francesco et al[4],

Scharf et al[5]). The primary problem is to determine the signed integers for the

second power, higher powers follow by application of the Littlewood-Richardson rule,

see for example Macdonald[6]. Added interest in this problem is the realisation that

the expansion of the even powers of the Vandermonde alternating function into Schur

functions is directly related to the theory of Hankel’s hyperdeterminants (Luque and

Thibon[7]). Throughout we follow the standard combinatorial notation defined by

Macdonald[6].

The Schur functions that arise in the expansion of the second power of the

Vandermonde determinant are indexed by partitions, (λ), of the integer n = N(N−1).

Di Francesco et al[4] defined a class of admissible partitions, as those partitions of n

thought to be associated with non-zero expansion coefficients, cλ, and determined their

number, A(N), for all N ≤ 29. They conjectured that these numbers would be the

exact number of non-vanishing coefficients for every value of N provided none of the

coefficients accidentally vanished. Scharf et al[5] developed algorithms for calculating

the coefficients and computed them for all N ≤ 9 and found departures from the

conjectured numbers of non-vanishing coefficients for N ≥ 8. Recently we have

extended these calculations to N = 10.

In this paper we first recall some of the basic properties of the Laughlin

wavefunction and the formal definition (Di Francesco et al[4] of admissible partitions.

Having identified some of the important properties satisfied by the coefficients

arising in the expansion of the square of the Vandermonde determinant in terms

of Schur functions, their generalisation to q-dependent coefficients is introduced

through a consideration of the q−discriminant. Algorithms for the evaluation of

the q−dependent polynomial coefficients, cλ
N(q), arising from the q−discriminant

are developed and applied. A further refinement of the algorithm greatly reduces

the amount of overcounting leading to a substantive gain in calculation times for

larger values of N . Properties of the polynomials cλ
N(q) are next considered with

particular emphasis on their factorisation. This leads naturally to the consideration

of explicit N−dependent results. Several specific results are given. Particular values of

q gives further insight into the properties of the cλ
N(q) polynomials and clarifying, and
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extending, some of the earlier observations of Dunne for q = 1. The q−polynomials

associated with the vanishing of coefficients in the case of q = 1 for N = 8, 9 are shown

to all contain a factor of (q−1)4. Finally, the q−extension of the remarkable sum rule

derived by Di Francesco et al[4] for the sum of the squares of the coefficients of the

square of the Vandermonde determinant is obtained. Evidence for the existence of a

sum rule for the coefficients cλ
N(1) is given.

As a result of their ubiquitous nature in our q-dependent formulae, it is convenient

to set out here the relevant notation for q-numbers. This is such that for any q and

any positive integer m we have

[m]q =
1 − qm

1 − q
= (1 + q + q2 + · · · + qm−1) so that lim

q→1
[m]q = m. (1.1)

In addition

[m]!q = [m]q [m − 1]q [m − 2]q · · · [1]q

[m]!!q = [m]q [m − 2]q [m − 4]q · · · [m(2)]q; (1.2)

[m]!!!q = [m]q [m − 3]q [m − 6]q · · · [m(3)]q,

where m(r) is the residue of m mod r for any positive integer r. Of course, where

appropriate q may be replaced by any positive power p of q to give

[m]qp =
1 − qmp

1 − qp
= (1 + qp + q2p + · · · + q(m−1)p), (1.3)

along with the obvious generalisations of the q-factorial formulae.

2. The Laughlin wavefunction and admissibility conditions

Laughlin[1] has described the fractional quantum Hall effect in terms of a wavefunction

Ψm
Laughlin(x) =

(

∏

1≤i<j≤N

(xi − xj)
2m+1

)

exp
(

−1
2

∑N
i=1 |xi|

2
)

, (2.1)

where x = (x1, x2, . . . , xN) and m and N are positive integers. The Vandermonde

determinant, VN(x), is the alternating function of N variables x1, . . . , xN defined by

VN(x) =
∣

∣

∣
xN−j

i

∣

∣

∣

1≤i,j≤N
=

∏

1≤i<j≤N

(xi − xj). (2.2)

In terms of the this function we have

Ψm
Laughlin(x) = V 2m

N (x) Ψ0
Laughlin(x). (2.3)

Since any even power of the alternating function VN (x) is a symmetric function of the

variables x1, x2, . . . , xN it follows that

Ψm
Laughlin(x)

/

Ψ0
Laughlin(x) = V 2m

N (x) =
∑

λ⊢n

cm;λ
N sλ(x), (2.4)
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where sλ(x) is the Schur function of the variables x1, x2, . . . , xN , sometimes denoted

more simply by {λ}, and the summation is carried out over all partitions λ =

(λ1, λ2, . . . , λp) of weight |λ| = n = mN(N − 1) and length ℓ(λ) = p. The coefficients

cm;λ
N appearing in (2.4) are all integers; positive, zero or negative. A necessary, but

not sufficient, condition for cm;λ
N to be non-zero is that

N − 1 ≤ ℓλ ≤ N. (2.5)

In most of what follows we consider the case m = 1:

Ψ1
Laughlin(x)

/

Ψ0
Laughlin(x) = V 2

N(x) =
∑

λ⊢n

cλ
N sλ(x), (2.6)

where it has been convenient to set cλ
N = c1;λ

N . In this case the partitions λ indexing

the Schur functions are of weight n = N(N − 1). Moreover, with respect to the usual

reverse lexicographic ordering of partitions, for a given N the partitions λ in (2.5) for

which cλ
N is non-vanishing are bounded by a highest partition (2N − 2, 2N − 4, . . . , 0)

and a lowest partition ((N − 1)N).

It is of considerable interest to know more generally for what partitions λ the

coefficients cλ
N are non-vanishing. In this connection it is helpful to introduce, following

Di Francesco et al[4] the notion of admissible partitions:

Definition 2.1 Let λ = (λ1, λ2, . . . , λp) be a partition of weight |λ| and length ℓ(λ),

and let

aN,k(λ) =
k
∑

i=0

λN−i − k(k + 1) for k = 0, 1, . . . , N − 1. (2.7)

Then λ is said to be N -admissible if ℓ(λ) ≤ N and

aN,k(λ) ≥ 0 for k = 0, 1, . . . , N − 2;

aN,k(λ) = 0 for k = N − 1. (2.8)

The set of all N -admissible partitions is denoted by AN .

It should be noted that the condition aN,N−1(λ) = 0 is just |λ| = N(N −1). Using

this in the condition aN,N−2(λ) ≥ 0 gives |λ|−λ1−(N −2)(N −1) = 2(N −1)−λ1 ≥ 0

so that λ1 ≤ 2N − 2. The k = 0 and k = 1 conditions aN,0(λ) ≥ 0 and aN,1(λ) ≥ 0

give λN ≥ 0 and λN + λN−1 ≥ 2, respectively. Together with the constraint ℓ(λ) ≤ N

these imply that ℓ(λ) = N or N − 1, as in (2.5).

As mentioned earlier, Di Francesco et al[4] had conjectured that cλ
N 6= 0 if and only

if λ is N -admissible. This would imply that the number of non-vanishing coefficients

cλ
N appearing in the expansion (2.5) should be equal to the number, AN = #{AN}, of

N -admissible partitions. However, it has been found (Scharf et al[5] that there exist

N -admissible partitions λ such that cλ
N = 0. In fact for N = 8, 9 and 10 the numbers

of N -admissible partitions associated with vanishing coefficients are found to be

N = 8 : 8, N = 9 : 66, N = 10 : 389. (2.9)
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In order to gain further insight into the occurrence of vanishing coefficients and to

obtain additional information regarding the coefficients in general we turn shortly to

the q−discriminant.

Before doing this we would just point out two important properties of cλ
N that

have been established (Di Francesco et al[4]. To this end it is helpful to introduce one

more Definition and two Lemmas.

Definition 2.2 For each N -admissible partition λ, the reverse partition λ(r) =

(2N − 2)N/λ is the complement of λ in (2N − 2)N . That is, for λ = (λ1, λ2, . . . , λN)

λ(r) = (2N − 2 − λN , . . . , 2N − 2 − λ2, 2N − 2 − λ1). (2.10)

With this definition we have

Lemma 2.3 If λ is N -admissible then so is λ(r).

Proof If λ is N -admissible then ℓ(λ) ≤ N and λi ≤ λ1 ≤ 2N − 2 for i =

1, 2, . . . , N . Thus λ(r) is well defined and has length ℓ(λ(r)) ≤ N . In addition

|λ(r))| = N(2N − 2) − |λ| = N(N − 1) since |λ| = N(N − 1). It follows that

aN,N−1(λ
(r)) = 0, as required. Furthermore, for m = 0, 1, . . . , N − 2 we have

aN,m(λ(r)) =

m
∑

j=0

λ
(r)
N−j − m(m + 1) =

m
∑

j=0

(2N − 2 − λj+1) − m(m + 1)

= −
m
∑

j=0

λj+1 + (m + 1)(2N − 2 − m)

=
N−1
∑

j=m+1

λj+1 − N(N − 1) + (m + 1)(2N − 2 − m)

=
k
∑

i=0

λN−i − N(N − 1) + (N − k − 1)(N − k)

=
k
∑

i=0

λN−i − k(k + 1) = aN,k(λ) ≥ 0, (2.11)

where we have set i = N − j − 1 and k = N − m − 2, so that k takes the values

0, 1, . . . , N − 2, as required to complete the proof. •

It has been observed (Dunne[3]) that the most striking property of the expansion

coefficients cλ
N of (2.6) is that they exhibit reversal symmetry, in the sense that

cλ
N = cλ(r)

N . (2.12)

This is the s = 1 Property 0 (ii) of Di Francesco et al[4]

These authors also give as their Property 5 an important factorisation result linked

to the vanishing of one of the admissibility parameters aN,k(λ). In this context it is

important to note the following:
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Lemma 2.4 For any positive integers M and N , the partition λ is (M +N)-admissible

with aM+N,N−1(λ) = 0 if and only if there exist partitions µ ∈ AM and ν ∈ AN such

that λ = ((2N)M + µ, ν). That is

λi =

{

2N + µi for i = 1, 2, . . . , M ;

νi−M for i = M + 1, M + 2, . . . , M + N .
(2.13)

Proof For any λ with ℓ(λ) ≤ M + N the last N parts of λ define a partition ν of

length ℓ(ν) ≤ N with νj = λM+j for j = 1, 2, . . . , N , as in (2.13). The condition

aM+N,N−1(λ) = 0 then implies that |ν| = N(N − 1), using this in aM+N,N−1(λ) ≥ 0

gives λM ≥ 2N . It follows that the first M parts of λ − (2N)M defines a partition

µ with µi = λi − 2N for i = 1, 2, . . . , M , again as in (2.13). Conversely, if µ and

ν are M -admissible and N -admissible, respectively, then ℓ(µ) ≤ M , ℓ(ν) ≤ N and

ν1 ≤ 2N − 2. Thus λ = ((2N)M + µ, ν) is well defined and has length ℓ(λ) ≤ M + N .

Moreover, for k = 0, 1, . . . , N − 1 we have

aN,k(ν) =
k
∑

i=0

νN−i − k(k + 1) =
k
∑

i=0

λM+N−i − k(k + 1) = aM+N,k(λ). (2.14)

This implies that ν is N -admissible if and only if the first N of the (M + N)-

admissibility conditions for λ are satisfied, along with the constraint aM+N,N−1(λ) = 0.

Finally, for m = 0, 1, . . . , M − 1 we have

aM,m(µ) =

m
∑

j=0

µM−j − m(m + 1)

=
m
∑

j=0

λM−j − (m + 1)(2N + m)

=

k
∑

i=N

λM+N−i − k(k + 1) + N(N − 1)

= aM+N,k(λ) − aM+N,N−1(λ). (2.15)

where we have set i = j+N and k = m+N , so that k = N, N +1, . . . , M +N−1. This

implies that µ is M -admissible if and only if the last M of the (M + N)-admissibility

conditions for λ are replaced by aM+N,k(λ) ≥ aM+N,N−1(λ).

However combining (2.14) and (2.15) implies that λ = ((2N)M +µ, ν) is (M +N)-

admissible with aM+N,N−1(λ) = 0 if and only if µ and ν are M -admissible and N -

admissible, respectively. •

The significance of this is that if λ is (M + N)-admissible with aM+N,N−1(λ) = 0,

then from the s = 1 case of Property 5 of Di Francesco et al[4] we have, in the notation

of the Lemma,

cλ
M+N = cµ

M cν
N . (2.16)

It will be shown later that both this result and the reversal symmetry may be

generalised in a q-dependent way.
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3. The q-generalisation of the square of the Vandermonde determinant

Given x = (x1, x2, . . . , xN), the q-discriminant of x is defined to be

DN(q; x) =
∏

1≤i6=j≤N

(xi − qxj) = (−1)N(N−1)/2 RN(q; x) (3.1)

where the quantity of particular interest here, RN(q; x), is given by

RN(q; x) =
∏

1≤i<j≤N

(xi − qxj)(qxi − xj). (3.2)

This is a q-generalisation of the square of the Vandermonde determinant in the sense

that for q = 1 we have

RN(1; x) =
∏

1≤i<j≤N

(xi − xj)
2 = V 2

N(x). (3.3)

It should be noted from the definition (3.2) that RN(q; x) is a polynomial in q of degree

qN(N−1), and that for all q it is a symmetric function of the components of x.

With the above notation and that of (2.5) we have

RN(1; x) = V 2
N(x) =

∑

λ

cλ
N sλ(x). (3.4)

The original problem was to evaluate and study the coefficients cλ
N appearing here.

However, one may be more ambitious, and gain additional insight, by seeking to

evaluate the coefficients cλ
N(q) appearing in the expansion

RN(q; x) =
∑

λ⊢N(N−1)

cλ
N(q) sλ(x), (3.5)

and then to recover cλ
N by setting q = 1.

First it should be noted (Macdonald[6]) that for any x = (x1, x2, . . . , xN) and

y = (y1, y2, . . . , yN) we have
∏

1≤i,j≤N

(1 − qxjyi) =
∑

µ⊆NN

(−q)|µ| sµ(x) sµ′(y), (3.6)

where µ′ denotes the partition conjugate to µ and µ ⊆ NN is equivalent to the

restrictions ℓ(µ′) = µ1 ≤ N and ℓ(µ) = µ′
1 ≤ N . This identity with y = x =

(x−1
1 , x−1

2 , . . . , x−1
N ) may be exploited as follows to give

RN(q; x) = (−1)N(N−1)/2
∏

1≤i,j≤N

(xi − qxj)
/

∏

1≤i≤N

(1 − q)xi

=
(−1)N(N−1)/2

(1 − q)N

sNN (x)

s1N (x)

∏

1≤i,j≤N

(1 − qxjx
−1
i )

=
(−1)N(N−1)/2

(1 − q)N

sNN (x)

s1N (x)

∑

µ⊆NN

(−q)|µ| sµ(x) sµ′(x)

=
(−1)N(N−1)/2

(1 − q)N

∑

µ⊆NN

(−q)|µ|
sNN /µ′(x) sµ(x)

s1N (x)
. (3.7)



8 R C King, F Toumazet and B G Wybourne

In the above s1N (x) = x1x2 · · ·xN and sNN (x) = (x1x2 · · ·xN)N , and use has been

made of the fact that sNN (x)sµ′(x) = sNN/µ′(x), where / indicates the usual skew

product of Schur functions (Macdonald[6]).

As far as the x-dependence is concerned it should be noted that for any partition

λ of length ℓ(λ) = N we have sλ(x) = s1N (x)sλ/1N (x), where λ/1N is the partition

obtained from λ by decreasing each of its N parts by 1. It follows, that the numerator

of each summand of (3.7) contains a factor s1N (x) since either ℓ(NN/µ′) = N if

ℓ(µ) < N or ℓ(µ) = N . In fact taking the terms in pairs, one with ℓ(NN/µ′) = N and

one with ℓ(µ) = N , gives

RN(q; x) =
(−1)N(N−1)/2

(1 − q)N

∑

ν⊆NN−1

(

(−q)|ν| + (−q)N2−|ν|
)

s(N−1)N /ν′(x) sν(x), (3.8)

where now ν ⊆ NN−1 is equivalent to the restrictions ℓ(ν) = ν ′
1 ≤ N − 1 and

ℓ(ν ′) = ν1 ≤ N . The product of Schur functions appearing here may be evaluated

by means of the Littlewood-Richardson rule (Littlewood[8], Macdonald[6]) which

determines the coefficients cλ
µ ν arising in the decomposition of the product

sµ(x) sν(x) =
∑

λ

cλ
µ ν sλ(x). (3.9)

With this notation, it follows that

cλ
N(q) =

(−1)N(N−1)/2

(1 − q)N

∑

ν⊆NN−1

(

(−q)|ν| + (−q)N2−|ν|
)

cλ
((N−1)N /ν′) ν . (3.10)

While (3.8) does not show directly that RN(q; x) is a polynomial in q, this fact does

of course follow from the definition (3.3). As a result the coefficients cλ
N(q) appearing

in (3.10) are also polynomials in q. One can say somewhat more since (3.3) can be

recast in the form

RN(q; x) = qN(N−1)/2
∏

1≤i<j≤N

(xi − qxj)(xi − q−1xj) =
∑

λ

cλ
N(q) sλ(x). (3.11)

This implies that the polynomials cλ
N (q) must be symmetric in the sense that the

coefficients of qN(N−1)/2+k and qN(N−1)/2−k are equal for all integers k. Equivalently,

cλ
N(q) = qN(N−1)cλ

N(q−1). (3.12)

The case q = 1 is not the only case of interest. For q = −1 we have

RN(−1; x) = (−1)N(N−1)/2
∏

1≤i<j≤N

(xi + xj)
2 (3.13)

and

RN(−1; x) =
(−1)N(N−1)/2

2N−1

∑

ν⊆(NN−1)

s(N−1)N /ν′(x) sν(x), (3.14)
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from (3.3) and (3.8), respectively. Hence

cλ
N(−1) =

(−1)N(N−1)/2

2N−1

∑

ν⊆NN−1

cλ
((N−1)N /ν′) ν . (3.15)

The significance of these q = −1 results lies in the fact that they are related to

the Schur function product

sδ(x) sδ(x) =
∑

λ

cλ
δ δ sλ(x), (3.16)

where δ is the so-called staircase partition δ = (N − 1, N − 2, . . . , 1, 0). This staircase

partition is such that

sδ(x) =
∏

1≤i<j≤N

(xi + xj). (3.17)

This formula may be derived from the fact that (Macdonald[6])

sλ(x) =
aλ+δ(x)

aδ(x)
=

∣

∣

∣
x

λj+N−j
i

∣

∣

∣

1≤i,j≤N
∣

∣

∣
xN−j

i

∣

∣

∣

1≤i,j≤N

, (3.18)

where the denominator aδ(x) is nothing other than the Vandermonde determinant

VN(x) which factorises as in (2.2). Hence

sδ(x) =
a2δ(x)

aδ(x)
=

∣

∣

∣
x

2(N−j)
i

∣

∣

∣

1≤i,j≤N
∣

∣

∣
xN−j

i

∣

∣

∣

1≤i,j≤N

=
∏

1≤i<j≤N

(x2
i − x2

j)

(xi − xj)
, (3.19)

which reduces to (3.17) as required. The outcome of all this is that

RN(−1; x) = (−1)N(N−1)/2sδ(x)2 = (−1)N(N−1)/2
∑

λ

cλ
δ δ sλ(x). (3.20)

Now we are in a position to use an important result due to Berenstein and

Zelevinsky[9] that applies to the simple Lie algebra sl(N) but which can be readily

translated to the case of the reductive Lie algebra gl(N) of interest here.

Theorem 3.1 Let ρ be half the sum of the positive roots of sl(N), that is ρ =

δ− 1
2
(N−1)η where η = (1, 1, . . . , 1), and let Π = {αp = ǫp−ǫp+1 | p = 1, 2, . . .N−1} be

the set of simple roots of sl(N), where ǫi = (0, . . . , 0, 1, 0, . . . , 0) with the 1 appearing

as the ith component for i = 1, 2, . . . , N . Let ZZ+ be the set of non-negative integers.

Then the multiplicity mκ
ρ ρ of the irreducible representation V κ in the decomposition of

the tensor product V ρ ⊗ V ρ is such that mκ
ρ ρ > 0 if and only if

κ = 2ρ −
N−1
∑

p=1

gp αp with gp ∈ ZZ+ for all αp ∈ Π. (3.21)
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In the context of gl(N) this implies:

Corollary 3.2 Let δ = (N − 1, N − 2, . . . , 1, 0) then cλ
δ δ > 0 if and only if λ is

N -admissible.

Proof. Let V be the defining N -dimensional irreducible representation of gl(N). Then

the irreducible constituents V λ of V ⊗N(N−1) are specified by partitions λ of weight

|λ| = N(N − 1) and length ℓ(λ) ≤ N . They have character sλ(x) with xi defined to

be the formal exponential eǫi for i = 1, 2, . . . , N . The passage from gl(N) to sl(N)

is effected by setting ǫ1 + ǫ2 + · · · + ǫN = 0, or equivalently sη(x) = x1x2 · · ·xN = 1.

Now let λ = κ + (N − 1)η and δ = ρ + 1
2
(N − 1)η = (N − 1, N − 2, . . . , 1, 0) so that

the irreducible representations V λ and V δ of gl(N) give on restriction to sl(N) the

irreducible representations V κ and V ρ, respectively. Then cλ
δ δ = mκ

ρ ρ, and it follows

from Theorem 3.1 that cλ
δ δ > 0 if and only if

λ = 2δ −

N−1
∑

p=1

gp(ǫp − ǫp+1) with gp ∈ ZZ+ for all p = 1, 2, . . .N − 1. (3.22)

It only remains to show that these conditions (3.22) coincide with the N -

admissibility conditions of Definition 2.1. It follows immediately from (3.22) that

ℓ(λ) ≤ N and |λ| = 2|δ| = N(N − 1). The former is required for N -admissibility

and the latter is just the admissibility condition aN,N−1(λ) = 0 of (2.8). In addition,

taking the (N − i)th component of (3.22) gives

λN−i = 2i − gN−i + gN−i−1 for i = 0, 1 . . . , N − 1, (3.23)

where it has been convenient to introduce gN = 0. It follows from this that

aN,k(λ) =
k
∑

i=0

λN−i − k(k + 1) = gN−k−1 ∈ ZZ+ for k = 0, 1, . . . , N − 2. (3.24)

These are nothing other than the remaining admissibility conditions of (2.8). Thus

(3.22) coincides precisely with the N -admissibility conditions of Definition 2.1. •

This result, Corollary 3.2, has a wider significance in that it may be used to derive

the following:

Proposition 3.3 Let RN(q; x) be defined as in (3.3), then

RN(q; x) =
∑

λ∈AN

cλ
N(q) sλ(x), (3.25)

with cλ
N (q) a non-zero polynomial in q for each λ ∈ AN .

Proof We first deal with the case λ /∈ AN . Comparing (3.14) and (3.20) reveals that

cλ
δ δ =

1

2N−1

∑

ν∈⊆(NN−1)

cλ
((N−1)N /ν′) ν . (3.26)
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Since there are no cancellations of any kind in this expansion it follows from

Corollary 3.2 that for all λ /∈ AN and all ν ⊆ NN−1 we have

cλ
((N−1)N /ν′) ν = 0. (3.27)

This implies in (3.10) that cλ
N(q) = 0 for all λ /∈ AN . This means that, as required in

(3.25), we can restrict the summation over λ in the expansion (3.5) to λ ∈ AN .

Moreover, it follows from (3.20) that

cλ
N(−1; x) = (−1)N(N−1)/2cλ

δ δ. (3.28)

Corollary 3.2 therefore implies that

cλ
N(−1,x) 6= 0 if and only if λ ∈ AN . (3.29)

This shows that cλ
N(q) is a non-vanishing polynomial in q for all λ ∈ AN , as required.

Of course, as we have indicated in (2.8), cλ
N = cλ

N (1) = 0 cannot be excluded for all

admissible λ, by virtue of possible cancellations in (3.10). Such cancellations simply

indicate, as we will later exemplify, the presence of at least one factor (q−1) in cλ
N(q).

4. An algorithm for the evaluation of cλ
N (q)

While the formula (3.11) for cλ
N(q) is quite explicit it does not provide a very efficient

way of calculating these polynomials. This is not only because its implementation

requires the decomposition of outer products of Schur functions (corresponding to

tensor products of irreducible representations of gl(N)), of the type sµ(x) sν(x)

with µ = NN−1/ν ′ by means of the Littlewood-Richardson rule, but also because

it necessarily involves a considerable degree of overcounting in the numerator so

as to cancel the denominator factor (1 − q)N . An alternative formula has been

provided elsewhere (Scharf et al[5]) but its implementation requires the decomposition

of inner products of Schur functions (corresponding to tensor products of irreducible

representations of SN2). albeit rather special inner products of the form sNN (x) ∗

sa+1,1b(x) for all a and b such that a + b + 1 = N 2. This becomes a formidable task

for all but very small values of N .

However, in addition to these formulae there exists in the case q = 1 a recursive

algorithm (Scharf et al[5]) for evaluating cλ
N = cλ

N(1) which does not require any

decomposition of either outer or inner products of Schur functions. This may be

generalised to the case of cλ
N(q) as follows.

It is first necessary to introduce the linear operator ΩN acting in the space PN of

functions f(x) = f(x1, x2, . . . , xN) that are polynomial in the components of x. The

symmetric group SN acts naturally on the components of x and is generated by the

transpositions σi = (i, i + 1) for i = 1, 2, . . . , N − 1. Their action on f(x) is defined by

σif(x1, . . . , xi, xi+1, . . . , xN) = f(x1, . . . , xi+1, xi, . . . , xN). (4.1)
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Following Lascoux and Schutzenberger[10], Lascoux[11] and Macdonald[12], the

isobaric divided difference operators πi for i = 1, 2, . . . , N − 1 are then defined by

πif(x) =
xif(x) − xi+1σif(x)

xi − xi+1
. (4.2)

If the permutation ωN = (N, N − 1, . . . , 1) has the reduced decomposition ωN =

σi1σi2 · · ·σir as a word of minimal length r in the generators σi, then ΩN is defined by

ΩN = πi1πi2 · · ·πiN . (4.3)

This operator has a number of important properties (Lascoux and Schutzen-

beger[10], Lascoux[11], Macdonald[12]). First for any f(x) and g(x) in PN such that

f(x) is a symmetric function of the components of x we have

ΩN(f(x)) = f(x) and ΩN(f(x)g(x)) = f(x)ΩN(g(x)). (4.4)

Now consider any vector α = (α1, α2, . . . , αN) with integer components αi for

i = 1, 2, . . . , N that are not necessarily weakly decreasing as required for a partition,

and may even be negative. Then for x = (x1, x2, . . . , xN) let xα be the monomial

defined by xα = xα1
1 xα2

2 · · ·xαN

N . For any such monomial xα we have

ΩN(xα) = sα(x), (4.5)

where sα(x) is to be defined as a ratio of determinants as in (3.18) with λ replaced

by α. Since α is not necessarily a partition the right hand side of (4.5) may have

to be standardised. From the determinantal definition (3.18) it can be seen that

(Littlewood[8])

sα1,...,αj ,αj+1,...,αN
(x) = −sα1,...,αj+1−1,αj+1,...,αN

(x) (4.6)

for all j = 1, 2, . . . , N − 1. The repeated application of (4.6) to sα(x) will give either

zero or ±sλ(x) for some partition λ.

Finally, if we let y = (x1, x2, . . . , xN−1) so that x = (y, xN), and let λ be a partition

of length ℓ(λ) < N then

ΩN

(

sλ(y) xk
N

)

= sλ,k(x), (4.7)

where (λ, k) = (λ1, λ2, . . . , λN−1, k). Once again it may be necessary to standardise

the right hand side of (4.7) through the repeated application of (4.6).

We may now exploit the operator ΩN to give a simple derivation of two results

linking monomial symmetric functions and Schur functions. For any partition µ =

(µ1, µ2, . . . , µN) let P (µ) denote the set of all distinct permutations α of the parts of

µ. Then the usual monomial symmetric function mµ(x) of x (Macdonald[6]) is given

by

mµ(x) =
∑

α∈P (µ)

xα. (4.8)
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Since mµ(x) is a symmetric function it follows from (4.4) and (4.5) that

mµ(x) = ΩN(mµ(x)) = ΩN





∑

α∈P (µ)

xα



 =
∑

α∈P (µ)

Ωn(xα) =
∑

α∈P (µ)

sα(x), (4.9)

where the final expression may be standardised through the use of (4.6). More

generally, (Murnaghan[13]) we have

mµ(x)sλ(x) = mµ(x)ΩN(xλ) = ΩN(mµ(x)xλ)

= ΩN





∑

α∈P (µ)

xλ+α



 =
∑

α∈P (µ)

ΩN(xλ+α) =
∑

α∈P (µ)

sλ+α(x), (4.10)

where once again the final expression may be standardised through the repeated use

of (4.6).

Returning to the main problem, the evaluation of RN(q; x), it is clear from the

definition (3.4) that

RN(q; x) = RN−1(q; y) UN(q; x) (4.11)

where

UN(q; x) =
∏

1≤i≤N−1

(xi − qxN )(qxi − xN). (4.12)

In (4.11) we can expand RN−1(q; y) and UN(q; x) in terms of Schur functions of y and

monomials in x, respectively. These expansions take the form:

RN−1(q; y) =
∑

ν

cν
N−1(q) sν(y) (4.13)

and

UN(q; x) =
∑

α

bα
N(q) xα. (4.14)

By setting α = (β, k) and using the fact that x = (y, xN) we then have,

UN(q; x) =
∑

k,β

bβ,k
N (q) yβ xk

N . (4.15)

However, from the definition (4.12), UN(q; x) = UN(q; y, xN) is a symmetric function

in the components of y. This implies that bβ,k
N (q) = bµ,k

N (q) for all β ∈ P (µ), so that

UN(q; x) =
∑

k,µ

bµ,k
N (q) mµ(y) xk

N . (4.16)

It then follows that

RN(q; x) =
∑

ν,µ,k

cν
N−1(q) bµ,k

N (q) mµ(y) sν(y) xk
N . (4.17)
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Hence from (4.10) we have

RN(q; x) =
∑

ν,µ,k,β∈P (µ)

cν
N−1(q) bµ,k

N (q) sν+β(y) xk
N

=
∑

ν,β,k

cν
N−1(q) bβ,k

N (q) sν+β(y) xk
N . (4.18)

But RN(q; x) is a symmetric function in the components of x, so that

RN(q; x) = ΩN (RN(q; x)) =
∑

ν,β,k

cν
N−1(q) bβ,k

N (q) ΩN

(

sν+β(y) xk
N

)

. (4.19)

The identity (4.7) then implies that

RN(q; x) =
∑

ν,β,k

cν
N−1(q) bβ,k

N (q) sν+β,k(x)

=
∑

ν,α

cν
N−1(q) bα

N(q) sν+α(x). (4.20)

Comparison with the definition of the coefficients cλ
N(q) given in (3.5) then implies

Algorithm 4.1 The polynomials cλ
N (q) defined in (3.5) may be determined recursively

with respect to N from the identity

cλ
N(q) =

∑

ν,α

φ(ν+α, λ) cν
N−1(q) bα

N(q), (4.21)

where cν
N−1(q) and bα

N(q) are defined in (4.13) and (4.14), respectively, and where φ(ν+

α, λ) is ±1 if sν+α(x) = ±sλ(x) under the repeated application of the standardisation

rule (4.6), and is zero otherwise.

The significance of (4.21) is that it allows us to determine the expansion of RN(q; x)

in terms of Schur functions sλ(x), and hence to evaluate the coefficients cλ
N (q), merely

through the term by term addition of the labels ν of the Schur functions sν(y) that

appear in the corresponding expansion of RN−1(q; y) to the weight α of the monomials

xα appearing in the expansion of UN(q; x), followed by standardisation in accordance

with (4.7) of sν+α(x). It is notable that no products of symmetric functions are

involved.

By way of illustration in the case N = 3 we have

R2(q; y) = q s2(y) − (q2 + q + 1) s12(y) (4.22)

and

U3(q; x) = (x1 − qx3)(qx1 − x3)(x2 − qx3)(qx2 − x3)

= (qx2
1 − (q2 + 1)x1x3 + qx2

3)(qx
2
2 − (q2 + 1)x2x3 + qx2

3)

= q2 x2
1x

2
2x

0
3 − q(q2 + 1)x2

1x
1
2x

1
3 − q(q2 + 1)x1

1x
2
2x

1
3

+ q2 x2
1x

0
2x

2
3 + q2 x0

1x
2
2x

2
3 + (q2 + 1)2x1

1x
1
2x

2
3

− q(q2 + 1)x1
1x

0
2x

3
3 − q(q2 + 1)x0

1x
1
2x

3
3 + q2x0

1x
0
2x

4
3. (4.23)
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Combining these gives

R3(q; x) = q3 s420(x) − q2(q2 + q + 1)s330(x)

− q2(q2 + 1)s411(x) + q(q2 + 1)(q2 + q + 1)s321(x)

− q2(q2 + 1)s321(x) + q(q2 + 1)(q2 + q + 1)s231(x)

+ q3 s402(x) − q2(q2 + q + 1)s312(x)

+ q3 s222(x) − q2(q2 + q + 1)s132(x)

+ q(q2 + 1)2s312(x) − (q2 + 1)2(q2 + q + 1)s222(x)

− q2(q2 + 1)s303(x) + q(q2 + 1)(q2 + q + 1)s213(x)

− q2(q2 + 1)s213(x) + q(q2 + 1)(q2 + q + 1)s123(x)

+ q3s204(x) − q2(q2 + q + 1)s114(x). (4.24)

By virtue of the standardisation rule (4.7) we have

s231(x) = s312(x) = s123(x) = s204(x) = 0, s402(x) = −s411(x),

s213(x) = s132(x) = −s222(x), s114(x) = s222(x), s303(x) = −s321(x). (4.25)

It then follows that

R3(q; x) = q3s42(x)

− q2(q2 + q + 1)(s412(x) + s32(x))

+ q(q2 + q + 1)(q2 + 1)s321(x)

− (q2 + q + 1)(q4 + q3 + q2 + q + 1)s23(x). (4.26)

By proceeding in this way we can recursively calculate the polynomials cλ
N(q).

Setting q = 1 then gives the coefficients cλ
N appearing in (2.6). Explicit results for the

polynomials cλ
N (q) for N = 2, . . . , 5 are given below in Tables 4.1 to 4.4. In each case

the first entry in square brackets is the value of the q−polynomial for q = 1, that is cλ
N .

The relevant Schur functions sλ(x) have for typographical convenience been denoted

by {λ} and are given to the right of the appropriate q−polynomial.

Table 4.1 N = 2

[1] + q {2}

[−3] − (q2 + q + 1) {12}

Table 4.2 N = 3

[1] + q3 {42}

[−3] − q2(q2 + q + 1) ({412} + {32})

[6] + q(q2 + 1)(q2 + q + 1) {321}

[−15] − (q2 + q + 1)(q4 + q3 + q2 + q + 1) {23}
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Table 4.3 N = 4

[1] + q6 {642}

[−3] − q5(q2 + q + 1) ({6412} + {632} + {522})

[6] + q4(q2 + 1)(q2 + q + 1) ({6321} + {543})

[9] + q4(q2 + q + 1)2 {5212}

[−15] − q3(q2 + q + 1)(q4 + q3 + q2 + q + 1) ({623} + {43})

[−12] − q3(q2 + 1)2(q2 + q + 1) {5421}

[−9] − q3(q2 + q + 1)(q4 + q2 + 1) {5321}

[−6] − q3(q2 + q + 1)(q4 + 1) {4222}

[27] + q2(q2 + q + 1)2(q4 + q2 + 1) ({5322} + {4231})

[−45] − q(q2 + q + 1)(q4 + q2 + 1)(q4 + q3 + q2 + q + 1) {4322}

[105] + (q2 + q + 1)(q4 + q3 + q2 + q + 1)(q6 + q5 + q4 + q3 + q2 + q + 1) {34}

Table 4.4 N = 5

[1] + q10 {8642}

[−3] − q9(q2 + q + 1) ({86412} + {8632} + {8522} + {7242})

[6] + q8(q2 + 1)(q2 + q + 1) ({86321} + {8543} + {7652})

[9] + q8(q2 + q + 1)2 ({85212} + {72412} + {7232})

[−12] − q7(q2 + 1)2(q2 + q + 1) ({85421} + {7643})

[−9] − q7(q2 + q + 1)(q4 + q2 + 1) ({85321} + {7523})

[−6] − q7(q2 + q + 1)(q4 + 1) ({84222} + {6242}

[−15] − q7(q2 + q + 1)(q4 + q3 + q2 + q + 1) ({8623} + {843} + {632})

[−18] − q7(q2 + 1)(q2 + q + 1)2 ({72321} + {76512})

[27] + q6(q2 + q + 1)2(q4 + q2 + 1) ({85322} + {84231} + {7542} + {6253})

[24] + q6(q2 + 1)3(q2 + q + 1) {76421}

[18] + q6(q2 + 1)(q2 + q + 1)(q4 + q2 + 1) ({76321} + {75221})

[45] + q6(q2 + q + 1)2(q4 + q3 + q2 + q + 1) ({7223} + {6312})

[−45] − q5(q2 + q + 1)(q4 + q2 + 1)(q4 + q3 + q2 + q + 1) ({84322} + {6524})

[−54] − q5(q2 + 1)(q2 + q + 1)2(q4 + q2 + 1) ({76322} + {62521})

[−36] − q5(q2 + 1)2(q2 + q + 1)(q4 + q2 + 1) {75431}

[−36] − q5(q2 + 1)(q2 + q + 1)2(q4 + 1) {7431}

[−27] − q5(q2 + q + 1)(q4 + q2 + 1)2 ({75422} + {62431})

[−18] − q5(q2 + q + 1)(q4 + q2 + 1)(q4 + 1) ({62322} + {65222})

[105] + q4(q2 + q + 1)(q4 + q3 + q2 + q + 1)(q6 + q5 + q4 + q3 + q2 + q + 1)

({834} + {54})

[81] + q4(q2 − q + 1)2(q2 + q + 1)4 ({75322} + {65231})
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[72] + q4(q2 + 1)2(q2 + q + 1)2(q4 + 1) ({74232} + {65421})

[111] + q4(q2 + q + 1)(q10 + 2q9 + 4q8 + 3q7 + 6q6 + 5q5 + 6q4 + 3q3 + 4q2 + 2q + 1)

{62422}

[45] + q4(q2 + q + 1)2(q8 + q6 + q4 + q2 + 1) ({6533} + {5332})

[−180] − q3(q2 + 1)(q2 + q + 1)2(q4 + 1)(q4 + q3 + q2 + q + 1) ({7433} + {5341})

[−144] − q3(q2 + 1)3(q2 + q + 1)2(q4 + 1) {65432}

[−90] − q3(q2 + q + 1)(q4 + q2 + 1)(q4 + 1)(q4 + q3 + q2 + q + 1) {6432}

[−75] − q3(q2 + q + 1)(q4 + q3 + q2 + q + 1)(q8 + q6 + q4 + q2 + 1) {52432}

[270] + q2(q2 + q + 1)2(q4 + q2 + 1)(q4 + 1)(q4 + q3 + q2 + q + 1) ({64232} + {52422})

[−420] − q(q2 + 1)(q2 + q + 1)(q4 + 1)(q4 + q3 + q2 + q + 1)

× (q6 + q5 + q4 + q3 + q2 + q + 1) {5433}

[945] + (q2 + q + 1)2(q4 + q3 + q2 + q + 1)(q6 + q3 + 1)

× (q6 + q5 + q4 + q3 + q2 + q + 1) {45}

5. Refinement of the algorithm for calculating cλ
N(q)

For N ≥ 4 the Algorithm 4.1 based on (4.11) for the calculation of cλ
N (q) shows some

remarkable properties if its implementation is carried out by simultaneously refining

both UN(q; x) and RN−1(q; y). This is done by setting

UN (q; x) =
3
∑

u=0

U
(u)
N (q; x) with U

(u)
N (q; x) =

∑

α:α1=u

bα
N(q)xα, (5.1)

for u = 0, 1, 2, and

RN−1(q; y) =

2N−4
∑

r=N−2

R
(r)
N−1(q; y) with R

(r)
N−1(q; y) =

∑

ν:ν1=r

cν
N−1(q) sν(y), (5.2)

for r = N − 2, N − 1, . . . , 2N − 4. Then

WN (q; x) =

2
∑

u=0

2N−4
∑

r=N−2

W
(u,r)
N (q; x) with W

(u,r)
N (q; x) = U

(u)
N (q; x) R

(r)
N−1(q; y), (5.3)

for u = 0, 1, 2 and r = N − 2, N − 1, . . . , 2N − 4.

Proceeding to calculate RN(q,y) in the above way for N = 4 leads to the following

results, where sλ(y) has been denoted by {λ}.

Table 5.1 The symmetric functions R
(r)
3 (q; y) .

R
(4)
3 (q; y) = q3{42} − q2(q2 + q + 1){412}

R
(3)
3 (q; y) = −q2(q2 + q + 1){32} + q(q2 + q + 1)(q2 + 1){321}

R
(2)
3 (q; y) = −(q2 + q + 1)(q4 + q3 + q2 + q + 1){23}
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Table 5.2 The multinomials U
(u)
4 (q; x) .

U
(0)
4 (q; x) = q3[(023) + (0204) + (0224) + (036)]

− q2(q2 + 1)[(0213) + (0123 + (0105) + (0215)]

+ q(q2 + 1)2(0124)

U
(1)
4 (q; x) = −q2(q2 + 1)[(1221) + (1203) + (1023) + (1025)]

+ q(q2 + 1)2[(1212) + (1222) + (1204) + (1014)]

− (q2 + 1)3(133)

U
(2)
4 (q; x) = q3[(23) + (2202) + (2022) + (2024)]

− q2(q2 + 1)[(2212) + (2121) + (2103) + (2013)]

+ q(q2 + 1)2(2122)

Table 5.3 The products W
(u,r)
4 (q; x) = U

(u)
4 (q; x) R

(r)
3 (q; y).

W
(0,4)
4 (q; x) = 0

W
(0,3)
4 (q; x) = −q5(q2 + q + 1){4231}

+ q4(q2 + q + 1)2{4222}

− q2(q2 + q + 1)2(q4 + q3 + q2 + q + 1){34}

W
(0,2)
4 (q; x) = −q2(q2 + 1)(q2 + q + 1)(q4 + q3 + q2 + q + 1){34}

W
(1,4)
4 (q; x) = 0

W
(1,3)
4 (q; x) = 0

W
(1,2)
4 (q; x) = (q2 + 1)2(q2 + q + 1)2(q4 + q3 + q2 + q + 1){34}

W
(2,4)
4 (q; x) = q6{642}

− q5(q2 + q + 1){6412} + {632}

+ q4(q2 + 1)(q2 + q + 1){6321}

− q3(q2 + q + 1)(q4 + q3 + q2 + q + 1){623}



The square of the Vandermonde determinant and its q-generalisation19

W
(2,3)
4 (q; x) = −q5(q2 + q + 1){522}

+ q4(q2 + q + 1)2{5212}

+ q4(q2 + 1)(q2 + q + 1){543}

− q3(q2 + 1)2(q2 + q + 1){5421}

− q3(q2 + q + 1)(q4 + q2 + 1){5321}

+ q2(q2 + q + 1)2(q4 + q2 + 1){5322}

W
(2,2)
4 (q; x) = −q3(q2 + q + 1)(q4 + q3 + q2 + q + 1)({43} + {4222}

+ q2(q2 + 1)(q2 + q + 1)(q4 + q3 + q2 + q + 1){4231}

− q(q4 + q2 + 1)(q2 + q + 1)(q4 + q3 + q2 + q + 1){4322}

Summing all these terms over u = 0, 1, 2 and r = 2, 3, 4 gives precisely the results

displayed in Table 4.3.

It will be noted in Table 5.3 that a number of the terms W
(u,r)
4 (q; x) are identically

zero. Indeed the main point of the above refinement is not just to break the calculation

down into more manageable portions but to search for zeros of this kind. Our

calculations of the separate terms W
(u,r)
N (q; x) for 4 ≤ N ≤ 9 lead us to propose

the following:

Conjecture 5.1 For N ≥ 4

W
(u,r)
N (q; x) = 0 for







u = 0, r > N − 2 +

[

N

3

]

;

u = 1, r > N − 2.

(5.4)

Thus for u = 1 the only non-vanishing term is that for which r = N − 2. In this

case we have

R
(N−2)
N−1 (q; y) = (−1)(N−1)(N−2)/2 [2N − 3]!!q s(N−2)N−1(y). (5.5)

Then, for 4 ≤ N ≤ 10, the results of multiplication by U
(1)
N (q; x) suggests:

Conjecture 5.2 For N ≥ 4, W
(1,N−2)
N (q; x) = w(1,N−2)(q) s(N−1)N (x) with

w(1,N−2)(q) =























(−1)N/2 [2]q2

[

N

2

]

q2

[N − 1]q [2N − 3]!!q for N even;

(−1)(N−1)/2 [2]q2

[

N − 1

2

]

q2

[N ]q [2N − 3]!!q for N odd.

(5.6)

Similar calculations in the case u = 0 suggest

Conjecture 5.3 For N ≥ 4, W
(0,N−2)
N (q; x) = w(0,N−2)(q) s(N−1)N (x) with

w(0,N−2)(q) =























(−1)(N+2)/2 q2

[

N

2

]

q2

[N − 3]q [2N − 3]!!q for N even;

(−1)(N+1)/2 q2

[

N − 3

2

]

q2

[N ]q [2N − 3]!!q for N odd.

(5.7)
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The case u = 2 on the other hand is more complicated and we are not able

to suggest any general form for W
(2,r)
N (q; x) although the standardisation rules are

such that all the surviving Schur functions are necessarily of the form sλ(x) with

λ = (r + 2, ν) for some partition ν of the appropriate weight. Furthermore, if r takes

its maximum value, 2N − 4, then r + 2 = 2N − 2 and we must have λ = (2N − 2, ν)

with ν ∈ AN−1. To be more precise, using the notation of (4.14) and (4.16),

W
(2,2N−4)
N (q; x) =

∑

γ,µ∈AN−1

c
(2N−4,µ)
N−1 (q) b

(2,γ)
N (q) s(2N−2,µ+γ)(x)

=
∑

γ,µ∈AN−1

qN−1 cµ
N−2(q) bγ

N−1(q) s(2N−2,µ+γ)(x)

=
∑

ν∈AN−1

qN−1 cν
N−1(q) s(2N−2,ν)(x), (5.8)

where use has been made of both Property 6.2 (see Section 6) and (4.21) with the

standardisation rule (4.7) necessarily leaving the first part, 2N − 2, of the relevant

partitions fixed. A further application of Property 6.2 then gives

W
(2,2N−4)
N (q; x) =

∑

ν∈AN−1

c
(2N−2,ν)
N (q) s(2N−2,ν)(x); (5.9)

These results are well illustrated in Table 5.3 for the case N = 4 where it can be

seen that the relevant coefficients are just q3 times those appearing in Table 4.2, and

coincide with those appearing in Table 4.3. This is necessary since in our refinement of

the calculation of RN(q; x) the terms s(2N−2,ν)(x) can only arise from W
(2,2N−4)
N (q; x).

6. Properties of the polynomials cλ
N(q)

On the basis of explicit calculations of cλ
N (q) up to N = 9, we were led first

to conjecture and then prove the following factorisation property, which is the q-

dependent generalisation of Property 5 given by Di Francesco et al[4] in the q = 1

case.

Property 6.1 Let λ ∈ AM+N be such that aM+N,N−1(λ) = 0, so that from Lemma 2.4

λ = ((2N)M + µ, ν) with µ ∈ AM ν ∈ AN . Then

cλ
M+N(q) = qMN cµ

M(q) cν
N (q) with µ =∈ AM and ν ∈ AN . (6.1)

Proof Let x = (y, z) with y = (y1, y2, . . . , yM) and z = (z1, z2, . . . , zN). Then from

(3.3) and (3.5) we have

RM+N(q; x) = RM(q; y) RN(q; z)
M
∏

i=0

N
∏

j=0

(yi − qzj)(qyi − zj)
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=
∑

µ∈AM

cµ
M(q) sµ(y)

∑

ν∈AN

cν
N (q) sν(z)

(

M
∏

i=0

(qy2
i )N + · · · +

N
∏

j=0

(qz2
j )M

)

=
∑

µ∈AM

cµ
M(q) sµ(y)

∑

ν∈AN

cν
N (q) sν(z)

(

qMN s(2N)M (y) + · · · + qMN s(2M)N (z)
)

=
∑

µ∈AM

∑

ν∈AN

(

qMN cµ
M(q) cν

N(q) s(2n)M +µ(y) sν(z)

+ · · · + qMN cµ
M(q) cν

N (q) sµ(y) s(2M)N +ν(z)
)

. (6.2)

The final + · · ·+ indicates a linear combination of terms that are necessarily symmetric

in the components of y and in those of z. They are of the form pξ,ζ
N (q) sξ(y) sζ(z)

with pξ,ζ
N (q) a polynomial in q, |µ| < |ξ| < 2MN + |µ| and |ν| < |ζ| < 2MN + |ν|.

This implies that for fixed µ and ν the two terms displayed in (6.2) are of a different

weight in the components of y and z from all the others. However

RM+N(q; y, z) =
∑

λ∈AM+N

cλ
M+N(q) sλ(y, z)

=
∑

λ∈AM+N

cλ
M+N(q)

∑

σ,τ

cλ
σ τ sσ(y) sτ (z). (6.3)

For fixed µ ∈ AM and ν ∈ AN , comparing (6.2) and (6.3) gives

∑

λ∈AM+N

cλ
M+N(q) cλ

((2N)M +µ) ν = q2MN cµ
M(q) cν

N (q), (6.4)

and

∑

λ∈AM+N

cλ
M+N(q) cλ

µ ((2M)N +ν) = q2MN cµ
M(q) cν

N (q). (6.5)

However, the summation over λ ∈ AM+N in each of the cases (6.4) and (6.5)

reduces to a single term. The two cases are entirely analogous, so it suffices to consider

(6.4). Since ν is N -admissible with |ν| = N(N − 1) we have

aM+N,N−1(λ) =
∑

i=0

λM+N−1 − N(N − 1) =
∑

i=0

λM+N−1 − |ν|. (6.6)

It follows that if λ is to be (M + N)-admissible, then all the boxes of F ν , when added

to F (2N)M +µ to form F λ in accordance with the Littlewood-Richardson rule, must be

added below the Mth row. This can be done in one and only one way, namely by

simply adjoining F ν to the bottom of F (2N)M +µ to give F ((2N)M +µ,ν). The corresponding

Littlewood-Richardson coefficient is 1. Thus

cλ
((2N)M+µ) ν =

{

1 if λ = ((2N)M + µ, ν);

0 otherwise.
(6.7)

Using this in (6.5) gives (6.1), thereby completing the proof of Property 6.1. •
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Two special cases are of particular interest. First, setting M = 1 forces µ = (0) by

virtue of the admissibility conditions. Then for consistency with (6.2) we must have

R1(q; y1) = 1, so that c
(0)
1 (q) = 1. Hence we obtain:

Property 6.2 Let ν ∈ AN , then

c2N,ν
N+1(q) = qNcν

N(q). (6.8)

This is illustrated, for example, by

c6321
4 (q) = q4 c0

1(q) c321
3 (q)

= q3 · 1 · c321
3 (q)

= q3 · 1 · q(q2 + 1)(q2 + q + 1)

= q4(q2 + 1)(q2 + q + 1). (6.9)

Similarly, setting N = 1 gives:

Property 6.3 Let µ ∈ AM , then

c2M +µ
M+1 (q) = qMcµ

M (q). (6.10)

For example we have

c75440
5 (q) = q4 c0

1(q) c5322
4 (q)

= q4 · q2(q2 − q + 1)(q2 + q + 1)3

= q6(q2 − q + 1)(q2 + q + 1)3. (6.11)

It might also be pointed out that the recursive use of either Property 6.2 or

Property 6.3 gives a rather easy way to rederive the result (4.27), c2δ
N (q) = q(N(N−1)/2.

As we have already noted, if λ is N -admissible then ℓ(λ) is either N or N − 1.

Moreover if ℓ(λ) = N − 1 then λN−1 ≥ 2 and λ = (2N−1 + µ) for some µ ∈ AN−1. It

then follows from Property 6.3 that

cλ
N(q) = qN−1c

λ/2N−1

N−1 (q) if ℓ(λ) = N − 1. (6.12)

Thus Property 6.3 allows cλ
N(q) to be written down immediately in terms of some

cµ
N−1(q) if ℓ(λ) = N − 1, leaving only those λ to be dealt with for which ℓ(λ) = N .

The cases M = 2, 3 and 4 of Property 6.1, with N arbitrary, generalise Dunne’s

observation (Dunne[3]) in the q = 1 case that, with respect to the reverse lexicographic

ordering of partitions, certain consecutive cλ
M+N may be obtained from a corresponding

sequence cµ
N through multiplication by factors 1, −3, 6 and −12. The q-dependent

generalisations of these factors are just qp, qp(q2 + q + 1), qp(q2 + q + 1)(q2 + 1) and

qp(q2 + q + 1)(q2 + 1)2, respectively, for some appropriate power p of q.

For example, for λ = (9, 9, 6, 3, 2, 1) with M = 2 and N = 4, in the notation of

Conjecture 6.2, we have µ = (1, 1) and ν = (6, 3, 2, 1) so that

c926321
6 (q) = q8 c12

2 (q) c6321
4 (q)

= q8 · (−1)(q2 + q + 1) · c6321
4 (q)

= q8 · (−1)(q2 + q + 1) · q4(q2 + 1)(q2 + q + 1)

= −q12(q2 + 1)(q2 + q + 1)2. (6.13)
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The second line of this gives c926321
6 = −3c6321

4 in the case q = 1. This is a result of the

type given by Dunne[3].

Property 6.1 itself implies much more than this. It may be used to express the

polynomials cλ
N (q) for arbitrary N -admissible λ in terms of a multiplicative basis

of polynomials cµ
M(q) where µ is characterised by the fact that aM,k(µ) > 0 for all

k = 0, 1, . . . , M − 2. In fact the recursive use of Property 6.1 leads immediately to

Corollary 6.4 Let λ be N -admissible with

aN,k(λ)

{

= 0 for k = ki for i = 1, . . . , z;

≥ 0 otherwise,
(6.14)

with z ≥ 1 and N − 1 = k1 > k2 > · · · > kz > kz+1 = −1. Let Mi = ki − ki+1 for

i = 1, 2, . . . , z. Then M1 + M2 + · · · + Mz = N and

λ = (((2Mz)
M1+M2+···+Mz−1 +· · ·+((2M3)

M1+M2 +((2M2)
M1 +µ(1)), µ(2)), . . .), µ(z)),

(6.15)

where for i = 1, 2, . . . , z, µ(i) is an Mi-admissible partition with aMi,m(µ(i)) > 0 for

m = 0, 1, . . . , Mi − 2, and

cλ
N(q) = q

∑

1≤i<j≤z
MiMj

z
∏

i=1

c
µ(i)
M (q). (6.16)

This rather formidable looking q-dependent factorisation property is illustrated as

follows in the case N = 9 for the 9-admissible partition λ = (15, 14, 13, 9, 9, 4, 4, 2, 2).

The relevant data are shown in Table 6.1

Table 6.1 Factorisation data for the case N = 9, λ = (15, 14, 13, 9, 9, 4, 4, 2, 2).

k 8 7 6 5 4 3 2 1 0

λN−k 15 14 13 9 9 4 4 2 2
∑k

i=0 λN−i 72 57 43 30 21 12 8 4 2

k(k + 1) 72 56 42 30 20 12 6 2 0

aN,k(λ) 0 1 1 0 1 0 2 2 2

From this data it can be seen that in the notation of Corollary 6.4 we have z = 3,

k1 = 8, k2 = 5, k3 = 3, M1 = 3, M2 = 2, M3 = 4, µ(1) = (321), µ(2) = (11) and

µ(3) = (4422). All this has the rather simple diagrammatic realization given below:

(15, 14, 13, 9, 9, 4, 4, 2, 2) =⇒ ((85 + (43 + 321), 11), 4422)
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=⇒

(43)

(85)

(6.17)

It then follows from Corollary 6.4 that

c15,14,13,9,9,4,4,2,2
9 (q) = q3·2+3·4+2·4 c3,2,1

3 (q) c1,1
2 (q) c4,4,2,2

4 (q)

= q26 q(q2 + 1)(q2 + q + 1) · (−1)(q2 + q + 1) · (−1)q3(q2 + q + 1)(q4 + 1)

= q30 (q2 + 1) (q2 + q + 1)3 (q4 + 1). (6.18)

Just as the factorisation property has been extended from the q = 1 case to

arbitrary values of q, the same can be done in respect of the reversal symmetry property

(2.12). Indeed we have:

Property 6.5 Let λ be N -admissible then λ(r) = ((2N − 2)N)/λ is also N -admissible

and

cλ(r)

N (q) = cλ
N (q). (6.19)

Proof We have already noted in Section 2 that if λ is N -admissible then so is λ(r). In

addition, following a q-dependent version of an argument given by Dunne[3], we have

RN(q; x) =
∏

1≤i<j≤N

(xi − qxj)(qxi − xj)

=
∏

1≤i<j≤N

q2x2
i x

2
j (q−1x−1

j − x−1
i )(x−1

j − q−1x−1
i )

= qN(N−1)s(2N−2)N (x) RN(q−1; x)

= qN(N−1)s(2N−2)N (x)
∑

µ

cµ
N (q−1) sµ(x)

=
∑

µ

qN(N−1) cµ
N(q−1) s(2N−2)N /µ(x)

=
∑

λ

qN(N−1) cλ(r)

N (q−1) sλ(x)

=
∑

λ

cλ(r)

N (q) sλ(x), (6.20)

where the notation is such that x = (x−1
1 , x−1

2 , . . . , x−1
N ), and µ has been set equal to

λ(r), with µ(r) = λ. Then in the final step use has been made of (3.12) with λ replaced

by λ(r). Comparison of (6.20) with the usual expansion (3.5) of RN(q; x) then gives

(6.19) as required. •
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It is not difficult to see that Property 6.1 is consistent with the reversal symmetry

Property 6.5 in that the application of (6.1) to cλ(r)

M+N(q) gives

cλ(r)

M+N(q) = qMN cµ(r)

M (q) cν(r)

N (q) = qMN cµ
M(q) cν

N(q) = cλ
M+N(q). (6.21)

While the reversal symmetry property applies to all N -admissible partitions λ,

Property 1 of Di Francesco et al[4] applies specifically to those N -admissible partitions

λ for which the conjugate partition λ′ is also N -admissible. In such a case Di Francesco

et al noted that cλ′

N ≡ (−1)N cλ
N mod 2N . Before establishing the corresponding q-

dependent result, the following result should be noted.

Lemma 6.6 The partitions λ and λ′ are both N -admissible if and only if λ ⊂ NN and

|λ| = N(N − 1), that is λ = NN/ζ where ζ is a partition of weight |ζ| = N .

Proof If λ and λ′ are N -admissible then both ℓ(λ) ≤ N and ℓ(λ′) ≤ N so that

λ ⊆ NN . In addition we must have |λ| = |λ′| = N(N − 1) so that λ ⊂ NN and there

exists ζ of weight |ζ| = N such that λ = NN/ζ.

Conversely for any λ = NN/ζ with ζ a partition of weight |ζ| = N we have

ℓ(λ) ≤ N and |λ| = N(N − 1), two of the conditions for N -admissibility. In addition

we have, for k = 0, 1, . . . , N − 1

aN,k(λ) =
k
∑

i=0

λN−i − k(k + 1) =
k
∑

i=0

(N − ζi+1) − k(k + 1)

= k(N − 1 − k) +

(

N −
k
∑

i=0

ζi+1

)

. (6.22)

Since k ≤ N −1 and
∑k

i=0 ζi+1 ≤ |ζ| = N , with equalities in each case if k = N −1, we

have aN,k ≥ 0 for k = 0, 1, . . . , N −2 and aN,k = 0 for k = N −1. Thus λ is admissible.

The same argument applies to λ′ with ζ replaced by ζ ′. •

Now we are in a position to establish the following q-dependent version of Di

Francesco et al’s Property 1:

Property 6.7 If λ and λ′ are both N -admissible then

cλ
N(q) ≡ (−q)N cλ

N (q) mod [2N ]q. (6.23)

Proof ¿From (3.10) we have, on replacing λ by λ′,

cλ′

N(q) =
(−1)N(N−1)/2

(1 − q)N

∑

ν⊆NN−1

(

(−q)|ν| + (−q)N2−|ν|
)

cλ′

((N−1)N /ν′) ν . (6.24)

However, the conjugacy operation is such that the Littlewood-Richardson coefficients

satisfy, cλ
µν = cλ′

µ′ν′ , so that

cλ′

N(q) =
(−1)N(N−1)/2

(1 − q)N

∑

ν⊆NN−1

(

(−q)|ν| + (−q)N2−|ν|
)

cλ
(NN−1/ν) ν . (6.25)
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If we now set µ = NN−1/ν so that ν = NN−1/µ and |µ| = |ν| + N(N − 1), we have

cλ′

N(q) =
(−1)N(N−1)/2

(1 − q)N

∑

µ⊆NN−1

(

(−q)N(N−1)−|µ| + (−q)N+|µ|
)

cλ
µ,((N−1)N /µ′).(6.26)

Using this and (3.20) with ν replaced by ν we find

cλ′

N (q)−(−q)N cλ
N(q) =

1 − q2N

1 − q

(−1)N(N−1)/2

(1 − q)N−1

∑

µ⊆NN−1

(−q)N(N−1)−|µ|cλ
((N−1)N /µ′) µ. (6.27)

Since the right hand side vanishes if [2N ]q = 1+q+q2 + · · ·+q2N−1 = (1−q2N )/(1−q)

this completes our proof. •

This information about cλ
N(q) and cλ′

N (q) can be considerably strengthened. This

can be done by exploiting, as pointed out by Scharf et al[5], the connection with

the graded decomposition of the exterior algebra of gl(N). If the components xi of

x = (x1, x2, . . . , xN) are viewed as eigenvalues of gl(N), then the graded decomposition

of the exterior powers of the adjoint representation of gl(N) takes the form

∏

1≤i,j≤N

(1 + q xi x
−1
j ) =

N−1
∑

L=0

∑

ζ⊢LN

eζ
N (q)

sζ(x)

sLN (x)
, (6.28)

where L describes what has been called the layer of each term (Stembridge[15]) and

the expansion coefficients eζ
N(q) are polynomials in q. Rewriting RN(q; x) we find

RN(q; x) =
(−1)N(N−1)/2

(1 − q)N

N−1
∑

L=0

∑

ζ⊢LN

eζ
N (−q) s((N−L−1)N +ζ)(x). (6.29)

It necessarily follows that for any λ ∈ AN we can write λ = (N −L−1)N + ζ for some

L ∈ {0, 1, . . . , N − 1} and some ζ of weight |ζ| = LN . Then

cλ
N(q) =

(−1)N(N−1)/2

(1 − q)N
eζ

N (−q). (6.30)

This formula is useful only in as far as there exists information on eζ
N(−q).

Fortunately, Stembridge[15] has provided an explicit formula for these coefficients

in the L = 1, layer one case.

Proposition 6.8 Let ζ have weight |ζ| = N then

eζ
N(q) =

N
∏

k=1

(1 − q2k)
∏

(i,j)∈F ζ

q2i−1 + q2j−2

1 − q2h(i,j)
, (6.31)

where (i, j) ∈ F ζ specifies a box in the ith row and jth column of the Young

diagram F ζ defined by the partition ζ, and h(i, j) is the corresponding hook length

h(i, j) = ζi − j + ζ ′
j − i + 1, see for example Macdonald[6].

This has an immediate Corollary, namely:
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Corollary 6.9 Let both λ and λ′ be N -admissible, with λ = NN/ζ for ζ a

partition of weight N which in Frobenius notation (Macdonald[6]) takes the form

ζ = (a1, a2, . . . , ar | b1, b2, . . . , br). Then

cλ
N(q) = (−1)N(N−1)/2 f ζ(q2) gζ(q), (6.32)

where

f ζ(q2) = [N ]!q2

/

∏

(i,j)∈F ζ

[h(i, j)]q2 (6.33)

and

gζ(q) =

r
∏

k=1

(−q)ak q2(ak+bk+1)(k−1) [2ak − 1]!!q [2bk + 1]!!q . (6.34)

Proof Under the given hypothesis λ = (NN/ζ), we have λ(r) = ((2N − 2)/λ) =

((N − 2)N + ζ). Hence from Property 6.5, (6.30) and (6.31)

cλ
N(q) = (−1)N(N−1)/2

∏N
k=1 1 − q2k

∏

(i,j)∈F ζ 1 − q2h(i,j)

∏

(i,j)∈F ζ

−q2i−1 + q2j−2

1 − q
. (6.35)

The first quotient is just f ζ(q2) as given by (6.33). This is just the q2 form of the

familiar hook length formula for the dimension, f ζ, of the irreducible representation

of the symmetric group SN specified by the partition ζ. The final product serves to

define gζ(q). This can be written in many equivalent ways, but that offered in (6.34) is

arrived at by writing each factor (−qx+qy)/(1−q) as −qx(1−qy−x)/(1−q) = −qx[y−x]q
or qy(1 − qx−y)/(1 − q) = qy[x − y]q according as x < y or x > y. •

Finally in this section, we offer a q-dependent generalisation of yet another

remarkable formula due to Di Francesco et al[4] in the case q = 1, namely their

Property 7. We believe that the appropriate generalisation takes the form:

Conjecture 6.10 For any fixed partition µ of weight |µ|

∑

2N−2≥α1≥α2≥−N+2
α1+α2=N(N−1)−|µ|

q2N−2−α1 [α1 − α2 + 1]q c
(α1,α2,µ)
N (q) = 0, (6.36)

where for any α = (α1, α2, µ)

cα
N(q) =

{

±cλ
N (q) if sα(x) = ±sλ(x) with λ ∈ AN ;

0 otherwise.
(6.37)

The evidence for this is rather compelling, but as yet we can offer no proof.
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7. Explicit N-dependent formulae for cN (λ)

While many of the results of Section 4 and other calculations appear to conform

to no discernible pattern, some of them do suggest the possibility of writing down

explicit N -dependent formulae. The simplest such case is afforded by λ = 2δ =

(2N − 2, 2N − 4, . . . , 2, 0) for which we have

c
(2N−2,2N−4,...,2,0)
N (q) = qN(N−1)/2. (7.1)

This may be established from the definition (3.3) which is such that

RN(q; x) =
∏

1≤i<j≤N

(

q x2
i

)

+ · · · = qN(N−1)/2x2N−2
1 x2N−4

2 · · ·x2
N−1 + · · · , (7.2)

where the term that has been singled out is the unique highest weight term This is

sufficient to prove (7.1).

At the other end of the lists we can use (3.7) to identify cλ
N(q) for λ = (N − 1)N .

Because of the necessity of dividing by s1N (x), the required polynomial is the coefficient

of sNN (x) arising from the sum over products of the form sNN/µ′(x) sµ(x). Each such

product contributes a term sNN (x) if and only if µ is a self-conjugate partition, that

is µ′ = µ. Hence

c
(N−1)N

N (q) =
(−1)N(N−1)/2

(1 − q)N

∑

µ′=µ⊆NN

(−q)|µ|

=
(−1)N(N−1)/2

(1 − q)N

N−1
∏

k=0

(1 − q2k+1)

= (−1)N(N−1)/2 [2N − 1]!!q. (7.3)

Similarly,

cNN−1

N (q) =
(−1)N(N−1)/2

(1 − q)N

∑

µ⊆NN

(−q)|µ|c
((N+1)N−1 ,1)

(NN /µ′) µ
. (7.4)

There are just two possibilities ℓ(µ) = N − 1 and µ = (1N−1 + ν) with ν ′ = ν ⊆

(N − 1)N−1, and ℓ(µ) = N with µ = (1N + ν) with ν ′ = ν ⊆ (N − 1)N . This gives

cNN−1

N (q) =
(−1)N(N−1)/2

(1 − q)N

(

(−q)N−1 + (−q)N
)

∑

ν′=ν⊆(N−1)N−1

(−q)|ν|

=
(−1)N(N−1)/2

(1 − q)N−1
(−q)N−1

N−2
∏

k=0

(1 − q2k+1)

= (−1)(N−1)(N−2)/2 qN−1 [2N − 3]!!q (7.5)

Both Dunne[3] and Di Francesco et al[4] have given a number of other specific

formulae. One of the most interesting can be generalised to the q-dependent case as
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follows. It concerns the case λ = 2δ − α where α = ǫk − ǫk+m, with m ≥ 1, is any

positive root of gl(N). Since every such positive root can be expressed as a linear

combination of simple roots αp with non-negative integer coefficients gp, it follows

from the argument used in Corollary 3.2 that every such λ is N -admissible. In fact

we find

c
2δ−ǫk+ǫk+m

N (q) = (−1)m qN(N−1)/2−m (q2 + 1)m−1 (q2 + q + 1). (7.6)

This is illustrated for example in Table 4.4 with N = 5 and λ = (7, 6, 4, 2, 1) =

(8, 6, 4, 2, 0) − (1, 0, 0, 0,−1) = 2δ − ǫ1 + ǫ5, for which we have m = 4 and c76421
5 =

q6(q2 + 1)3(q2 + q + 1).

One way to derive (7.6) is to note that the use of (3.18) in (3.25) gives

Rλ
N(q; x) aδ(x) =

∑

λ∈AN

cλ
N (q) aλ+δ(x) =

∑

λ∈AN

cλ
N(q)

(

xλ+δ + · · ·
)

(7.7)

where · · · indicates terms on the Weyl orbit of λ + δ obtained by permuting its

components, and λ + δ is the unique term on this orbit in the dominant sector. It

follows that

cλ
N (q) = Rλ

N(q; x) aδ(x)
∣

∣

∣

x
λ+δ

=
∏

1≤i<j≤N

(xi − qxj)(qxi − xj)(xi − xj)
∣

∣

∣

x
λ+δ

= qN(N−1)/2
∏

1≤i<j≤N

(x3
i − (q+1+q−1)x2

i xj + (q+1+q−1)xix
2
j + x3

j)
∣

∣

∣

x
λ+δ

, (7.8)

where · · ·
∣

∣

∣

x
λ+δ

indicates that the polynomial cλ
N (q) is to be obtained by taking the

coefficient of xλ+δ in the relevant expansion. In the case λ = 2δ − ǫk + ǫk+m we need

to select from the above factors the terms in x3
i for all i < k, and in x3

i for all i = k

except for one term of the form −(q+1+q−1) x2
i xj with i = k < j ≤ k + m. This leads

to

c
2δ−ǫk+ǫk+m

N (q) = qN(N−1)/2 dm(q), (7.9)

where

dm(q) = −(q + 1 + q−1)

m−1
∑

l=0

dl(q) with d0(q) = 1. (7.10)

The solution to this recurrence relation,

dm(q) = (−1)m (q + 1 + q−1) (q + q−1)m−1, (7.11)

leads directly to the result (7.6), which is the q-dependent generalisation of formula

(61) of Dunne[3] and equation (D.10) of Di Francesco et al[4].
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Trying to extend this type of analysis to cases of the form λ = 2δ−2ǫk+2ǫk+m with

m ≥ 2 is more complicated. In fact the formula (D.11) offered by Di Francesco et al[4]

does not apply to all N and m, nor does there appear to be any simple q-dependent

formula valid for all m. In the q-dependent case we find from our calculations of cλ
N (q)

the following formulae:

c
2δ−2ǫk+2ǫk+2

N (q) = −qN(N−1)/2−3 [3]q (q4+q3+q2+q+1);

c
2δ−2ǫk+2ǫk+3

N (q) = −qN(N−1)/2−3 [3]q (q4+1);

c
2δ−2ǫk+2ǫk+4

N (q) = +qN(N−1)/2−6 [3]q (q10+2q9+4q8+3q7+6q6+5q5+6q4+3q3+4q2+2q+1);

c
2δ−2ǫk+2ǫk+5

N (q) = −qN(N−1)/2−7 [3]q (q12+2q10+6q8+5q6+6q4+2q2+1). (7.12)

The third of these results is illustrated for N = 5 in Table 4.4 by the case λ =

(6, 6, 4, 2, 2) for which m = 4. For q = 1 the first three of the results (7.12) are

in agreement with the formula (D.11) of Di Francesco et al[4]. However, the fourth

result shows that (D.11) does not extend to the case m = 5. The rather formidable

and varied nature of the q-dependent factors displayed in (7.12) appears to preclude

the derivation of any q-dependent formula appropriate to all N and m.

By the same token the pattern of results indicated by Dunne[3] in his formulae

(60) for the cases λ = (N − 1)η + n(ǫ1 − ǫN ) with η = (1, 1, . . . , 1) does not extend to

all N and n. For example, for N = 7 we find

c666666
7 (q) = −[13]!!q;

c766665
7 (q) = +[11]!!q [6]q2;

c866664
7 (q) = +[9]!!q [1]!!q [5]q2 [3]q4;

c966663
7 (q) = +[7]!!q [3]!!q [5]q2 [2]q4 [2]q6; (7.13)

c10 66662
7 (q) = +[5]!!q [5]!!q [5]q2 [3]q4;

c11 66661
7 (q) = +[3]!!q [7]!!q [6]q2;

c12 66660
7 (q) = +[1]!!q [9]!!q .

The results for N = 8 are even more complicated with factors that cannot be expressed

in the form [m]qp for any m or p. Only the first two and last two expressions in (7.39)

generalise for all sufficiently large N for the relevant q-numbers to be well defined:

c
(N−1)N

N (q) = (−1)[N/2] [2N − 1]!!q;

c
N,(N−1)N−2,N−2
N (q) = −(−1)[N/2] [2N − 3]!!q [N − 1]q2;

(7.14)

c
2N−3,(N−1)N−2,1
N (q) = −(−1)[N/2] [3]!!q [2N − 7]!!q [N − 1]q2;

c
2N−2,(N−1)N−2,0
N (q) = −(−1)N/2] [2N − 5]!!q .



The square of the Vandermonde determinant and its q-generalisation31

8. Specific values of q

In this section, we turn to specific values of q. First setting q = 0 gives

RN(0; x) =
∏

1≤i<j≤N

(−xixj) = (−1)N(N−1)/2s(N−1)N (x). (8.1)

Thus

cλ
N(0) =

{

(−1)N(N−1)/2 if λ = (N − 1)N ;

0 otherwise.
(8.2)

This implies that for all λ ∈ AN other than λ = (N − 1)N the polynomial cλ
N (q)

contains a factor qp with p ≥ 1.

Setting q = ±i gives

RN(±i; x) =
∏

1≤j<k≤N

(±i)(x2
j + x2

k) = (±i)N(N−1)/2sδ(x
2). (8.3)

where x2 = (x2
1, x

2
2, . . . , x

2
N), so that

sδ(x
2) = sδ ⊗ p2(x) = p2 ⊗ sδ(x) = (s2 − s12) ⊗ sδ(x), (8.4)

where p2(x) = x2
1 + x2

2 + · · · + x2
N is a power sum symmetric function and ⊗ signifies

the operation of plethysm (Macdonald[6]). Since this plethysm is just sδ(x
2) it may

be evaluated by expanding sδ(x) as a sum of monomials of length ≤ N , doubling

their parts, and then expanding the resulting monomials as a sum of Schur functions

sλ(x) with ℓ(λ) ≤ N . This method may be used to establish, for example, the results

of Table 8.1. Once again the relevant Schur functions sλ(x) have for typographical

convenience been denoted by {λ}.

Table 8.1 The expansion of RN(±i; x) for N = 2, 3 and 4

N RN(±i; x)

2 ± i({2} − {12})

3 ∓ i({42} − {412} − {32} + {23})

4 − ({642} − {6412} − {632} + {623} − {522} + {5212} + {5321}

− {5322} + {43} − {4231} + 2{4222} − {4322} + {34})

More interestingly, setting q = ω with ω a primitive cube root unity satisfying

ω2 + ω + 1 = 0 we have

RN(ω; x) =
∏

1≤i<j≤N

(xi − ωxj)(ωxi − xj)

=
∏

1≤i<j≤N

(ωx2
i − (ω2 + 1)xixj + ωxj)

=
∏

1≤i<j≤N

ω (x2
i + xixj + x2

j)

= ωN(N−1)/2
∏

1≤i<j≤N

x3
i − x3

j

xi − xj

= ωN(N−1)/2 s2δ(x), (8.5)
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where use has been made of (3.18). This implies that

cλ
N(ω) =

{

ωN(N−1)/2 if λ = 2δ;

0 otherwise.
(8.6)

This implies the following:

Property 8.1 Each polynomial cλ
N(q) contains a factor (q2 + q + 1) for all λ ∈ AN

except λ = 2δ = (2N − 2, 2N − 4, . . . , 2, 0).

This is the origin of the observation (Dunne[3]) in the case q = 1 that cλ
N is divisible

by 3 for all λ except λ = 2δ.

9. Vanishing coefficients in the case q = 1

At first sight it appears that cλ
N = cλ

N(1) 6= 0 for any λ ∈ AN . A study of the cases

N = 2, 3, . . . , 7 supports this. Indeed for N = 2, 3, . . . , 6 we find that the expansions

of the polynomials in the form

cλ
N(q) =

∑

p

np qp (9.1)

are such that for each N -admissible λ the non-vanishing coefficients np are integers,

all of the same sign. The first exception to this occurs for N = 7. For example, we

find for λ = (9, 8, 8, 7, 4, 4, 2) that

c9827422
7 (q) = q33 + q32 + 4q31 + q30 + 8q29 + 15q27 − q26 + 25q25 + 2q24

+ 38q23 + 6q22 + 43q21 + 6q20 + 38q19 + 2q18 + 25q17 − q16

+ 15q15 + 8q13 + q12 + 4q11 + q10 + q9 (9.2)

The fact that n26 = n16 = −1, while all the other coefficients are positive, is the

first indication that for q = 1 the coefficients cλ
N might vanish for some N -admissible

λ. As can be seen this does not happen in the case (9.2), and it turns out that for

N = 7 it never happens. For N = 7 there are 15 admissible partitions λ such that the

coefficients np are positive for some values of p and negative for other values, giving

rise to a total of seven distinct polynomials of the type (9.1) having this property. In

the case λ = (10, 9, 7, 6, 6, 3, 1) it is found that np varies from −10 to +26. However

none of the seven polynomials vanishes at q = 1, that is when factorised they contain

no factor (q − 1). Typically, we find for (9.2) the factorisation

c9827422
7 = q9(q2 + q + 1)3(q4 + q2 + 1)2

× (q10 − 2q9 + 2q8 − 2q7 + 3q6 − 3q5 + 3q4 − 2q3 + 2q2 − 2q + 1). (9.3)

On the other hand, turning to N = 8 we find that there are eight N -admissible

partitions λ such that cλ
N = 0. They occur as four pairs of partitions λ and λ(r) related
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by the reversal symmetry (2.11). They are

λ = (13 11 985241), λ(r) = (13 10 926531) (9.4a)

λ = (13 11 985422), λ(r) = (12 102 96531) (9.4b)

λ = (13 11 976541), λ(r) = (13 10 987531) (9.4c)

λ = (12 11 972422), λ(r) = (12 102 72532) (9.4d)

The corresponding four q-polynomials cλ
8(q) take the form

c13 11 985241
8 = −q17(q2 + 1)2(q2 + q + 1)3(q4 + q2 + 1)2(q − 1)4; (9.5a)

c13 11 985422
8 = q16(q2 + 1)(q2 + q + 1)3(q4 + q2 + 1)3(q − 1)4; (9.5b)

c13 11 976541
8 = q16(q2 + 1)3(q2 + q + 1)3(q4 + q2 + 1)2(q − 1)4; (9.5c)

c12 11 972422
8 = q14(q2 + q + 1)3(q4 + q2 + 1)2(q − 1)4

× (q10 + q9 + 3q8 + 4q6 + q5 + 4q4 + 3q2 + q + 1). (9.5d)

In each of the above cases the factor (q − 1) occurs, so that cλ
8 = 0, as claimed. It is

notable that in each case the power of (q − 1) is 4. There are no factors of (q + 1)

so that as required by Corollary 3.2 and (3.28), these polynomials do not vanish for

q = −1. The values of cλ
8(−1) = cλ

δ δ are given in the right most position below:

λ = (13 11 985241}, λ(r)(13 10 926531) (576) (9.6a)

λ = (13 11 985422}, λ(r)(12 102 96531) (864) (9.6b)

λ = (13 11 976541}, λ(r)(13 10 987531) (1152) (9.6c)

λ = (12 11 972422}, λ(r)(12 102 72532) (1872) (9.6d)

As indicated earlier, extending the analysis to N = 9 we find that there are 66

different 9-admissible partitions λ such that cλ
9 = 0, while for N = 10 there are 389

different 10-admissible partitions λ such that cλ
10 = 0. Remarkably, as in the case of

N = 8, all the N = 9 polynomials vanishing at q = 1 contain a factor of (q − 1)4.

10. Sum rules

In their seminal work on the q = 1 case Di Francesco et al[4] established a remarkable

set of sum rules for the coefficients appearing in the Schur function expansion of even

powers of the Vandermonde determinant. In the case of the square of the Vandermonde

determinant their result takes the form

∑

λ

(cλ
N)2 =

(3N)!

(3!)N N !
. (10.1)

Once again there exists a q-dependent form of this result, namely

Property 10.1 For all N ≥ 2

∑

λ

cλ
N(q) cλ

N (q2) =
[3N ]!q

([3]!q)N [N ]!q3

=
[3N − 1]!!!q [3N − 2]!!!q

([2]q)N
(10.2)



34 R C King, F Toumazet and B G Wybourne

Proof Consider the product

VN(x) RN(q; x) RN(q2; x)

=
∑

µ,ν

cµ
N(q) cν

N(q2) sµ(x) sν(x) aδ(x)

=
∑

µ,ν,λ

cµ
N(q) cν

N(q2) cλ
µ ν aλ+δ(x). (10.3)

where, as in (3.18), aδ(x) =
∣

∣

∣
xN−j

i

∣

∣

∣
and, aλ+δ(x) =

∣

∣

∣
x

λj+N−j
i

∣

∣

∣
, while cλ

µ ν is the

Littlewood-Richardson coefficient defined in (3.9). In this expansion the coefficient

of xλ+δ is given by

VN(x) RN(q; x) RN(q2; x)
∣

∣

∣

x
λ+δ

=
∑

µ,ν,λ

cµ
N (q) cν

N(q2) cλ
µ ν . (10.4)

However, for λ = ((2N − 2)N) we have cλ
µ ν = 0 unless ν = µ(r), in which case its value

is 1. Recalling reversal symmetry Property 6.5, and it follows that

∑

µ

cµ
N (q) cµ

N (q2) = VN(x) RN(q; x) RN(q2; x)
∣

∣

∣

x
(2N−2)N +δ

=
∏

1≤i<j≤N

(xi − xj)(xi − qxj)(qxi − xj)(xi − q2xj)(q
2xi − xj)

∣

∣

∣

x
(2N−2)N +δ

=
∏

1≤i<j≤N

(

1−
xj

xi

)(

1−
qxj

xi

)(

1−
q2xj

xi

)(

1−
qxi

xj

)(

1−
q2xi

xj

)

∣

∣

∣

x
0
, (10.5)

where x0 = 1. However, we have at our disposal the following constant term identity

due to Bressoud and Goulden[14]:

Theorem 10.2 For i = 1, 2, . . . , N let ai be positive integers, then

∏

1≤i<j≤N

(

1−
xj

xi

)(

1−
qxj

xi

)

· · ·

(

1−
qai−1xj

xi

)(

1−
qxi

xj

)

· · ·

(

1−
qaj−1xi

xj

)

∣

∣

∣

x
0

=
[a1 + a2 + · · · + aN ]!q
[a1]!q[a2]!q · · · [aN ]!q

N
∏

i=1

1 − qai

1 − qai+ai+1+···+aN
. (10.6)

Setting ai = 3 for all i = 1, 2, . . . , N gives the first form offered for the required

sum in (10.2) since (1 − q3)/(1 − q3m) = 1/[m]q3. The second form just follows by

noting that [3N ]!!!q/(([3]!q)
N [N ]!q3) = 1/([2]q)

N . •

More generally, Theorem 10.2 implies in exactly the same way as before

VN(x)

p−1
∏

k=1

RN(qk; x)
∣

∣

∣

x
k(N−1)+δ

= (−1)(p−1)N(N−1)/2 [pN ]!q
([p]!q)N [N ]!qp

. (10.7)
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However this only gives

∑

λ,µ,...,ν

cλ
N(q) cµ

N(q2) · · · cν
N (qp−1) cMN

λ µ ··· ν = (−1)(p−1)N(N−1)/2 [pN ]!q
([p]!q)N [N ]!qp

,(10.8)

with M = (p − 1)(N − 1), where the generalised Littlewood-Richardson coefficient

cMN

λ µ ··· ν appearing here is the multiplicity of the Schur function sMN (x) = x(M,M,...,M)

in the product sλ(x) sµ(x) · · · sν(x). It does not give what one might have hoped for,

namely an expression for

∑

λ

cλ
N(q) cλ

N(q2) · · · cλ
N(qp−1). (10.9)

On the other hand by setting

m
∏

k=1

RN(qk; x) =
∑

λ

dm;λ
N (q) sλ(x) (10.10)

and

2m
∏

k=m+1

RN(qk; x) =
∑

λ

em;λ
N (q) sλ(x), (10.11)

we have two different q-generalisations, dm;λ
N (q) and em;λ

N (q), of the coefficients cm;λ
N

appearing in the expansion (2.9) of the 2mth power of the Vandermonde determinant.

Extending the reversal symmetry argument to these cases it then follows from (10.7)

with p = 2m + 1 that

∑

λ

dm;λ
N (q) em;λ

N (q) =
[(2m + 1)N ]!q

([2m + 1]!q)N [N ]!q2m+1

. (10.12)

Setting q = 1 then gives the remarkable result (1.4) of Di Francesco et al[4]

∑

λ

(cm;λ
N )2 =

((2m + 1)N)!

((2m + 1)!)N N !
. (10.13)

Turning to the simpler case p = 2 in (10.8) gives

∑

λ

cλ
N(q)cMN

λ = (−1)N(N−1)/2 [2N ]!q
([2]!q)N [N ]!q2

= [2N − 1]!!q, (10.14)

where now M = N − 1 and cMN

λ = 1 if λ = (N − 1)N and is zero otherwise. Hence

c
(N−1)N

N (q) = (−1)N(N−1)/2 [2N − 1]!!q, (10.15)

precisely as in (7.3).
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Thus our analysis fails to give an expression for what might be thought of as the

simplest sum of all, namely

CN(q) =
∑

λ

cλ
N (q). (10.16)

With this notation, and letting CN = CN (q) we find the data shown in Table 10.1

Table 10.1 Values of CN(q) and CN = CN (1) for N ≤ 6

N CN CN(q)

2 −2 −(q2 + 1)

3 −14 −(q6 + q5 + 4q4 + 2q3 + 4q2 + q + 1)

4 +70 +(q12 + 2q11 + 6q10 + 4q9 + 11q8 + 4q7

+14q6 + 4q5 + 11q4 + 4q3 + 6q2 + 2q + 1)

5 +910 +(q20 + 3q19 + 9q18 + 13q17 + 30q16 + 31q15 + 69q14

+52q13 + 112q12 + 68q11 + 134q10 + 68q9 + 112q8 + 52q7

+69q6 + 31q5 + 30q4 + 13q3 + 9q2 + 3q + 1)

6 −7280 −(q30 + 4q29 + 13q28 + 26q27 + 56q26 + 78q25 + 146q24

+146q23 + 293q22 + 210q21 + 509q20 + 242q19 + 732q18

+220q17 + 866q16 + 196q15 + 866q14 + 220q13 + 732q12

+242q11 + 509q10 + 210q9 + 293q8 + 146q7 + 146q6

+78q5 + 56q4 + 26q3 + 13q2 + 4q + 1)

In the case q = 1 the results have been extended up to N = 10 as indicated in

Table 10.2.

Table 10.2 Values of CN = CN(1) for N ≤ 10

N AN = #{AN} CN =
∑

λ cλ
N |C|N =

∑

λ |c
λ
N |

2 2 −2 4

3 5 −14 28

4 16 +70 292

5 59 +910 4102

6 247 −7280 73444

7 1111 −138320 1605838

8 5294 +1521520 41603200

9 26310 +38038000 1247676262

10 135281 −532532000 42551137984
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This data on CN is entirely consistent with the recursive formula

CN

CN−1

= (−1)N+1

{

3N − 2

2
N even

3N − 2 N odd
(10.17)

and thereby leads to the following:

Conjecture 10.3 The sum CN of the coefficients appearing in the Schur function

expansion of the square of the Vandermonde determinant VN(x) is given by

CN = (−1)N(N−1)/2 (3N − 2)!!!

2[N/2]
(10.18)

In general CN(q) does not factorise nicely over the integers and CN(q)/CN−1(q) is

not a polynomial in q. Thus the most obvious q-dependent generalisation of (10.18)

cannot be valid. A possible remedy is to introduce a weighting wλ
N(q) such that

wλ
N (1) = 1 for all N and all λ and

CN,w(q) =
∑

λ

wλ
N (q) cλ

N (q) = (−1)N(N−1)/2 [3N − 2)]!!!q

([2]q)
[N/2]

. (10.19)

Although one can indeed fit the data for each N by some choice of wλ
N (q) for various λ

there appears to be no acceptable rationale for its dependence on λ. The existence of

an appropriate form of wλ
N (q) therefore remains an open problem, as indeed does that

of either proving Conjecture 10.3 or finding a value of N for which it breaks down.

11. Concluding remarks

Our original objective was to shed light upon the vanishing of certain of the coefficients,

cλ
N(1), in the expansion of the square of the Vandermonde determinant into Schur

functions. This led us to reconsider the concept of admissibility, originally formulated

by Di Francesco et al [4], and to explore the q-generalisation of the square of the

Vandermonde determinant. In that process it was necessary to sharpen the algorithms

for evaluating the q-dependent coefficients, cλ
N (q), for arbitrary values of q and to

study their dependence on q, N and λ. The calculation of complete data for N ≤ 9

for arbitrary q and for N = 10 with q = 1 allowed us to test a number of hypotheses

and stimulated various conjectures, most of which we have been able to prove here.

To be more precise, we have determined q-dependent generalisations of all eight

Properties 0-7 established in the q = 1 case by Di Francesco et al [4]. These

generalisations have all been proved, save that of Property 7 which is embodied in our

Conjecture 6.10. The proven generalisations include the factorisation Property 6.1

and its Corollary 6.4 which allows all polynomials cλ
N(q) to be expressed in terms of

a multiplicative basis, of polynomials cµ
M(q) for which the admissibility coefficients

aM,k(µ) are positive for all k = 0, 1, . . . , M − 2.
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In addition, having made the connection through the q = −1 case with the work of

Berenstein and Zelevinsky[9] we have proved in Proposition 3.3 that the admissibility

conditions on λ are necessary and sufficient for cλ
N(q) to be non-vanishing. The fact,

reported previously (Scharf et al[5]), that for N ≥ 8 there exist some N -admissible

partitions λ such that cλ
N = cλ

N (1) = 0 then has to be interpreted as accidental in the

sense that for such λ it just so happens that the polynomial cλ
N (q) contains a factor

(q − 1). This has been exhibited explicitly in Section 9.

Consideration of the q-dependent case also links the problem of the square of

the Vandermonde determinant with that of the graded decomposition of the exterior

algebra of gl(N). This allowed us to lean on the work of Stembridge[15] to greatly

strengthen the observations in the q = 1 case made by Di Francesco et al[4] regarding

those partitions λ for which both λ and its conjugate λ′ are N -admissible. The outcome

is the explicit formula of Corollary 6.9 for cλ
N(q).

While many of the q-dependent calculations lead to formulae such as (7.13) in

which the q = 1 results are generalised merely by replacing integer factors by q-

numbers, it is notable that the q-numbers themselves may sometimes be [m]q2 or [m]q3

rather than just [m]q. This is particularly striking in the case of the remarkable new

sum rule, Property 10.1, which is the q-dependent generalisation of the formula of Di

Francesco et al[4] for the sum of the squares of the expansion coefficients.

Unfortunately, although we have provided a conjecture, namely Conjecture 10.3,

regarding the apparently simpler sum of the coefficients themselves, its proof or

disproof remains an open problem. The fact that we have verified it to be true for

all N ≤ 10 might be construed as compelling evidence for its validity for all N .

This, along with similarly compelling evidence for the validity of the conjectures of

Section 5 regarding our refinement of the algorithm for calculating cλ
N (q), especially

Conjecture 5.1, hints at the richness of the field and the possibility that much remains

to be uncovered.
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