
1 Talk to be given at the minisymposium on "Com-puter Algebra" of the SIMAI 98-4th National Congressof the Italian Society for Applied and Industrial Math-ematics, Giardini Naxos, Sicily 1-5 June 1998Problems in Computing Properties ofSymmetric Functions and Lie GroupsBrian G. WybourneInstytut Fizyki, Uniwersytet Miko laja Kopernika,ul. Grudzi�adzka 5/7, 87-100 Toru�n, PolandAnd yet the mystery of mysteries is to view machinesmaking machines; a spectacle that �lls the mindwith curious, and even awful, speculation.| Benjamin Disraeli:Coningsby (1844)



2 What are S�functions?Suppose (�) = (�1; �2; : : : ; �m) is a partition of aninteger into integer parts �i then we can associate with it amonomial x� = x�11 x�22 : : : x�mm (1)Example:- x30126 = x31x02x13x24x65 � x31x13x24x65Consider a tableau T of shape � then de�nexT = Y(i;j)2� xTi;j = x� (2)Example:- if T = 3 3 1 25 1 12then xT = x31x22x23x5A tableau T of shape � is semi-standard if the integers appear-ing in rows are weakly increasing and strongly increasing downcolumns. The Schur-function (S�function) is de�ned bys�(x) =XT xT (3)



3 Example:- associated with s21(x1; x2; x3) are the eight tableaux1 12 ; 1 13 ; 2 23 ; 1 33 ; 2 33 ; 1 221 32 ; 1 23and hence s�(x) = x21x2 + x21x3 + x22x3 + x1x23+ x2x23 + x1x22 + 2x1x2x3 (4)Placing no limits on the number of variables x we can writes21(x) =Xi;j xixj + 2Xi;j;r xixjxr (5)where the summations are carried out over all distinct permuta-tions of the indices. Frequently we will designate an S�functions�(x) by enclosing the partition (�) in curly brackets f�g andleave the number of variables unspeci�ed.S�functions are symmetric functions, thus their products andpowers may be resolved into sums of S�functions.



4 What can you do with S�functions?1. Outer Productsf�g � f�g =X� c���f�g (1)where the c��� are non-negative integers known as theLittlewood-Richardson coe�cients and the weights, !�,are constrained by !� = !� + !�2. Skews f�=�g =X� c���f�g (2)The weights, !�, are constrained by !� = !� � !�3. Plethysms f�g 
 f�g =X� g���f�g (3)where the g��� are non-negative integers and the weights,!� , are constrained by !� = !� � !�



5 4. Inner Productsf�g � f�g =X� c���f�g (4)where the c��� are non-negative integers and the weightsof the partitions are constrained by !� = !� = !� = n.5. Inner Plethysmsf�g � f�g =X� c���f�g (5)where the c��� are non-negative integers and the weightsof the partitions are constrained by !� = !� = n and!� � 0.



6 Examples with SCHURSFN>o21,32{53} + {521} + {4^2 } + 2{431}+ {42^2 } + {421^2 } + {3^2 2} + {3^2 1^2 }+ {32^2 1}SFN>sk321,21{3} + 2{21} + {1^3 }SFN>pl21,3{63} + {531} + {52^2 } + {521^2 }+ {4^2 1} + {432} + {431^2 } + 2{42^2 1}+ {421^3 } + {41^5 } + {3^3 } + {3^2 21}+ {3^2 1^3 } + {32^3 } + {32^2 1^2 }SFN>i32,2111{32} + {31^2 } + {2^2 1} + {21^3 }SFN>i_pl21<21> + <2> + <1^2 > + <1>SFN>



7 Some in�nite series of S�functionsL = 1Xm=0(�1)mf1mg M = 1Xm=0fmgP = 1Xm=0(�1)mfmg Q = 1Xm=0f1mgB =X� f�g D =X� f�gwhere the m are integers, the partitions (�) are all partitionshaving only even parts while the partitions (�) are conjugatesof the (�). L and M are inverses of one another as are P andQ.SCHUR can compute these series, and many others, up to auser determined limit.Examples:-SFN>ser6,b{3^2 } + {2^2 1^2 } + {2^2 } + {1^6 }+ {1^4 } + {1^2 } + {0}SFN>ser6,d{6} + {42} + {4} + {2^3 } + {2^2 }+ {2} + {0}SFN>



8 New S�function identitiesIn�nite S�function series play a key role in practical calcula-tions for both compact and non-compact Lie groups. SCHURgave evidence leading to a number of conjectures involvingplethysms of certain in�nite S�functions.M+ = 1Xm=0f2mg M� = 1Xm=0f2m + 1gL+ = 1Xm=0f12mg L� = 1Xm=0f12m+1g (1)A� = f12g 
 L� B� = f12g 
M�C� = f2g 
 L� D� = f2g 
M� (2)Let Z� = fA�; B�; C�; D�g thenZ+ 
 f12g = Z� 
 f2gZ+ 
 f212g = Z� 
 f31g (3)1. M Yang and B G Wybourne, J. Phys. A: Math. Gen.19 3513 (1986)2. R C King, B G Wybourne and M Yang, J. Phys. A:Math. Gen. 22 4519 (1989)3. K Grudzinski and B G Wybourne, J. Phys. A: Math.Gen. 29 6631 (1996)



9 A tensor product in SO(10)[�] � [�] =X� [�=� � �=�] (1)Example:-[13]� [23] =X� [13=� � 23=�][13 � 13] + [12 � 221] + [1 � 212] + [0 � 13][13 � 23] = [33] + [3221] + [32212] + [2313][12 � 221] = [321] + [322] + [3212] + [231] + [2213][1 � 212] = [312] + [221] + [213][0 � 13] = [13][32212] �[32212]+ + [32212]�[2313] �[231][2213] �[2213]+ + [2213]�[13] � [23] = [33] + [3221] + [321] + [32212]++ [32212]� +[322] + [3212] + [312]+ 2[231] + [2213] + +[2213] � +[221]+ [213] + [13]



10 Calculation by SCHURgr so10Group is SO(10)REP>p111,222[3^3 ] + [3^2 21] + [3^2 1] + [32^2 1^2 ]++ [32^2 1^2 ]- + [32^2 ] + [321^2 ] + [31^2 ]+ 2[2^3 1] + [2^2 1^3 ]+ + [2^2 1^3 ]-+ [2^2 1] + [21^3 ] + [1^3 ]REP>dim lastdimension=4950001. Time taken to compute the result by hand < 2 min-utes.2. Time taken by SCHUR on a Pentium instantaneous.3. Time reported in the literature on a VAX4000 5 hoursCPU.The product [63]� [93] is of dimension 92,908,920,088,670,400.SCHUR resolved the product in 40 minutes on a SUN IPX.Undoubtedly the Vax4000 programme would take a time thatwould dwarf the age of the universe!



11 S�function series and branching rulesU(n) #U(n� 1)f�g #f�=MgU(n) #O(n)f�g #[�=D]U(2n) #Sp(2n)f�g #h�=BiSp(2n;R) #U(n)hk2(�)i #" k2 � ff�sgkN �DNgN N = min(k; n)SO�(2n) #U(n)[k(�)] #"k � ff�sg2kN �BNgN N = min(2k; n)



12 Examples of branching rules with SCHURDP>gr u4Group is U(4)DP>br1,4gr1[321]Group is O(4)[31] + [2^2 ] + [2]# + [2] + [1^2 ]DP>gr u4Group is U(4)DP>br2,4gr1[321]Group is Sp(4)<31> + <2^2 > + <2> + <1^2 >DP>gr spr6Group is Sp(6,R)DP>br36,6gr1[2;21]Group is U(3){432} + {4^2 3} + {53^2 } + {542} + {54^2 }+ {5^2 3} + {632} + 2{643} + {652} + 2{654}+ {6^2 3} + {6^2 5} + {73^2 } + {742}+ {74^2 } + 2{753} + {75^2 } + {762} +...



13 S�functions and tensor productsU(n) : f�g � f�g =X� C���f�gO(n) : [�] � [�] =X� [�=� � �=�]Sp(2n) : h�i � h�i =X� h�=� � �=�iSp(2n;R) : hk2 (�)i � h 2̀ (�)i = hk + `2 (f�sgk � f�sg` �D)k+`;niSO�(2n) : [k(�)] � [`(�)] = [k + `(f�sg2k � f�sg2` �B)k+`;n]



14 Examples of tensor products with SCHURREP>gr sp6Group is Sp(6)REP>p21,31<52> + <51^2 > + <5> + <43> + 2<421>+ 3<41> + <3^2 1> + <32^2 > + 3<32>+ 3<31^2 > + 2<3> + 2<2^2 1> + 3<21>+ <1^3 > + <1>REP>gr so8Group is SO(8)REP>p s;0+,21[s;21]+ + [s;2]- + [s;1^2 ]- + [s;1]+REP>gr spr6Group is Sp(6,R)REP>p1;0,2;1<3;(1)> + <3;(1^3 )> + 2<3;(21)>+ <3;(2^2 1)> + <3;(3)> + <3;(31^2 )>+ 2<3;(32)> + <3;(3^2 1)> + 2<3;(41)>+ <3;(421)> + 2<3;(43)> + ...



15 Algebraic approaches to the genetic codeHornos and Hornos1 investigated those simple Lie al-gebras having at least one representation of dimension 64, thenumber 64 corresponding to the 4�4�4 possible codons, eachinvolving four bases arranged in triplets, to code the 20 aminoacids. The groups Sp(6) and G(2) were found1;2 to be of par-ticular interest. SCHUR has been able to determine the variouspossible group-subgroup decompositions and the eigenvalues ofthe Casimir operators used to describe the possible symmetrybreakings.In addition SCHUR was used to establish the completeset of 64�dimensional representations for the symmetric andalternating groups.The complete set of 64�dimensional irreducible representationsfor the groups S(n) and A(n)S(8) f521g f3213g S(13) f�gA(8) [521] S(14) f��gS(65) f64 1g f2163g A(14) [64 1]A(65) [64 1] A(15) [��]1. J E M Hornos and Y M M Hornos, Phys. Rev. Lett.71 4401 (1993)2. M Forger, Y M M Hornos and J E M Hornos, Phys.Rev. E56 7078 (1997)3. R D Kent, M Schlesinger and B G Wybourne, Can. J.Phys. (In Press)



16 Generating functions for stable branching coe�cients ofU(n) # Sn; O(n) # Sn and O(n� 1) # SnProblems in symplectic models of nuclei, quantum dots andmany-electron states often involve the symmteric group Sn.Applications require the resolution of symmetrised powers oftensor representations of Sn. These are required in determiningbranching coe�cients. The coe�cients involve inner plethysms.Of particular interest is the representationfn� 1; 1g � h1i (1)and the inner plethysmsh1i 
 f�g =X� c��h�i (2)SCHUR has computed the complete resolution of theplethysms h1i 
 fng for n = 1; : : : ; 20. Applications often re-quire the value of single coe�cients in very large plethysms.Here generating methods can be used. Thus with MAPLE itwas possible to show that in S40f39; 1g 
 f30 4321g � 309; 727; 790; 880f31 322gA calculation quite beyond SCHUR.1. T Scharf, J-Y Thibon and B G Wybourne, J. Phys.A: Math. Gen. 26 7461 (1993)2. T Scharf, J-Y Thibon and B G Wybourne, J. Phys.A: Math. Gen. 30 6963 (1997)



17The Vandermonde determinant and the quantum Hall e�ectThe Vandermonde alternating function in N variablesis de�ned as V (z1; : : : ; zN ) = NYi<j(zi � zj) (1)Any even power, V 2m, is necessarily a symmetric function andhence expandable into a set of symmetric functions such as theSchur functionss�(z1; : : : ; zN ) = f�g = f�1; : : : ; �pg (2)which in this case are indexed by partitions of the integern = mN(N � 1) (3)We need the expansion coe�cients c� forV 2m =X�`n c�s� (4)where the c� are signed integers and are precisely the sameintegers that arise in the expansion of the Laughlin wavefunc-tion, used in the quantum Hall e�ect, as a linear combinationof Slater determinants.This is a COMBINATORIALLY EXPLOSIVE problem!1. T Scharf, J-Y Thibon and B G Wybourne, J. Phys.A: Math. Gen. 27 4211 (1994).



18 N Ntableaux N conjecturedtableaux � Ncoeff1 1 1 12 2 2 43 5 5 284 16 16 2925 59 59 4,1026 247 247 73,4447 1,111 1,111 1,605,8388 5,294 5,302 41,603,2009 26,310 26,376�\The above reasoning does not however insure that this isexactly the total number of tableaux in the expansion of V 2min characters as some coe�cients might still vanish. Howeverexperience up to N = 5 seems to indicate that these accidentsdo not happen" P. Di Francesco, M. Gaudin, C. Itzykson andF. Lesage. (SphT/93-125)



19 Invariants formed from the Riemann tensorThe master object for enumerating Riemann scalars isG = 1Xm=1(t2f22g+ t3f32g+ t4f42g+ : : :+ tpfp; 2g+ : : :)m (1)1. There is a Riemann scalar for every S�function f�garising in (1) whose partition label � = �1; �2; : : : ; �pinvolves only even parts.2. The evaluation of the Riemann scalars of order ninvolves the resolution of all plethysms and outerS�function products associated with tn where n isnecessarily even.Order n Number of Riemann Scalars2 14 46 178 9210 66812 6,72114 89,1371. S A Fulling, R C King, B G Wybourne and C J Cum-mins, Class. Quantum Grav. 9 1151 (1992)2. B G Wybourne and J Meller, J. Phys. A: Math. Gen.25 5999 (1992)
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