Talk to be given at the minisymposium on "Computer Algebra" of the SIMAI 98-4th National Congress of the Italian Society for Applied and Industrial Mathematics, Giardini Naxos, Sicily 1-5 June 1998

Problems in Computing Properties of Symmetric Functions and Lie Groups
 Brian G. Wybourne

Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudziądzka 5/7, 87-100 Toruń, Poland

And yet the mystery of mysteries is to view machines making machines; a spectacle that fills the mind with curious, and even awful, speculation.

- Benjamin Disraeli:Coningsby (1844)

What are S-functions?

Suppose $(\mu)=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right)$ is a partition of an integer into integer parts μ_{i} then we can associate with it a monomial

$$
\begin{equation*}
\mathrm{x}^{\mu}=x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \ldots x_{m}^{\mu_{m}} \tag{1}
\end{equation*}
$$

Example:- $\mathrm{x}^{30126}=x_{1}^{3} x_{2}^{0} x_{3}^{1} x_{4}^{2} x_{5}^{6} \equiv x_{1}^{3} x_{3}^{1} x_{4}^{2} x_{5}^{6}$ Consider a tableau T of shape λ then define

$$
\begin{equation*}
\mathbf{x}^{T}=\prod_{(i, j) \in \lambda} x_{T_{i, j}}=\mathbf{x}^{\mu} \tag{2}
\end{equation*}
$$

Example:- if

$$
T=\begin{array}{cccc}
3 & 3 & 1 & 2 \\
5 & 1 & 1 & \\
2 & & &
\end{array}
$$

then

$$
\mathbf{x}^{T}=x_{1}^{3} x_{2}^{2} x_{3}^{2} x_{5}
$$

A tableau T of shape λ is semi-standard if the integers appearing in rows are weakly increasing and strongly increasing down columns. The Schur-function (S-function) is defined by

$$
\begin{equation*}
s_{\lambda}(\mathrm{x})=\sum_{T} \mathrm{x}^{T} \tag{3}
\end{equation*}
$$

Example:- associated with $s_{21}\left(x_{1}, x_{2}, x_{3}\right)$ are the eight tableaux

1	3			
2			1	2
:---	:---			
3				

and hence

$$
\begin{align*}
s_{\lambda}(\mathbf{x}) & =x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{3}^{2} \\
& +x_{2} x_{3}^{2}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3} \tag{4}
\end{align*}
$$

Placing no limits on the number of variables x we can write

$$
\begin{equation*}
s_{21}(\mathbf{x})=\sum_{i, j} x_{i} x_{j}+2 \sum_{i, j, r} x_{i} x_{j} x_{r} \tag{5}
\end{equation*}
$$

where the summations are carried out over all distinct permutations of the indices. Frequently we will designate an S-function $s_{\lambda}(\mathbf{x})$ by enclosing the partition (λ) in curly brackets $\{\lambda\}$ and leave the number of variables unspecified.
S-functions are symmetric functions, thus their products and powers may be resolved into sums of S-functions.

What can you do with S-functions?

1. Outer Products

$$
\begin{equation*}
\{\mu\} \cdot\{\nu\}=\sum_{\lambda} c_{\mu \nu}^{\lambda}\{\lambda\} \tag{1}
\end{equation*}
$$

where the $c_{\mu \nu}^{\lambda}$, are non-negative integers known as the Littlewood-Richardson coefficients and the weights, ω_{λ}, are constrained by $\omega_{\lambda}=\omega_{\mu}+\omega_{\nu}$
2. Skews

$$
\begin{equation*}
\{\lambda / \mu\}=\sum_{\nu} c_{\mu \nu}^{\lambda}\{\lambda\} \tag{2}
\end{equation*}
$$

The weights, ω_{ν}, are constrained by $\omega_{\nu}=\omega_{\lambda}-\omega_{\mu}$
3. Plethysms

$$
\begin{equation*}
\{\lambda\} \otimes\{\mu\}=\sum_{\nu} g_{\lambda \mu}^{\nu}\{\nu\} \tag{3}
\end{equation*}
$$

where the $g_{\lambda \mu}^{\nu}$ are non-negative integers and the weights, ω_{ν}, are constrained by $\omega_{\nu}=\omega_{\lambda} \times \omega_{\mu}$

4. Inner Products

$$
\begin{equation*}
\{\mu\} *\{\nu\}=\sum_{\lambda} c_{\mu \nu}^{\lambda}\{\lambda\} \tag{4}
\end{equation*}
$$

where the $c_{\mu \nu}^{\lambda}$ are non-negative integers and the weights of the partitions are constrained by $\omega_{\mu}=\omega_{\nu}=\omega_{\lambda}=n$.
5. Inner Plethysms

$$
\begin{equation*}
\{\mu\} \circ\{\nu\}=\sum_{\lambda} c_{\mu \nu}^{\lambda}\{\lambda\} \tag{5}
\end{equation*}
$$

where the $c_{\mu \nu}^{\lambda}$ are non-negative integers and the weights of the partitions are constrained by $\omega_{\mu}=\omega_{\lambda}=n$ and $\omega_{\nu} \geq 0$.

Examples with SCHUR

SFN>
021,32

$$
\begin{aligned}
& \{53\}+\{521\}+\left\{4^{\wedge} 2\right\}+2\{431\} \\
+ & \left\{42^{\wedge} 2\right\}+\left\{421^{\wedge} 2\right\}+\left\{3^{\wedge} 22\right\}+\left\{3^{\wedge} 21^{\wedge} 2\right\} \\
+ & \left\{32^{\wedge} 21\right\}
\end{aligned}
$$

SFN>
sk321,21

$$
\{3\}+2\{21\}+\left\{1^{\wedge} 3\right\}
$$

SFN>
pl21,3

$$
\begin{aligned}
& \{63\}+\{531\}+\left\{52^{\wedge} 2\right\}+\left\{521^{\wedge} 2\right\} \\
+ & \left\{4^{\wedge} 21\right\}+\{432\}+\left\{431^{\wedge} 2\right\}+2\left\{42^{\wedge} 21\right\} \\
+ & \left\{421^{\wedge} 3\right\}+\left\{41^{\wedge} 5\right\}+\left\{3^{\wedge} 3\right\}+\left\{3^{\wedge} 221\right\} \\
+ & \left\{3^{\wedge} 21^{\wedge} 3\right\}+\left\{32^{\wedge} 3\right\}+\left\{32^{\wedge} 21^{\wedge} 2\right\}
\end{aligned}
$$

SFN>
i32,2111

$$
\{32\}+\left\{31^{\wedge} 2\right\}+\left\{2^{\wedge} 21\right\}+\left\{21^{\wedge} 3\right\}
$$

SFN>
i_pl21

$$
\langle 21\rangle+\langle 2\rangle+\left\langle 1^{\wedge} 2\right\rangle+\langle 1\rangle
$$

SFN>

Some infinite series of S-functions

$$
\begin{array}{rr}
L=\sum_{m=0}^{\infty}(-1)^{m}\left\{1^{m}\right\} & M=\sum_{m=0}^{\infty}\{m\} \\
P=\sum_{m=0}^{\infty}(-1)^{m}\{m\} & Q=\sum_{m=0}^{\infty}\left\{1^{m}\right\} \\
B=\sum_{\beta}\{\beta\} & D=\sum_{\delta}\{\delta\}
\end{array}
$$

where the m are integers, the partitions (δ) are all partitions having only even parts while the partitions (β) are conjugates of the (δ). L and M are inverses of one another as are P and Q.
SCHUR can compute these series, and many others, up to a user determined limit.
Examples:-
SFN>
ser6, b

$$
\begin{aligned}
& \left\{3^{\wedge} 2\right\}+\left\{2^{\wedge} 21^{\wedge} 2\right\}+\left\{2^{\wedge} 2\right\}+\left\{1^{\wedge} 6\right\} \\
+ & \left\{1^{\wedge} 4\right\}+\left\{1^{\wedge} 2\right\}+\{0\}
\end{aligned}
$$

SFN>
ser6, d

$$
\begin{aligned}
\{6\} & +\{42\}+\{4\}+\left\{2^{\wedge} 3\right\}+\left\{2^{\wedge} 2\right\} \\
+ & \{2\}+\{0\}
\end{aligned}
$$

SFN>

New S-function identities

Infinite S-function series play a key role in practical calculations for both compact and non-compact Lie groups. SCHUR gave evidence leading to a number of conjectures involving plethysms of certain infinite S-functions.

$$
\begin{align*}
& M_{+}=\sum_{m=0}^{\infty}\{2 m\} \quad M_{-}=\sum_{m=0}^{\infty}\{2 m+1\} \\
& L_{+}=\sum_{m=0}^{\infty}\left\{1^{2 m}\right\} \quad L_{-}=\sum_{m=0}^{\infty}\left\{1^{2 m+1}\right\} \tag{1}\\
& A_{ \pm}=\left\{1^{2}\right\} \otimes L_{ \pm} \quad B_{ \pm}=\left\{1^{2}\right\} \otimes M_{ \pm} \\
& C_{ \pm}=\{2\} \otimes L_{ \pm} \quad D_{ \pm}=\{2\} \otimes M_{ \pm} \tag{2}
\end{align*}
$$

Let $Z_{ \pm}=\left\{A_{ \pm}, B_{ \pm}, C_{ \pm}, D_{ \pm}\right\}$then

$$
\begin{align*}
Z_{+} \otimes\left\{1^{2}\right\} & =Z_{-} \otimes\{2\} \\
Z_{+} \otimes\left\{21^{2}\right\} & =Z_{-} \otimes\{31\} \tag{3}
\end{align*}
$$

1. M Yang and B G Wybourne, J. Phys. A: Math. Gen. 193513 (1986)
2. R C King, B G Wybourne and M Yang, J. Phys. A: Math. Gen. 224519 (1989)
3. K Grudzinski and B G Wybourne, J. Phys. A: Math. Gen. 296631 (1996)

A tensor product in $S O(10)$

$$
\begin{equation*}
[\lambda] \times[\mu]=\sum_{\zeta}[\lambda / \zeta \cdot \mu / \zeta] \tag{1}
\end{equation*}
$$

Example:-

$$
\begin{aligned}
{\left[1^{3}\right] \times\left[2^{3}\right]=} & \sum_{\zeta}\left[1^{3} / \zeta \cdot 2^{3} / \zeta\right] \\
& {\left[1^{3} \cdot 1^{3}\right]+\left[1^{2} \cdot 2^{2} 1\right]+\left[1 \cdot 21^{2}\right]+\left[0 \cdot 1^{3}\right] } \\
{\left[1^{3} \cdot 2^{3}\right]=} & {\left[3^{3}\right]+\left[3^{2} 21\right]+\left[32^{2} 1^{2}\right]+\left[2^{3} 1^{3}\right] } \\
{\left[1^{2} \cdot 2^{2} 1\right]=} & {\left[3^{2} 1\right]+\left[32^{2}\right]+\left[321^{2}\right]+\left[2^{3} 1\right]+\left[2^{2} 1^{3}\right] } \\
{\left[1 \cdot 21^{2}\right]=} & {\left[31^{2}\right]+\left[2^{2} 1\right]+\left[21^{3}\right] } \\
{\left[0 \cdot 1^{3}\right]=} & {\left[1^{3}\right] }
\end{aligned}
$$

$$
\begin{aligned}
{\left[32^{2} 1^{2}\right] } & \equiv\left[32^{2} 1^{2}\right]_{+}+\left[32^{2} 1^{2}\right]_{-} \\
{\left[2^{3} 1^{3}\right] } & \equiv\left[2^{3} 1\right] \\
{\left[2^{2} 1^{3}\right] } & \equiv\left[2^{2} 1^{3}\right]_{+}+\left[2^{2} 1^{3}\right]_{-}
\end{aligned}
$$

$$
\begin{aligned}
{\left[1^{3}\right] \times\left[2^{3}\right] } & =\left[3^{3}\right]+\left[3^{2} 21\right]+\left[3^{2} 1\right]+\left[32^{2} 1^{2}\right]+ \\
& +\left[32^{2} 1^{2}\right]-+\left[32^{2}\right]+\left[321^{2}\right]+\left[31^{2}\right] \\
& +2\left[2^{3} 1\right]+\left[2^{2} 1^{3}\right]++\left[2^{2} 1^{3}\right]-+\left[2^{2} 1\right] \\
& +\left[21^{3}\right]+\left[1^{3}\right]
\end{aligned}
$$

Calculation by SCHUR

```
gr so10
Group is SO(10)
REP>
p111,222
```

 \(\left[3^{\wedge} 3\right]+\left[3^{\wedge} 221\right]+\left[\begin{array}{ll}3^{\wedge} 2 & 1\end{array}\right]+\left[32^{\wedge} 21 \wedge 2\right]+\)
 $+\left[32 \wedge 21^{\wedge} 2\right]-+[32 \wedge 2]+[321 \wedge 2]+[31 \wedge 2]$
$+2\left[\begin{array}{ll}\wedge & 1]\end{array}+[2 \wedge 21 \wedge 3]++[2 \wedge 21 \wedge 3]-\right.$
$+[2 \wedge 21]+[21 \wedge 3]+[1 \wedge 3]$
REP>
dim last
dimension=495000

1. Time taken to compute the result by hand <2 minutes.
2. Time taken by SCHUR on a Pentium instantaneous.
3. Time reported in the literature on a VAX4000 5 hours CPU.
The product $\left[6^{3}\right] \times\left[9^{3}\right]$ is of dimension $92,908,920,088,670,400$. SCHUR resolved the product in 40 minutes on a SUN IPX. Undoubtedly the Vax 4000 programme would take a time that would dwarf the age of the universe!

S-function series and branching rules

$$
\begin{gathered}
U(n) \downarrow U(n-1) \\
\{\lambda\} \downarrow\{\lambda / M\} \\
U(n) \downarrow O(n) \\
\{\lambda\} \downarrow[\lambda / D] \\
U(2 n) \downarrow S p(2 n) \\
\{\lambda\} \downarrow\langle\lambda / B\rangle
\end{gathered}
$$

$$
\begin{aligned}
& S p(2 n, R) \downarrow U(n) \\
& \quad\left\langle\frac{k}{2}(\lambda)\right\rangle \downarrow \varepsilon^{\frac{k}{2}} \cdot\left\{\left\{\lambda_{s}\right\}_{N}^{k} \cdot D_{N}\right\}_{N} \quad N=\min (k, n) \\
& S O^{*}(2 n) \downarrow U(n) \\
& \quad[k(\lambda)] \downarrow \varepsilon^{k} \cdot\left\{\left\{\lambda_{s}\right\}_{N}^{2 k} \cdot B_{N}\right\}_{N} \quad N=\min (2 k, n)
\end{aligned}
$$

Examples of branching rules with SCHUR

DP>
gr u4
Group is U(4)
DP>
br1,4gr1[321]
Group is 0(4)
$[31]+\left[2^{\wedge} 2\right]+[2] \#+[2]+\left[1^{\wedge} 2\right]$
DP>
gr u4
Group is U(4)
DP>
br2,4gr1[321]
Group is $\operatorname{Sp}(4)$

$$
\langle 31\rangle+\left\langle 2^{\wedge} 2\right\rangle+\langle 2\rangle+\left\langle 1^{\wedge} 2\right\rangle
$$

DP>
gr spr6
Group is $\operatorname{Sp}(6, R)$
DP>
br36,6gr1[2;21]
Group is U(3)
$\{432\}+\left\{4^{\wedge} 23\right\}+\left\{53^{\wedge} 2\right\}+\{542\}+\left\{54^{\wedge} 2\right\}$
$+\left\{5^{\wedge} 23\right\}+\{632\}+2\{643\}+\{652\}+2\{654\}$
$+\left\{6^{\wedge} 23\right\}+\left\{6^{\wedge} 25\right\}+\left\{73^{\wedge} 2\right\}+\{742\}$
$+\left\{74^{\wedge} 2\right\}+2\{753\}+\left\{75^{\wedge} 2\right\}+\{762\}+\ldots$.

S-functions and tensor products

$$
\begin{aligned}
U(n):\{\mu\} \times\{\nu\} & =\sum_{\lambda} C_{\mu \nu}^{\lambda}\{\lambda\} \\
O(n):[\mu] \times[\nu] & =\sum_{\zeta}[\mu / \zeta \cdot \nu / \zeta] \\
S p(2 n):\langle\mu\rangle \times\langle\nu\rangle & =\sum_{\zeta}\langle\mu / \zeta \cdot \nu / \zeta\rangle \\
S p(2 n, R):\left\langle\frac{k}{2}(\mu)\right\rangle \times\left\langle\frac{\ell}{2}(\nu)\right\rangle & =\left\langle\frac{k+\ell}{2}\left(\left\{\mu_{s}\right\}^{k} \cdot\left\{\nu_{s}\right\}^{\ell} \cdot D\right)_{k+\ell, n}\right\rangle \\
S O^{*}(2 n):[k(\mu)] \times[\ell(\nu)] & =\left[k+\ell\left(\left\{\mu_{s}\right\}^{2 k} \cdot\left\{\nu_{s}\right\}^{2 \ell} \cdot B\right)_{k+\ell, n}\right]
\end{aligned}
$$

Examples of tensor products with SCHUR REP>
gr sp6
Group is Sp (6)
REP>

$$
\begin{aligned}
& \mathrm{p} 21,31 \\
& \quad\langle 52\rangle+\left\langle 51^{\wedge} 2\right\rangle+\langle 5\rangle+\langle 43\rangle+2\langle 421\rangle \\
& +3\langle 41\rangle+\left\langle 3^{\wedge} 21\right\rangle+\left\langle 32^{\wedge} 2\right\rangle+3\langle 32\rangle \\
& +3\left\langle 31^{\wedge} 2\right\rangle+2\langle 3\rangle+2\left\langle 2^{\wedge} 21\right\rangle+3\langle 21\rangle \\
& +\left\langle 1^{\wedge} 3\right\rangle+\langle 1\rangle
\end{aligned}
$$

REP>
gr so8
Group is SO(8)
REP>
p s;0+,21

$$
[s ; 21]++[s ; 2]-+\left[s ; 1^{\wedge} 2\right]-+[s ; 1]+
$$

REP>
gr spr6
Group is $\operatorname{Sp}(6, R)$
REP>
p1;0,2;1
$\langle 3 ;(1)\rangle+\left\langle 3 ;\left(1^{\wedge} 3\right)\right\rangle+2\langle 3 ;(21)\rangle$
$+\left\langle 3 ;\left(2^{\wedge} 21\right)\right\rangle+\langle 3 ;(3)\rangle+\left\langle 3 ;\left(31^{\wedge} 2\right)\right\rangle$
$+2\langle 3 ;(32)\rangle+\left\langle 3 ;\left(3^{\wedge} 21\right)\right\rangle+2\langle 3 ;(41)\rangle$
$+\langle 3 ;(421)\rangle+2\langle 3 ;(43)\rangle+\ldots$

Algebraic approaches to the genetic code

Hornos and Hornos ${ }^{1}$ investigated those simple Lie algebras having at least one representation of dimension 64, the number 64 corresponding to the $4 \times 4 \times 4$ possible codons, each involving four bases arranged in triplets, to code the 20 amino acids.

The groups $S p(6)$ and $G(2)$ were found ${ }^{1,2}$ to be of particular interest. SCHUR has been able to determine the various possible group-subgroup decompositions and the eigenvalues of the Casimir operators used to describe the possible symmetry breakings.

In addition SCHUR was used to establish the complete set of 64 -dimensional representations for the symmetric and alternating groups.
The complete set of 64-dimensional irreducible representations for the groups $S(n)$ and $A(n)$

$S(8)$	$\{521\}$	$\left\{321^{3}\right\}$	$S(13)$	$\{\Delta\}$
$A(8)$	$[521]$		$S(14)$	$\left\{\Delta_{ \pm}\right\}$
$S(65)$	$\{641\}$	$\left\{21^{63}\right\}$	$A(14)$	$[641]$
$A(65)$	$[641]$		$A(15)$	$\left[\Delta_{ \pm}\right]$

1. J E M Hornos and Y M M Hornos, Phys. Rev. Lett. 714401 (1993)
2. M Forger, Y M M Hornos and J E M Hornos, Phys. Rev. E56 7078 (1997)
3. R D Kent, M Schlesinger and B G Wybourne, Can. J. Phys. (In Press)

Generating functions for stable branching coefficients of $U(n) \downarrow S_{n}, O(n) \downarrow S_{n}$ and $O(n-1) \downarrow S_{n}$
Problems in symplectic models of nuclei, quantum dots and many-electron states often involve the symmteric group S_{n}. Applications require the resolution of symmetrised powers of tensor representations of S_{n}. These are required in determining branching coefficients. The coefficients involve inner plethysms. Of particular interest is the representation

$$
\begin{equation*}
\{n-1,1\} \equiv\langle 1\rangle \tag{1}
\end{equation*}
$$

and the inner plethysms

$$
\begin{equation*}
\langle 1\rangle \otimes\{\lambda\}=\sum_{\rho} c_{\lambda}^{\rho}\langle\rho\rangle \tag{2}
\end{equation*}
$$

SCHUR has computed the complete resolution of the plethysms $\langle 1\rangle \otimes\{n\}$ for $n=1, \ldots, 20$. Applications often require the value of single coefficients in very large plethysms. Here generating methods can be used. Thus with MAPLE it was possible to show that in S_{40}

$$
\{39,1\} \otimes\{304321\} \supset 309,727,790,880\left\{313^{2} 2\right\}
$$

A calculation quite beyond SCHUR.

1. T Scharf, J-Y Thibon and B G Wybourne, J. Phys. A: Math. Gen. 267461 (1993)
2. T Scharf, J-Y Thibon and B G Wybourne, J. Phys. A: Math. Gen. 306963 (1997)

The Vandermonde determinant and the quantum Hall effect
The Vandermonde alternating function in N variables is defined as

$$
\begin{equation*}
V\left(z_{1}, \ldots, z_{N}\right)=\prod_{i<j}^{N}\left(z_{i}-z_{j}\right) \tag{1}
\end{equation*}
$$

Any even power, $V^{2 m}$, is necessarily a symmetric function and hence expandable into a set of symmetric functions such as the Schur functions

$$
\begin{equation*}
s_{\lambda}\left(z_{1}, \ldots, z_{N}\right)=\{\lambda\}=\left\{\lambda_{1}, \ldots, \lambda_{p}\right\} \tag{2}
\end{equation*}
$$

which in this case are indexed by partitions of the integer

$$
\begin{equation*}
n=m N(N-1) \tag{3}
\end{equation*}
$$

We need the expansion coefficients c^{λ} for

$$
\begin{equation*}
V^{2 m}=\sum_{\lambda \vdash n} c^{\lambda} s_{\lambda} \tag{4}
\end{equation*}
$$

where the c^{λ} are signed integers and are precisely the same integers that arise in the expansion of the Laughlin wavefunction, used in the quantum Hall effect, as a linear combination of Slater determinants.
This is a COMBINATORIALLY EXPLOSIVE problem!

1. T Scharf, J-Y Thibon and B G Wybourne, J. Phys. A: Math. Gen. 274211 (1994).

N	$N_{\text {tableaux }}$	$N_{\text {tableaux }}^{\text {conjectured }}{ }^{*}$	$N_{\text {coeff }}$
1	1	1	1
2	2	2	4
3	5	5	28
4	16	16	292
5	59	59	4,102
6	247	247	73,444
7	1,111	1,111	$1,605,838$
8	5,294	5,302	$41,603,200$
9	26,310	26,376	

* "The above reasoning does not however insure that this is exactly the total number of tableaux in the expansion of $V^{2 m}$ in characters as some coefficients might still vanish. However experience up to $N=5$ seems to indicate that these accidents do not happen" P. Di Francesco, M. Gaudin, C. Itzykson and F. Lesage. (SphT/93-125)

Invariants formed from the Riemann tensor

The master object for enumerating Riemann scalars is

$$
\begin{equation*}
\mathcal{G}=\sum_{m=1}^{\infty}\left(t^{2}\left\{2^{2}\right\}+t^{3}\{32\}+t^{4}\{42\}+\ldots+t^{p}\{p, 2\}+\ldots\right)^{m} \tag{1}
\end{equation*}
$$

1. There is a Riemann scalar for every S-function $\{\lambda\}$ arising in (1) whose partition label $\lambda=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ involves only even parts.
2. The evaluation of the Riemann scalars of order n involves the resolution of all plethysms and outer S-function products associated with t^{n} where n is necessarily even.

Order n	Number of Riemann Scalars
2	1
4	4
6	17
8	92
10	668
12	6,721
14	89,137

1. S A Fulling, R C King, B G Wybourne and C J Cummins, Class. Quantum Grav. 91151 (1992)
2. B G Wybourne and J Meller, J. Phys. A: Math. Gen. 255999 (1992)

Collaborators

Prof R C King, Mathematics Department, Southampton University, UK
Prof J-Y Thibon and F Toumazet, Institut Gaspard Monge, Université de Marne-la-Vallée, France
Dr T Scharf, Lehrstuhl II für Mathematik, Universtät Bayreuth, Germany
Prof M Schlesinger, Department of Physics, University of Windsor, Canada

Research supported by Polish KBN Grants

Questions?

The only questions worth asking are the unanswerable ones

- John Ciardi Saturday Review-World (1973)

For every complex question there is a simple answer

- and it's wrong.
- H. L. Mencken

