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Abstract. We propose an algorithm computing explicit generating functions of the
stable multiplicities of irreducible representations (n — |u|, p) of S, arising in the
restriction from U(n), O(n) or O(n — 1) to S, of an irreducible tensor representation
of the unitary or orthogonal group; 1.e., we compute the multiplicities in a way which
is independent of n and m, the weight of the label (m — |A|, A) of the corresponding

irrep.



1. Introduction

The symmetric group 5, plays an important role in those areas of physics and chemistry
involving permutational symmetry such as in the implementation of the Pauli exclusion
principle in constructing totally antisymmetric wave functions for identical fermions.
Such applications arise, for example, in the classification of n—electron states and in
symplectic models of nuclei and quantum dots [4]. These applications frequently require
the resolution of symmetrised powers of the irreducible tensor representations of 5,,.
This situation arises in the case of evaluating the branching coefficients for the group-
subgroup restrictions U(n) | S,, O(n) | S, and O(n — 1) | S,. In these cases the

coefficients involve the inner plethysms [11, 13]:

Un) | Sy {A L (1) @ {A/M} (1)
O(n) | Sy (AL (1) @ {A/G} (2)
O(n—=1) 15, A1) @{A/C] (3)

—— ——

where M, C and G are infinite series of S—functions [6, 5] and the reduced notation for
Sy [10, 7, 8, 14] is exploited.

The evaluation of the above inner plethysms is the key problem considered herein. Most
previous formulations have involved Littlewood’s methods [6, 7, 12], see also [1, 2] for
the special cases A = (n),(1"), for obtaining the complete content of the plethysm
whereas interest often lies in the computation of specific coefficients. To that end it is
highly desirable to be able to construct generating functions to yield the multiplicities
of irreducible representations (n — |g|, ) of S,. The classical methods allow to give
n-independent results, e.g. for the restriction of an irrep {A} of U(n) to S5,. Here we
show that it is also possible to obtain branching formulae which are also independent
of the greatest part A; of A. We construct explicit algorithms for obtaining the relevant
generating functions using the formalism of vertex operators in the same way as in

[14, 3, 13] and demonstrate the procedure with several illustrative examples.

2. Notations and Background

Our standard reference for symmetric functions will be [9] and we will adopt its notations
as in [13]. A Schur function is denoted by {A} or by s, depending on whether it is
interpreted as a character of U(n) or as an operator. The inner plethysm (A\) @ {u} is
denoted either by §,(s\) or by s,"s\. We recall that symmetric functions of a formal
difference of variable sets are defined by pp(X — V) = pp(X) — pp(Y) and that the set

{1,z,2% ...} is identified with the power series (1 — z)~%.
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An algebraic formulation of Littlewood’s reduced notation for symmetric functions can

be given by considering a particular case of a vertex operator

I'.sy:= Z S(n)?"

neZ

That is, Littlewood’s reduced notation (A) has to be interpreted as the infinite series
[';s\. We sketch some of its basic properties and refer the reader to [14, 3, 13], e.g., for
details (see also [9], in particular ex.29, p.95ff., ex.3, p.75f., ex.25, p.91ff).

The adjoints (w.r.t. Hall’s inner product) of multiplication of symmetric functions by

o.(X):= Z ho(X)z", and A, (X) := Z en(X)2",

n>0 n>0

the generating functions for the complete symmetric and elementary symmetric

functions, are algebra automorphisms D,_, D, and we have
D, oD,_. =ud.
In Lambda-ring notation these operators can be described as
D F(X)= F(X+2), D\ F(X)=F(X —2),
for any symmetric function F. This amounts to say that for the power sums we have
Dopi(X) = pe(X) 425 Da_pe(X) = pr(X) = 2,

and for Schur functions

DUZS/\(X) = ZS/\/(Z)(X)ZZ, D/\_ZS/\(X) = ZS/\/(lz)(X)(—Z)Z

i>0 i>0
Finally, the vertex operator has a factorization

[.F(X) = 0.(X)Dy_,, F(X) = 0. (X)F(X — 1/z) (4)

—1/z

a formula, which we will use in the sequel.

3. Stable inner plethysm multiplicities

3.1. The result

In this section, we address the problem of computing in an n and m independent way

the multiplicity of an irreducible representation (n — |p|, ) of S, in the inner plethysm
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(1) @ {m — |Al, A}. This will be applied to the calculation of the branching coefficients
of (1)-(3) in the forthcoming sections.
We know that Littlewood’s reduced notation allows us to expand the inner plethysm

(1) @ {v} as a linear combination of stable characters:
(1) @ {v} =3 du (1) (5)
1

so that for any n such that n — |u| > gy, the multiplicity of the irrep (n — |p|, ) of S,
will always be equal to d,.

Here, we go one step further, and allow the first part vy of v to be arbitrary. That is,
we set v = (v1,A), and we consider the generating function

F(z) = 01 @ {0, M) 1= 30 2" 8 (L) = 3 enale) (n). (6)

n€Z neZ

Then, the c),(z)p(z), where o(z) = J[(1 — 2¥), are rational functions which can be
k>1
explicitly computed by the procedure described below.

For example, with A = (2,1), we obtain ¢,,(z) = (1 — 2)¢(2) tay.(2), with
4

G21,0(Z) = (1 _ 23) (1 _ 2)2 (7)
B 1 —324222 43495647

wnal?) = 21— 27 (1— 2% )

. = (14+z-— 23) 22

nale) = = )

G21,11(Z):(1+2_Z -zt 4 2°)z (10)

(1 —2)3(1 = 22)(1 — 23)

and for = (4,2,2), az1422(2) is equal to

26(216_214_2213_2212_|_211_|_210_|_329_|_28_|_Z7_|_226_24_323_22_1)(11)
(26—1)(Z—|-22—|-1)(Z—1)6(22—1)3(23—1)(24—|—23—|-22—|-Z—|-1)

Taking the Taylor expansion of the latter up to order 10, we get that the multiplicity

of (30,4,2,2) in the inner plethysm (37,1) @ {10,2,1} is equal to 125.

Similarly we find that the multiplicity of (31,3,3,2,1) in (39,1) ® {30,4,3,2,1} is equal

to 309727790880.

3.2.  Derivation of the generating functions

Using the vertex operator formula (4)

1
Z 2" sy = 1asy = 0.(X)s) (X — —) (12)

neZ <
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and taking into account the inner plethysm series (cf. [1])

(1) = Z hnf1)" = (1= 2 (1)_(2) =11 (ﬂ;zkmm) (13)
we have _ -
F(2) = [ () (X - é)]A (1)
—6(1) sy (X - %)A (1)
_ (1= 2)oy (1)_(2) v U, (14)

where U := [s,(X — 2)](1).

For example, with A = (2, 1) one would have

1 1 A .
U= (821 — ;321/1 + ;821/12) (1) = &5 (1

v
|
|
N
T
=
=
*
T
-
=
S—’
+
T
-
=

To evaluate such an expression, we use Littlewood’s formula, which gives the result as
a combination of stable characters (p) = o1 D)\_, s, = o1-5,(X — 1), and we keep apart
the factor oy, writing U = oy - H.

In our example, we obtain

Sor(1y = (1) @ {21} = (21) + (2) + (11) + (1) = 01 - sn1 (15)
Soun(l) = (1) + (1) = (2) + (11) + (1) +(0) = 01+ (52 + 511 — 51 + 1) (16)
Sall) = (1) = o+ (31— 1) (1)
and, finally,

Uzal-(521—é(sz—l—sn—sl—l—l)—l—%(sl—l))zal-H (18)

Next, we expand the internal product (14), taking into account the property

7 (1)—(2) * F1(X) :F<1)—(Z)

which gives

() ()



Now we extract a vertex operator by writing

A (7=2) =m0 (75)

and (note that Dy_, o D,, =id)
X X X +1 X +1
01<Z )H( ):DMm 2(X +1) H( +)
1 —=z 1 —=z 1—=z 1 —=z
o (725) o [0 (22) 1 (F22)]
1 —=z 1 —=z 1—=z

pi==an ()0 [ () (50

Sa - [ <1Zi) " (i(jzl)] : (20)

o1 (fi(z) )2l (jl(jzl) = ZGM(Z)SM

I

Thus,

If we write

then

2) =2 enl2){n)

with

We can now compute a),(z) using properties of the scalar product and adjoint operators:
X+1
H
@l 2 < 7 (1—2) (1—Z)>
X+1
= - H
<S“ 7 X) ( S )>
z X +1
=<SM(X+1_Z)7H(1_Z)>- @

Now we expand H(%) by replacing each power sum p; in the expansion of H by

(pr + 1)/(1 — 2%). Let the rational functions d,(z) be defined by

H<X+1) de 5o (22)

Now,

(V) = Z e (72

aCup



so that

aru(z) = Za:dm(z)su/a (1 i )

z

For A = (2, 1), the coefficients ds1 »(2) are given by

X +1 1+ 22
H( ): y 531 : S91 +

(1—2%)(z — 1z ™

1—=z (1 —-23)(z—1)? (1—=2%)(z—1)2
22—1 22—1 1—324224 23 2%
TR s e STy e R e o PR
(23)

From these expressions, we obtain the required generating functions.

3.3.  Summary of the algorithm

To compute the generating function ¢, (z):

(i) Evaluate f = s,(X — 1), either by expanding s, on the basis p, and replacing each
power sum py by pr — 27 %, or by the more efficient formula

€0,

Sy (X — l) = Z (—;)TSA/F(X) )

< r=0

(ii) Compute U = f<1> as a linear combination of stable characters (u) by means of

Littlewood’s formula, and write it in the form U = oy - H, taking into account the
fact that () = oy - s,(X —1).

(iii) Evaluate H (%), for example by expanding H in terms of power sums, and

replacing each py by (pr + 1)/(1 — 2%).

(iv) Take the scalar product of the previous expression with

5M<X+1i2):23y<1i )SW(X)

vCu z

z
1—2

(a closed formula for s, ( ) can be found for example in [9], ex. 2 p. 45). This

yields ay,(z).
(v) enulz) = (1= 2)e(2) " aru(2).

The multiplicity of the irreducible representation (n — |u|, ) of S, (for any n) in the
inner plethysm (1) @{m, A} is then equal to the coefficient of z” in the Taylor expansion

of enu(2).



4. The restriction U(n) | S,

The well-known stable branching rule for U(n) | S, is

A L) @ {A/M}
where ]

1—1'2"

M:O'1:H

7

To compute the branching coefficients we consider the generating series

Fy(z) = (1) @ {(n, A)/M}=" =3 enu(2){n)

neZ

and rewrite it as before as

Fy(z) = [Doyo.Da )" (1)

_ [UZ(X +1)sy (X _ % + 1)]A ()

=(1—2)" [UZ(X)SA (X - é + 1)]A (1)

X 1 A
201<1_Z)*5A<X—;—|—1) (1).
Thus, if we define H by

o H = [5A<X—£—I—1)]A<1>,

we arrive at

eu() = T 7= anle) (21)
where _
= (54 12) 0 (322 ™

For A =(2,1), we get
H(X—I—l) (225 —32* =222 432 —1) (22 =3z+1)

= S S
1—2 (22—|—2—|—1)(2—1)322 0 (2—1)32 ?
P—3z41 241
+ WSH +— - 583t (= ) 7521
(z—1)"z (224+z2z4+1)(1-2) (224+24+1)(1—2)
z 322 —-822452—1
+ — 35111‘|'( 3 5 )31 (26)
(224+2z4+1)(1 —=2) (z—1)"z
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From this we may compute

coran(2) = =1 #3272 +152° +422" +1022° + 21525 + 42527 + 785 2% + 1391 2°
+2367 210 4 3912 2" + 6286 27 + 9884 2" 4 15221 21 4 O ("7

e21,011(2) =2 2241022 +362* + 104 2° + 26025 + 587 27 4+ 1229 2% 4+ 2425 27
+4558 21 4 8231 21 + 14366 212 + 24354 21 + 40247 M + O (=)

Hence, the multiplicity of (11,2,1,1) in the restriction of the irrep {12,2,1} of U(15)

» =Y

to Sys is equal to 14366, the coefficient of 2'? in the expansion of ¢y 911(2).

5. The restriction O(n) | 5,

It is known that the stable branching rule for O(n) | S, is given by [11]

(AL (1) @ {A/G}

where

G=01 Ailhs)=M-C = H

H(l — l’ﬂ}]‘) .

- 1<yg

We want to compute the coefficients ¢),(z) of the generating series

F\(z) := Z( ) @4{(n, \)/G}z" = ZCM

neZ

We have
A
F/\(Z) = [DU1D/\_1[h2]O-ZD/\—1/ZS/\] <1>

= [DA_l[hz]Uz(X +1)s, (X - é + 1)]A (1)

= (1= 27 [Dapaoe(X)n (X = S+ 1)] .

We now use the following properties:
Lemma 5.1. For any symmetric functions f, g,

D/\—1[h2](fg) =puo (D/\—1[h2] @ D/\—1[h2]) o D5/\_1(f®g)7

where ¢ is the comultiplication é(px) = pr @ pr (i.e. 6(f) = f(XY), denoted by A* in

[9], p.128) and g the multiplication operator u(f @ ¢g) = fg.
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(Here ® means tensor product, not plethysm).
Proof: Let h be an arbitrary symmetric function. Using the duality between
multiplication and comultiplication, we have the following sequence of transformations

of the scalar product

(Dr g (F9)s h) = (F @ g, AAalha] - h) = (f © g, AA-a[h]) A(h))
={(f®g, A\alha @1+ h; @ hy + 1@ ho] - A(R))
= (Do, (f © 9), Aalha] @ Aa[ha] - A(R))

- <” ° (DA—l[hz] @ Dk_l[m]) oDs_,(f®g), h> .

Lemma 5.2. For any symmetric function f,

Proof: Taking into account the fact that Dy h, = 0if {(v) > 1 and D h, = hyy, we

have

Dsy_y(xyo-(X) @ f(X) = Z(_l)TDsrUz(X) © Dy, f(X)

r>0

= 0.(X) @ Dy f(X) = 0.(X) & [(X — 2).

Also, from the well-known expansion of A_q[ha] (cf. [9], ex.9, p.78) we get A_i[h2] =

1 — ho+ Schur functions indexed by partitions with more than one part, hence
D/\—1[h2]0-2’ = (1 - 22)02 ) (27)

which implies that

where

1 A
U:= [D/\_l[hQ]S/\ (X ——+1- Z)] (1) =01 H .
z

Thus, as in the previous section,

aru(2) (28)

o= (o (x4 125) o (S21)) o

where
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On the example A = (2,1), we get

corg1(z) = =1+ 22 +62° + 172" +412° +842° 416327 + 294 2% + 510 2 + 850 2*°
+1378 2 4 2172 2% 4 3356 2% + 5080 ' + O(='%)

co12(2) =227 462" + 182" +412° +862° + 16527 4+ 301 2% + 52227 4 876 2'°
+1422 2" 4+ 2253 217 + 3487 2% + 5297 2™ 4+ O(=")

coram(2) =22 +32° + 122" +362° +952° + 22127 + 478 2% 4966 27 + 1857 2™
+3416 2" + 6065 2" + 10434 2" + 17480 2™ + O(=")

cors5011(2) = 27 +62° 42527 +86 210 + 25221 + 663 212 + 1599 21 + 3600 2™ + O(2'?)

so that for example, the multiplicity of (95211) in the restriction of the irrep [13,2, 1] of
O(18) to Sis is equal to 1599.

6. The restriction O(n —1) | 5,

The series to be computed here is
Bi(2) = LA @ {(00.0)/C} = [Dapgo-Dayy.n] (1) (30)
ne
A calculation similar to the one of the preceding section shows that
Fy(2) = (1 — 22) [UZ D pusn (X _ é _ Z)]A (1) (31)

and writing as above

z

1 A
U= [Dx_l[f@] $ ) (X - - Z)] (1)
in the form U = o; - H we have

enlz) = (1= 21— ]

k>1

) (32)

where a),(z) is once again given by

o= (o 5+ ) (D). ®

For example, with A = (2, 1)

conn(2) = 22+ 320 4725 4152542927 +522° +892° 4+ 147210 4235211
+366 2% + 558 2'% + 834 2 + O(2")
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e1.011(2) = 22422 411242627 +5628 + 11127 +2082% + 37227 + 641 21°
+1070 2' + 1739 2" + 2760 2" + 4293 2™ + O(2"?)

cora21(2) = 2P +32° +122° #3727 +982° 423127 4 507 2% + 1038 2
+2022 2" + 3770 2" + 6781 2™ + O(=")

so that, for example, the multiplicity of (5211) in the restriction of the irrep [521] of
O(8) to S(9) is equal to 26.

7. A stability property of the coefficients c),(z)

The multiplicities of irreps exhibit a certain stability property, if grouped together in
a certain natural way. Let us start by looking at some concrete examples for inner
plethysm. The remarks are directly applicable to the restrictions (1)-(3), as the previous
sections have shown.

The first three examples in table 1 suggest that the sequence of multiplicities becomes
constant when increasing the first row of A and the first row of u. For example, one has
(1) @ (n21) D 106{(n — 3) for n > 10. We observe a similar stability when increasing
the first column, but then have to make shifts on the left hand side by 1,2,3,4,... as
shown in the fourth example.

To state the property in a precise way, suppose

(1) © {m, A} 5 C2N){p. ) and (1) © {m + g, 0} 5 CEEONp + ,0). (34)
Then, the (C;T(;q()\))q form a finite sequence of integers such that C;T(;q()\) = C;T;ZS()\)

for all ¢ > ¢ (and ¢s depends on A and v only).

This property is shared by (1) @ {m,A\/M}, (1) @ {m,A\/G} and (1) @ {m, \/C}.

To see this fix A and p and set v := (pg,pus,...). Then it is immediate from the
definitions that

on(z) =D CT (X)) (35)

Hence we only need to show a stability property of the ¢),(z) (or, equivalently, of the
axu(2)), when i increases. To get control on the corresponding shifts we rather consider
z7" ¢y, (z) and will show that this expression converges as a formal Laurent series when
(1 goes to infinity. This property is true for all the restrictions considered before, and
it can be proved by using the vertex operator method.

Let u be another indeterminate, commuting with z. Then

1
Fu5u<X‘|‘ z ):Uu<X—|— : )SU<X———|— i )
1—=z 1—=z v 1—2z

:U“<1iz)'0“(X)'5”<X_%+1Z ) (36)

— Z
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whence

Table 1. Some multiplicities of (¢} in the inner plethysm (1) ® {A}.

A 221 321 421 521 621

1 2 3 4 5 6

Multiplicity 1 3 5 5 5

A 521 621 721 821 921 10,2,1 11,2,1
1 2 3 4 5 6 7 8
Multiplicity 25 58 85 99 104 106 106
A 221 321 421 521 621

1 21 31 41 51 61

Multiplicity 2 5 6 6 6

A 52,1 72,1 10,2,1 14,21 192,1 2521

1 14 1° 18 17 18 1°
Multiplicity 11 14 17 18 19 19

X +1

Za/\(i,y)(z) f= <Fu3u (X +

:gu(

=)

1—=z

)

)

(37)

z 1 z X +1
Ao (X)s, | X ——4+— ,H

1—2) <U( )S< u+1—z) (1—

) () ()

1—=z U —z 1—=z

z ) p (

1—=z Ay27u)7
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where

Py (z,u) = grl(z)ul = <31, (X ! + ! : ) , H (M)> (38)

U —z 1—=z

is a Laurent polynomial in v with rational functions in z as coefficients.

Recall (from [9], ex.5 p.27, e.g.) that

0(1_):Zﬁ

K3

Therefore, to get ay(u, 1), 1 > 1, i.e. the coefficient of ut in

(1) A

it suffices to consider the coefficient of ©*! in

( MZ_: lZ—ul) - Py (z,u).

I=p1 —t H]:l(l - Z])

On the other hand, as a Laurent series in z, this coefficient converges to the coefficient

IO (Zt ) Ptz

I=—t

of u*t in

when gy goes to infinity. Hence z7#1¢, ,(z) converges to the constant term (w.r.t. u) in
H(l — Zj)_l . H(l — Z] Z thy - Py (z,u). (39)
J>2 i>1 I=—t

If we choose A = (2,1) and v := (), the empty partition, then

z 3 2z—-1 1 —3z422242° 2%

e R 1 s N Gy

and the constant term of
P T (1 +ouz w4 u323) Py.(z,u)

equals
_ o 2 3 4
e z _I_ZZ 1_|_1 3z 4+ 2254+ 2 n z
(1=23)(z—=1)2 (1—=2) (1—-2)3 (1 —=23)(z—1)2
2 42432422423
(1 —2)*(1—2%
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Finally for pq large enough the expansion of z=#1¢y,(2) up to order 7 is
275 4 1Tz 4 4527 4 1062° 4 23021 +4672° +9012° + O(=7)

(the Laurent expansion always starts with z=“*)). This can be interpreted as follows.
The coefficient of z? in the above expansion is the “stable multiplicity” of (1) in
(1) @ {p1 + ¢,2,1}. The coefficient of 2% is 5 in accordance with the first example
of table 1; 106, the coefficient of 23, appears as the limit in the second example of
table 1.

In the fourth example of table 1 the first column of u increases. We therefore set
v = (ph, ph,...), i.e. p without its first column. As the shifts proceed by steps of
1,2,3, ..., we will have to consider the limit Z_(M;HI)CM(Z), when g} tends to infinity.
Here ¢ is a non-negative integer depending on A and v only (cf. equation (41) below).
Then everything can be proven in the same way as before by using the dual notions.
The dual version of the vertex operator is
. . 1

S (1) o = Ao (X)s, (X + —) . (40)

- u

Setting

ante = Frtonie (o (v Lo 222) ()

and recalling (e.g., from [9], ex.5 p.27) that

E BCS R
- (1—2) _Z _ (=)
for 1 — oo only one term, namely
i—t4+1
A7)

—u) T r(2), (42)

[
dominates and the desired limit Z_(Ml 2 )CM(Z) 1S

[L0 =) - TI0 =)™ o). (13)
iz i1
For example, with A := (2,1) and v := (), we get t := 3,

F(z) = -

(T==)— 1

and the desired expansion is
24322+ 827 11921 #4127 48225 + 15827 4+ 2902° 4 51627 + O(2'%).

We can interpret this as follows. The coefficient of z? gives the stable multiplicity of
(17 in (1)@ (“32_2) +¢q,2,1} (recall that ¢t = 3). The coefficient of z* is 19 in accordance
with table 1 above.
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8. Concluding remarks

The computation of branching coefficients of U(n) | S,, O(n) | S, and O(n — 1) | 5,
plays a key role in symplectic models of nuclei which is a combinatorially explosive
problem. Previous algorithms become computationally impossible when the number of
nucleons becomes large. The algorithms outlined in this paper overcome the limitations
of earlier algorithms and require no use of modification rules. They have the considerable
advantage over other methods of being able to yield specific coefficients rather than the
complete set of coefficients, most of which, in practical calculations, are redundant.

The stability properties of the branching coefficients and inner plethysm multiplicities

find a natural explanation in terms of generating functions.
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