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2 Abstract. We propose an algorithm computing explicit generating functions of thestable multiplicities of irreducible representations (n � j�j; �) of Sn arising in therestriction from U (n), O(n) or O(n � 1) to Sn of an irreducible tensor representationof the unitary or orthogonal group; i.e., we compute the multiplicities in a way whichis independent of n and m, the weight of the label (m � j�j; �) of the correspondingirrep.



31. IntroductionThe symmetric group Sn plays an important role in those areas of physics and chemistryinvolving permutational symmetry such as in the implementation of the Pauli exclusionprinciple in constructing totally antisymmetric wave functions for identical fermions.Such applications arise, for example, in the classi�cation of n�electron states and insymplectic models of nuclei and quantum dots [4]. These applications frequently requirethe resolution of symmetrised powers of the irreducible tensor representations of Sn.This situation arises in the case of evaluating the branching coe�cients for the group-subgroup restrictions U(n) # Sn, O(n) # Sn and O(n � 1) # Sn. In these cases thecoe�cients involve the inner plethysms [11, 13]:U(n) # Sn f�g # h1i 
 f�=Mg (1)O(n) # Sn [�] # h1i 
 f�=Gg (2)O(n � 1) # Sn [�] # h1i 
 f�=Cg (3)where M;C and G are in�nite series of S�functions [6, 5] and the reduced notation forSn [10, 7, 8, 14] is exploited.The evaluation of the above inner plethysms is the key problem considered herein. Mostprevious formulations have involved Littlewood's methods [6, 7, 12], see also [1, 2] forthe special cases � = (n); (1n), for obtaining the complete content of the plethysmwhereas interest often lies in the computation of speci�c coe�cients. To that end it ishighly desirable to be able to construct generating functions to yield the multiplicitiesof irreducible representations (n � j�j; �) of Sn. The classical methods allow to given-independent results, e.g. for the restriction of an irrep f�g of U(n) to Sn. Here weshow that it is also possible to obtain branching formulae which are also independentof the greatest part �1 of �. We construct explicit algorithms for obtaining the relevantgenerating functions using the formalism of vertex operators in the same way as in[14, 3, 13] and demonstrate the procedure with several illustrative examples.2. Notations and BackgroundOur standard reference for symmetric functions will be [9] and we will adopt its notationsas in [13]. A Schur function is denoted by f�g or by s�, depending on whether it isinterpreted as a character of U(n) or as an operator. The inner plethysm (�) 
 f�g isdenoted either by ŝ�(s�) or by s�^s�. We recall that symmetric functions of a formaldi�erence of variable sets are de�ned by pk(X � Y ) = pk(X) � pk(Y ) and that the setf1; z; z2; : : :g is identi�ed with the power series (1 � z)�1.



4An algebraic formulation of Littlewood's reduced notation for symmetric functions canbe given by considering a particular case of a vertex operator�zs� := Xn2Z s(n;�)zn:That is, Littlewood's reduced notation h�i has to be interpreted as the in�nite series�1s�. We sketch some of its basic properties and refer the reader to [14, 3, 13], e.g., fordetails (see also [9], in particular ex.29, p.95�., ex.3, p.75f., ex.25, p.91�).The adjoints (w.r.t. Hall's inner product) of multiplication of symmetric functions by�z(X) := Xn�0hn(X)zn; and �z(X) := Xn�0 en(X)zn;the generating functions for the complete symmetric and elementary symmetricfunctions, are algebra automorphisms D�z ;D�z and we haveD�z �D��z = id:In Lambda-ring notation these operators can be described asD�zF (X) = F (X + z); D��zF (X) = F (X � z);for any symmetric function F . This amounts to say that for the power sums we haveD�zpk(X) = pk(X) + zk; D��zpk(X) = pk(X)� zk;and for Schur functionsD�zs�(X) =Xi�0 s�=(i)(X)zi; D��zs�(X) =Xi�0 s�=(1i)(X)(�z)i:Finally, the vertex operator has a factorization�zF (X) = �z(X)D��1=zF (X) = �z(X)F (X � 1=z) (4)a formula, which we will use in the sequel.3. Stable inner plethysm multiplicities3.1. The resultIn this section, we address the problem of computing in an n and m independent waythe multiplicity of an irreducible representation (n� j�j; �) of Sn in the inner plethysm



5h1i 
 fm� j�j; �g. This will be applied to the calculation of the branching coe�cientsof (1)-(3) in the forthcoming sections.We know that Littlewood's reduced notation allows us to expand the inner plethysmh1i 
 f�g as a linear combination of stable characters:h1i 
 f�g =X� d� h�i (5)so that for any n such that n� j�j � �1, the multiplicity of the irrep (n� j�j; �) of Snwill always be equal to d�.Here, we go one step further, and allow the �rst part �1 of � to be arbitrary. That is,we set � = (�1; �), and we consider the generating functionF�(z) := Xn2Zh1i 
 fn; �gzn := Xn2Z zn ŝ(n;�)h1i :=X� c��(z)h�i: (6)Then, the c��(z)'(z), where '(z) = Yk�1(1 � zk), are rational functions which can beexplicitly computed by the procedure described below.For example, with � = (2; 1), we obtain c��(z) = (1 � z)'(z)�1a��(z), witha21;0(z) = z4(1� z3) (1� z)2 (7)a21;1(z) = 1� 3z + 2z2 + 3z4 � 2z5 � z6 + z7z2 (1 � z)3 (1� z3) (8)a21;2(z) = (1 + z � z3) z2(1� z)4 (1� z3) (1 + z) (9)a21;11(z) = (1 + z � z3 � z4 + z5)z2(1 � z)3(1 � z2)(1� z3) (10)and for � = (4; 2; 2), a21;422(z) is equal toz6 (z16 � z14 � 2 z13 � 2 z12 + z11 + z10 + 3 z9 + z8 + z7 + 2 z6 � z4 � 3 z3 � z2 � 1)(z6 � 1) (z + z2 + 1) (z � 1)6 (z2 � 1)3 (z3 � 1) (z4 + z3 + z2 + z + 1) (11)Taking the Taylor expansion of the latter up to order 10, we get that the multiplicityof (30; 4; 2; 2) in the inner plethysm (37; 1) 
 f10; 2; 1g is equal to 125.Similarly we �nd that the multiplicity of (31; 3; 3; 2; 1) in (39; 1)
f30; 4; 3; 2; 1g is equalto 309727790880.3.2. Derivation of the generating functionsUsing the vertex operator formula (4)Xn2Z zn s(n;�) = �zs� = �z(X)s� �X � 1z� (12)



6and taking into account the inner plethysm series (cf. [1])�̂zh1i = Xn�0 ĥnh1izn = (1� z)�1 � X1 � z� = (1 � z)Yk�00@Xm�0 zkmhm1A (13)we have F�(z) = ��z(X)s� �X � 1z��^ h1i= �̂zh1i � s� �X � 1z�^ h1i= (1� z)�1� X1� z� � U; (14)where U := [s�(X � 1z )]^h1i.For example, with � = (2; 1) one would haveU = �s21 � 1z s21=1+ 1z2 s21=12�^ h1i = ŝ21h1i � 1z (h1i � h1i) + 1z2 h1i :To evaluate such an expression, we use Littlewood's formula, which gives the result asa combination of stable characters h�i = �1D��1s� = �1 � s�(X � 1), and we keep apartthe factor �1, writing U = �1 �H.In our example, we obtainŝ21h1i = h1i 
 f21g = h21i + h2i + h11i + h1i = �1 � s21 (15)ŝ21=1h1i = h1i � h1i = h2i + h11i + h1i + h0i = �1 � (s2 + s11 � s1 + 1) (16)ŝ21=11h1i = h1i = �1 � (s1 � 1) (17)and, �nally, U = �1 � �s21 � 1z (s2 + s11 � s1 + 1) + 1z2 (s1 � 1)� = �1 �H (18)Next, we expand the internal product (14), taking into account the property�1 � X1� z� � F (X) = F � X1� z�which gives F�(z) = (1� z)�1 � X1 � z� � U(X)= (1� z)U � X1 � z�= (1� z)�1 � X1 � z� H � X1� z� : (19)



7Now we extract a vertex operator by writing�1� X1� z� = �1 (X) � �1 � zX1� z�and (note that D��1 �D�1 = id)�1 � zX1 � z�H � X1 � z� = D��1 �1 z(X + 1)1� z !H �X + 11 � z �= �1 � z1 � z� D��1 ��1 � zX1 � z�H �X + 11� z �� :Thus, F�(z) = (1� z)�1 � z1 � z� �1 ��1 � zX1 � z�H �X + 11� z ��= Yi�2 11� zi �1 ��1 � zX1 � z�H �X + 11� z �� : (20)If we write �1� zX1� z�H �X + 11 � z � =X� a��(z)s�;then F�(z) =X� c��(z)h�iwith c��(z) = a��(z)Yi�2 11 � zi :We can now compute a��(z) using properties of the scalar product and adjoint operators:a��(z) = �s� ; �1� zX1� z�H �X + 11 � z ��= *s� ; Yk�1 �zk(X) � H �X + 11� z �+= �s� �X + z1� z� ; H �X + 11 � z �� : (21)Now we expand H(X+11�z ) by replacing each power sum pk in the expansion of H by(pk + 1)=(1 � zk). Let the rational functions d��(z) be de�ned byH �X + 11 � z � =X� d��(z)s�(X): (22)Now, s� �X + z1 � z� = X��� s�(X)s�=� � z1� z� ;



8so that a��(z) =X� d��(z)s�=� � z1� z�For � = (2; 1), the coe�cients d21;�(z) are given byH �X + 11 � z � = z(1 � z3)(z � 1)2 s3 + 1 + z2(1� z3)(z � 1)2 s21 + z(1� z3)(z � 1)2 s111+ 2 z � 1z(1� z)3 s2 + 2 z � 1z(1� z)3 s11 + 1� 3z + 2z2 + z3z2(1 � z)3 s1 + z4(1 � z3)(z � 1)2 s0(23)From these expressions, we obtain the required generating functions.3.3. Summary of the algorithmTo compute the generating function c��(z):(i) Evaluate f = s�(X � 1z ), either by expanding s� on the basis p� and replacing eachpower sum pk by pk � z�k, or by the more e�cient formulas� �X � 1z� = `(�)Xr=0��1z�r s�=1r(X) :(ii) Compute U = f̂ h1i as a linear combination of stable characters h�i by means ofLittlewood's formula, and write it in the form U = �1 �H, taking into account thefact that h�i = �1 � s�(X � 1).(iii) Evaluate H �X+11�z �, for example by expanding H in terms of power sums, andreplacing each pk by (pk + 1)=(1 � zk).(iv) Take the scalar product of the previous expression withs� �X + z1� z� = X��� s� � z1� z� s�=�(X)(a closed formula for s� � z1�z� can be found for example in [9], ex. 2 p. 45). Thisyields a��(z).(v) c��(z) = (1� z)'(z)�1a��(z).The multiplicity of the irreducible representation (n � j�j; �) of Sn (for any n) in theinner plethysm h1i
fm;�g is then equal to the coe�cient of zm in the Taylor expansionof c��(z).



94. The restriction U(n) # SnThe well-known stable branching rule for U(n) # Sn isf�g # h1i 
 f�=Mgwhere M = �1 =Yi 11 � xi :To compute the branching coe�cients we consider the generating seriesF�(z) := Xn2Zh1i 
 f(n; �)=Mgzn :=X� c��(z)h�i ;and rewrite it as before as F�(z) = hD�1�zD��1=zs�i^ h1i= ��z(X + 1)s� �X � 1z + 1��^ h1i= (1 � z)�1 ��z(X)s� �X � 1z + 1��^ h1i= �1 � X1 � z� � s� �X � 1z + 1�^ h1i:Thus, if we de�ne H by �1 �H = �s� �X � 1z + 1��^ h1i ;we arrive at c��(z) = Yk�1 11� zk a��(z) ; (24)where a��(z) = �s� �X + z1� z� ; H �X + 11 � z �� : (25)For � = (2; 1), we getH �X + 11 � z � = (2 z5 � 3 z4 � 2 z2 + 3 z � 1)(z2 + z + 1) (z � 1)3 z2 s0 + (z2 � 3 z + 1)(z � 1)3 z s2+ (z2 � 3 z + 1)(z � 1)3 z s11 + z(z2 + z + 1) (1� z)3 s3 + (z2 + 1)(z2 + z + 1) (1� z)3s21+ z(z2 + z + 1) (1 � z)3 s111 + (3 z3 � 8 z2 + 5 z � 1)(z � 1)3 z2 s1 (26)



10From this we may computec21;11(z) = �1 + 3 z2 + 15 z3 + 42 z4 + 102 z5 + 215 z6 + 425 z7 + 785 z8 + 1391 z9+2367 z10 + 3912 z11 + 6286 z12 + 9884 z13 + 15221 z14 +O �z15�c21;211(z) = 2 z2 + 10 z3 + 36 z4 + 104 z5 + 260 z6 + 587 z7 + 1229 z8 + 2425 z9+4558 z10 + 8231 z11 + 14366 z12 + 24354 z13 + 40247 z14 +O �z15�Hence, the multiplicity of (11; 2; 1; 1) in the restriction of the irrep f12; 2; 1g of U(15)to S15 is equal to 14366, the coe�cient of z12 in the expansion of c21;211(z).5. The restriction O(n) # SnIt is known that the stable branching rule for O(n) # Sn is given by [11][�] # h1i 
 f�=Ggwhere G = �1 � ��1[h2] =M � C =Yi 11 � xi Yi�j(1 � xixj) :We want to compute the coe�cients c��(z) of the generating seriesF�(z) := Xn2Zh1i 
 f(n; �)=Ggzn :=X� c��(z)h�i :We have F�(z) = hD�1D��1[h2 ]�zD��1=zs�i^ h1i= �D��1[h2]�z(X + 1)s� �X � 1z + 1��^ h1i= (1� z)�1 �D��1[h2]�z(X)s� �X � 1z + 1��^ h1i :We now use the following properties:Lemma 5.1. For any symmetric functions f; g,D��1[h2](fg) = � � �D��1[h2] 
D��1[h2]� �D���1(f 
 g) ;where � is the comultiplication �(pk) = pk 
 pk (i.e. �(f) = f(XY ), denoted by �� in[9], p.128) and � the multiplication operator �(f 
 g) = fg.



11(Here 
 means tensor product, not plethysm).Proof: Let h be an arbitrary symmetric function. Using the duality betweenmultiplication and comultiplication, we have the following sequence of transformationsof the scalar productDD��1[h2](fg) ; hE = hf 
 g ; �(��1[h2] � h)i = hf 
 g ; �(��1[h2])�(h)i= hf 
 g ; ��1[h2 
 1 + h1 
 h1 + 1
 h2] ��(h)i= DD���1(f 
 g) ; ��1[h2]
 ��1[h2] ��(h)E= D� � �D��1[h2] 
D��1[h2]� �D���1(f 
 g) ; hE :Lemma 5.2. For any symmetric function f ,D���1�z 
 f = �z 
 f(X � z) :Proof: Taking into account the fact that Ds�hn = 0 if `(�) > 1 and Dsrhn = hn�r, wehaveD���1(X)�z(X)
 f(X) =Xr�0(�1)rDsr�z(X) 
Ds1r f(X)= �z(X) 
D��z(X)f(X) = �z(X) 
 f(X � z) :Also, from the well-known expansion of ��1[h2] (cf. [9], ex.9, p.78) we get ��1[h2] =1� h2+ Schur functions indexed by partitions with more than one part, henceD��1[h2 ]�z = (1� z2)�z ; (27)which implies that F�(z) = (1� z2)(1� z) �̂zh1i � Uwhere U := �D��1[h2]s� �X � 1z + 1� z��^ h1i = �1 �H :Thus, as in the previous section,c��(z) = (1 � z2)Yk�1 11� zk a��(z) (28)where a��(z) = �s� �X + z1� z� ; H �X + 11 � z �� : (29)



12On the example � = (2; 1), we getc21;11(z) = �1 + z2 + 6 z3 + 17 z4 + 41 z5 + 84 z6 + 163 z7 + 294 z8 + 510 z9 + 850 z10+1378 z11 + 2172 z12 + 3356 z13 + 5080 z14 +O(z15)c21;2(z) = 2 z2 + 6 z3 + 18 z4 + 41 z5 + 86 z6 + 165 z7 + 301 z8 + 522 z9 + 876 z10+1422 z11 + 2253 z12 + 3487 z13 + 5297 z14 +O(z15)c21;221(z) = z2 + 3 z3 + 12 z4 + 36 z5 + 95 z6 + 221 z7 + 478 z8 + 966 z9 + 1857 z10+3416 z11 + 6065 z12 + 10434 z13 + 17480 z14 +O(z15)c21;5211(z) = z7 + 6 z8 + 25 z9 + 86 z10 + 252 z11 + 663 z12 + 1599 z13 + 3600 z14 +O(z15)so that for example, the multiplicity of (95211) in the restriction of the irrep [13; 2; 1] ofO(18) to S18 is equal to 1599.6. The restriction O(n � 1) # SnThe series to be computed here isF�(z) = Xn2Zh1i 
 f(n; �)=Cg = hD��1[h2]�zD��1=zs�i^ h1i (30)A calculation similar to the one of the preceding section shows thatF�(z) = (1� z2) ��z �D��1[h2]s� �X � 1z � z��^ h1i (31)and writing as above U = �D��1[h2] � s� �X � 1z � z��^ h1iin the form U = �1 �H we havec��(z) = (1 � z)(1 � z2)Yk�1 11� zk a��(z) (32)where a��(z) is once again given bya��(z) = �s� �X + z1� z� ; H �X + 11 � z �� : (33)For example, with � = (2; 1)c21;11(z) = z3 + 3 z4 + 7 z5 + 15 z6 + 29 z7 + 52 z8 + 89 z9 + 147 z10 + 235 z11+366 z12 + 558 z13 + 834 z14 +O(z15)



13c21;211(z) = z2 + 4 z3 + 11 z4 + 26 z5 + 56 z6 + 111 z7 + 208 z8 + 372 z9 + 641 z10+1070 z11 + 1739 z12 + 2760 z13 + 4293 z14 +O(z15)c21;421(z) = z4 + 3 z5 + 12 z6 + 37 z7 + 98 z8 + 231 z9 + 507 z10 + 1038 z11+2022 z12 + 3770 z13 + 6781 z14 +O(z15)so that, for example, the multiplicity of (5211) in the restriction of the irrep [521] ofO(8) to S(9) is equal to 26.7. A stability property of the coe�cients c��(z)The multiplicities of irreps exhibit a certain stability property, if grouped together ina certain natural way. Let us start by looking at some concrete examples for innerplethysm. The remarks are directly applicable to the restrictions (1)-(3), as the previoussections have shown.The �rst three examples in table 1 suggest that the sequence of multiplicities becomesconstant when increasing the �rst row of � and the �rst row of �. For example, one hash1i 
 hn21i � 106hn � 3i for n � 10. We observe a similar stability when increasingthe �rst column, but then have to make shifts on the left hand side by 1; 2; 3; 4; : : : asshown in the fourth example.To state the property in a precise way, supposeh1i 
 fm;�g � Cmp (�)hp; �i and h1i 
 fm+ q; �g � Cm+qp+q (�)hp + q; �i: (34)Then, the (Cm+qp+q (�))q form a �nite sequence of integers such that Cm+qp+q (�) = Cm+qsp+qs (�)for all q � qs (and qs depends on � and � only).This property is shared by h1i 
 fm;�=Mg; h1i 
 fm;�=Gg and h1i 
 fm;�=Cg.To see this �x � and � and set � := (�2; �3; : : :). Then it is immediate from thede�nitions thatc��(z) =Xz Cm�1(�)zm: (35)Hence we only need to show a stability property of the c��(z) (or, equivalently, of thea��(z)), when �1 increases. To get control on the corresponding shifts we rather considerz��1c��(z) and will show that this expression converges as a formal Laurent series when�1 goes to in�nity. This property is true for all the restrictions considered before, andit can be proved by using the vertex operator method.Let u be another indeterminate, commuting with z. Then�us� �X + z1� z� = �u �X + z1� z� � s� �X � 1u + z1� z�= �u � z1 � z� � �u (X) � s� �X � 1u + z1 � z� ; (36)



14 Table 1. Some multiplicities of h�i in the inner plethysm h1i 
 f�g.� 221 321 421 521 621 . . .� 2 3 4 5 6 . . .Multiplicity 1 3 5 5 5 . . .� 521 621 721 821 921 10,2,1 11,2,1 . . .� 2 3 4 5 6 7 8 . . .Multiplicity 25 58 85 99 104 106 106 . . .� 221 321 421 521 621 . . .� 21 31 41 51 61 . . .Multiplicity 2 5 6 6 6 . . .� 5,2,1 7,2,1 10,2,1 14,2,1 19,2,1 25,2,1 . . .� 14 15 16 17 18 19 . . .Multiplicity 11 14 17 18 19 19 . . .whence Xi a�(i;�)(z)ui = ��us� �X + z1 � z� ;H �X + 11� z ��= �u � z1� z� � ��u(X)s� �X � 1u + z1 � z� ;H �X + 11� z ��= �u � z1� z� � �s� �X � 1u + z1� z� ;H �X + 1 + u1� z ��= �u � z1� z� � P��(z; u); (37)



15where P��(z; u) := tXi=b ri(z)ui := �s� �X � 1u + z1� z� ; H �X + 1 + u1� z �� (38)is a Laurent polynomial in u with rational functions in z as coe�cients.Recall (from [9], ex.5 p.27, e.g.) that�u � z1� z� =Xi ziQij=1(1� zj)ui:Therefore, to get a� (�1;�); �1 � t, i.e. the coe�cient of u�1 in�u � z1� z� � P��(z; u);it su�ces to consider the coe�cient of u�1 in0@ �1�bXl=�1�t zlQlj=1(1 � zj)ul1A � P��(z; u):On the other hand, as a Laurent series in z, this coe�cient converges to the coe�cientof u�1 in z�1Q�1j=1(1 � zj)u�1 � 0@ �bXl=�t tlul1A � P��(z; u);when �1 goes to in�nity. Hence z��1c�;�(z) converges to the constant term (w.r.t. u) inYj�2(1 � zj)�1 �Yj�1(1� zj)�1 � 0@ �bXl=�t tlul1A � P��(z; u): (39)If we choose � = (2; 1) and � := (), the empty partition, thenP��(z; u) = z(1� z3)(z � 1)2 u3+ 2 z � 1z(1� z)3 u2+ 1� 3z + 2z2 + z3z2(1 � z)3 u+ z4(1� z3)(z � 1)2 ;and the constant term ofz�3u�3 �1 + uz + u2z2 + u3z3�P�;�(z; u)equals z�3  z(1� z3)(z � 1)2 + 2 z � 1(1 � z)3 + 1 � 3z + 2z2 + z3(1 � z)3 + z4(1� z3)(z � 1)2!= z�1 + 2 + 3z + z2 + z3(1 � z)2(1 � z3) :



16Finally for �1 large enough the expansion of z��1c��(z) up to order 7 isz�1 + 5 + 17z + 45z2 + 106z3 + 230z4 + 467z5 + 901z6 +O(z7)(the Laurent expansion always starts with z�`(�)). This can be interpreted as follows.The coe�cient of zq in the above expansion is the \stable multiplicity" of h�1i inh1i 
 f�1 + q; 2; 1g. The coe�cient of z0 is 5 in accordance with the �rst exampleof table 1; 106, the coe�cient of z3, appears as the limit in the second example oftable 1.In the fourth example of table 1 the �rst column of � increases. We therefore set� := (�02; �03; : : :)0, i.e. � without its �rst column. As the shifts proceed by steps of1; 2; 3; : : :, we will have to consider the limit z�(�01�t+12 )c��(z), when �01 tends to in�nity.Here t is a non-negative integer depending on � and � only (cf. equation (41) below).Then everything can be proven in the same way as before by using the dual notions.The dual version of the vertex operator isXi (�1)i+1+j�js(i;�0)0ui = ��u(X)s� �X + 1u� : (40)Setting Q��(z; u) := tXi=b ~ri(z)ui := �s� �X + 1u + z1 � z� ; H �X + 1 � u1 � z ��(41)and recalling (e.g., from [9], ex.5 p.27) that��u � z1 � z� =Xi z(i+12 )Qij=1(1 � zj)(�u)i;for i!1 only one term, namelyz(i�t+12 )Qi�tj=1(1 � zj)(�u)i�t � ~rt(z); (42)dominates and the desired limit z�(�01�t+12 )c��(z) isYj�2(1 � zj)�1 �Yj�1(1� zj)�1 � ~rt(z): (43)For example, with � := (2; 1) and � := (), we get t := 3,~rt(z) := z(1 � z3)(z � 1)2 ;and the desired expansion isz + 3z2 + 8z3 + 19z4 + 41z5 + 82z6 + 158z7 + 290z8 + 516z9 +O(z10):We can interpret this as follows. The coe�cient of zq gives the stable multiplicity ofh1�01i in h1i
f��01�22 �+q; 2; 1g (recall that t = 3). The coe�cient of z4 is 19 in accordancewith table 1 above.



178. Concluding remarksThe computation of branching coe�cients of U(n) # Sn, O(n) # Sn and O(n � 1) # Snplays a key role in symplectic models of nuclei which is a combinatorially explosiveproblem. Previous algorithms become computationally impossible when the number ofnucleons becomes large. The algorithms outlined in this paper overcome the limitationsof earlier algorithms and require no use of modi�cation rules. They have the considerableadvantage over other methods of being able to yield speci�c coe�cients rather than thecomplete set of coe�cients, most of which, in practical calculations, are redundant.The stability properties of the branching coe�cients and inner plethysm multiplicities�nd a natural explanation in terms of generating functions.AcknowledgementsThe preparation of this paper has been facilitated by several computer programs. Theexamples presented here have been computed with the help of J. Stembridge's Maplepackage SF for symmetric functions and by S. Veigneau's SYMF of ACE 3.0. Theproperties proved in section 7 were conjectured on the basis of tables computed withSCHUR.
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