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B. G. Wybourne

Mathematics requires a small dose, not of genius,
but of imaginative freedom which, in a larger dose,
would be insanity. And if mathematicians tend to
burn out early in their careers, it is probably because
life has forced them to acquire too much common
sense, thereby rendering them too sane to work. But
by then they are sane enough to teach, so a use can
still be found for them.

— Angus K Rodgers

9.1 Quantum Dots and Symmetry Physics

The subject of quantum dots involves the confinement of N electrons in two or three dimensions, com-
monly by electrostatic fields, over a nano-metre scale. The confining potential is, to a good approximation
parabolic. The quantum dot behaves as an N−electron atom without a nuclear core. One may add or
subtract a single electron from a quantum dot giving rise to the possibility of nano-metre scale devices
such as transitors etc.

In an atom the kinetic energy tends to dominate over the potential energy (the confinement length is
small) whereas in a quantum dot the two contributions are roughly of the same order making normal
perturbative methods difficult. A closely analogous problem is that of nucleons confined in a harmonic
oscillator potential with quantised motion occuring about the centre of mass of the N−nucleon system.
We shall first review some of the properties of the isotropic harmonic oscillator, the unitary group U(3)
and the special unitary group SU(3).

9.2 The Isotropic harmonic oscillator

The Hamiltonian H of a normalised isotropic harmonic oscillator (i.e. with m = h̄ = ω = 1) in three-
dimensions may be written as

H =
1

2
(p2 + r2) (9.1)

From Heisenberg’s quantisation postulate the coordinates qi and momenta pi satisfy the commutation
relations

[qi, qj] = [pi, pj] = 0, [qi, pj ] = iδij (9.2)

Now introduce boson annihilation and creation operators ( a and a† respectively)

a =
1√
2
(r + ip), a† =

1√
2
(r − ip) (9.3)

which satisfy the bosonic commutation relation

[ai, a
†
j] = δij (9.4)

The Hamiltonian can now be written as

H = a† · a +
3

2
(9.5)

Use of Eqn. (9.4) then leads to

[H, a†
j ] = a†

j , [H, aj ] = −aj (9.6)

Thus we deduce that a†
j creates and aj annihilates a quantum in the j direction. We recognise a† · a as

being the number operator with eigenvalues of

n = n1 + n2 + n3 (9.7)

and hence the energy eigenvalues of H are

En = n +
3

2
(n = 0, 1, 2, . . .) (9.8)
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with normalised state vectors

|n1n2n3〉 =

3
∏

i=1

a†ni

i√
ni!

|000〉 (9.9)

with |000〉 being the vacuum state with
aj |000〉 = 0 (9.10)

Noting that a† = a∗ we have

〈n1n2n3| = 〈000|
3

∏

i=1

ani

i√
ni!

(9.11)

with
〈000|a†

j = 0 (9.12)

9.3 Degeneracy Group of the Isotropic Harmonic Oscillator

Let us introduce nine operators

Tij =
1

2
{a†

i , aj} (i, j = 1, 2, 3) (9.13)

where {a, b} ≡ ab + ba. Using the basic boson commutation relations of Eqn. (9.4) we find

[Tij , Trs] = δjrTis − δisTrj (9.14)

Thus the nine operators Tij close under commutation and generate a Lie algebra. Putting Hi ≡ Tii (do
not confuse this with the Hamiltonian) we find the three Hi form a self-commuting set and

[Hi, Tjr] = (δij − δir)Tjr (9.15)

all the roots are of the form ei − ej where the e are mutually orthogonal unit vectors.

The set of nine operators Tij may be identified as the generators of the unitary group in three dimensions,
U(3). The Hamiltonian H is related to the Hi of Eqn. (9.15) via

H = H1 + H2 + H3 (9.16)

commutes with all Tij . The three operators

H ′ = Hi −
H

3
(9.17)

taken with the Tij (i 6= j) can be taken as the generators of the special unitary group SU(3) if we
remember that since

∑

i H ′
i = 0 the H ′

i are not linearly independent. For reasons that will become
apparent shortly we refer to U(3) as the degeneracy group of the isotropic harmonic oscillator.

9.4 Labelling Representations and Weights

In the case of the angular momentum group SO(3) we label the angular momentum states as |JM〉 where
M is the eigenvalue of Jz with J being the highest weight of M . This idea carries over to Lie groups in
general. We recall that in the case of SO(3) we can write the defining commutation relations as

[Jz, J±] = ±L± [J+, J−] = Jz (9.17)

with

J± =
1

√

(2)
(Jx ± iJy) (9.18)

For a general semisimple Lie algebra of rank ℓ we have ℓ operators ,Hi (i = 1, . . . , ℓ), that commute
among themselves. The Lie algebra can be cast into the standard Cartan-Weyl form as

[Hi, Hj ] = 0 (i, j = 1, . . . ℓ)

[Hi, Eα] = αiEα

[Eα, Eβ ] = NαβEα+β

[Eα, E−α] = αiHi (9.19)

where the Eα are the analogues of the ladder operators J± of SO3.
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Just as in SO3 we distinguish the components of a representation by the eigenvalues of Jz for a Lie group
we may label the components of a representation by the eigenvalues of the ℓ self-commuting operators
Hi. For any compact Lie algebra the highest weight vector is unique and hence can be used to specify
the representation. Consider for example, the group U(3) which has three self-commuting operators Hi.
Suppose we wish to determine the representation of U(3) whose components are the annihilation a and
creation operators a†, we have

[Hi, a
†
j ] = δija

†
j and [Hi, aj ] = −δijaj (9.20)

Thus the components of a† give rise to the set of weight vectors (100), (010), (001). The highest weight
vector is (100) and hence we can label the representation as {100} of U(3). Likewise, the components of
a give rise to the weight vectors (−100), (0−10), (00−1). We say that a weight vector w is higher than a
weight vector w′ if the first component of their difference w − w′ is positive. Thus the highest weight for
a is (00− 1) and the representation of U(3) spanned by the components of a may be labelled as {00− 1}
which is contragredient to {100}.

Exercises

9.1 Noting Eqn(9.14) show that the nine operators Tij are associated with the nine weight vectors
(000), (000), (000), (1-10), (10-1), (01-1), (-110), (-101), (0-11).

9.2 Determine the highest weight vector in the above set of weight vectors.

9.3 Repeat the above analysis for a two-dimensional isotropic harmonic oscillator and show that the
relevant symmetry group is U(2).

9.5 Rotational Symmetry and the Isotropic Harmonic Oscillator

The harmonic oscillator Hamiltonian, Eqn. (9.1), commutes with all the components of the angular
momentum operator

L = r × p = ia × a† (9.21)

and hence H is rotationally invariant. The components of L form under commutation the Lie algebra
associated with the group SO(3). Noting the definition of the operators Tij , Eqn.(9.13), and Eqn. (9.21)
we have

L1 = −i(T23 − T32), L2 = −i(T31 − T13), L3 = −i(T12 − T21) (9.22)

We may choose L3 as the generator of the group SO(2) and hence for the three-dimensional isotropic
harmonic oscillator we have the group structure

U(3) ⊃ SU(3) ⊃ SO(3) ⊃ SO(2) (9.23)

It is convenient to label the oscillator states in a basis |nℓm〉 where n = 0, 1, 2, . . .. We have

n = 2x + ℓ with x = 0, 1, 2, . . . (9.23)

and hence the values of ℓ associated with a given value of n are

ℓ = 1, 3, 5, . . . , n n odd

= 0, 2, 4, . . . , n n even (9.24)

and thus for a given n there is a set of (n+1)(n+2)
2 -fold degenerate states |nℓm〉. This is precisely the

dimension of the symmetric representation of U(3) designated by the partition {n, 0, 0} and hence the
statement that the group U(3) is the degeneracy group of the three-dimensional isotropic harmonic oscil-
lator.

n = 5 p, f, h
n = 4 s, d, g
n = 3 p, f
n = 2 s, d
n = 1 p
n = 0 s

The first six levels of the isotropic harmonic oscillator
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In the preceding we have developed the theory for a single particle in a harmonic oscillator potential.
This particle could equally well be a nucleon as in nuclear physics or an electron in a quantum dot. The
degeneracies are exactly the same as is the form of the energy spectrum. To proceed further requires we
develop a many-particle model for particles interacting in a harmonic oscillator potential. To that end
we may seek to develop a dynamical group.

Two combinatorial observations

These notes are supplementary to Symmetric Functions 9 and concern

1. Some additional remarks on boson-fermion symmetry.

2. An observation relating to the Littlewood-Richardson Rule.
1. Boson-Fermion symmetry for a one-dimensional harmonic oscillator

The n− dimensional isotropic harmonic oscillator has the metaplectic group Mp(2n) as its dy-
namical group with U(n) as the degeneracy group. The complete set of states span the infinite dimensional
unitary irreducible representation ∆̃ of Mp(2n). Under Mp(2n) → U(n) one has the branching rule

∆̃ → M (1)

where

M =

∞
∑

m=0

{m} (2)

Consider N non-interacting particles in an n−dimensional harmonic oscillator potential. In general
these particles will form states belonging to symmetrised powers (or plethysms) according to the various
partitions of the integer N i.e. with respect to the group U(n) terms coming from the plethysm

M ⊗ {λ} (3)

Now consider the special case of n = 1 with either N bosons or fermions. The degeneracy group
is now just U(1) and we can readily evaluate Eq.(3) for the totally symmetric and totally antisymmetric
cases as plethysms. At the U(1) level we have for the M−series

M ⊗ {N} =
∑

k

gk
N{k} (4)

where gk
N is the number of partitions of k into at most N parts with repetitions and null parts allowed

and
M ⊗ {1N} =

∑

ℓ

cℓ
N{ℓ} (5)

where cℓ
N is the number of partitions of ℓ into N distinct parts, including the null part.

If ℓ = k + (N2 − N)/2 then we have the identity

cℓ
N = gk

N (6)

For example,

M ⊗ {4} ⊃{0} + {1} + 2{2}+ 3{3} + 5{4}+ 6{5} + 9{6}+ 11{7}+ 15{8}+ 18{9} (7)

M ⊗ {14} ⊃{6} + {7} + 2{8}+ 3{9} + 5{10}+ 6{11}+ 9{12}+ 11{13}+ 15{14}+ 18{15} (8)

c13
N = g7

N

For g7
4 and c13

4 we have the respective sets of 11 partitions

g7
4{231} + {3212} + {322} + {321} + {413} + {421}+ {43} + {512} + {52}+ {61} + {7}

c13
4 {5431}+ {6421}+ {643}+ {652}+ {7321}+ {742}+ {751}+ {832}+ {841}+ {931}+ {1021}

The identity, Eq.(6), comes about by realising that one can map from one of the sets of partitions to the
other by adding or subtracting ρN = (N − 1, . . . , 2, 1, 0). Adding ρ to the partitions of k into at most N
parts, converts them into partitions, all of whose parts are distinct. Hence cℓ = gkifℓ = k + 1

2N(N − 1).
Thus in the example above add (3, 2, 1, 0) to the g7

4 list gives that of c13
4 .

The consequence of the boson-fermion equivalence is that the thermodynamic properties of
N−non-interacting bosons or fermions are essentially equivalent apart from a shift in the groundstate.
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2. Littlewood-Richardson coefficients

Kirillov has noted that if cλ
µν = 1 then

cNλ
Nµ,Nν = 1 (1)

His observation can be conjectured to generalise to

cNλ
Nµ,Nν =

(

N + k − 1
k − 1

)

if cλ
µν = k (2)

where in both cases N multiplies all the parts of the attached partition. e.g.

{321} · {431} ⊃
4{24 20 84} + 4{24 16 12 4} + 4{24 16 842} + 4{20 16 12 8} + 4{20 16 12 42}
+ 4{20 16 824} (3)

and

{12 84} · {16 12 4} ⊃
35{24 20 84} + 35{24 16 12 4} + 35{24 16 842} + 35{20 16 12 8} + 35{20 16 12 42}
+ 35{20 16 824} (4)

This looks encouraging BUT there exist counterexamples! One counter example is worth billions of
examples!


