Symmetric Functions and the Symmetric Group 7 B. G. Wybourne

Abstract

And yet the mystery of mysteries is to view machines making machines; a spectacle that fills the mind with curious, and even awful, speculation. Benjamin Disraeli: Coningsby (1844)

■ 7.1 Group-subgroup decompositions

NB. Herein we follow closely R C King, Branching rules for classical Lie groups using tensor and spinor methods, J Phys A:Math.Gen. 8,429 (1975). Branching rules play an important role in applications of group theory to problems in physics.Consider a group G with elements $\{g, \ldots\}$ and irreducible representations $\left\{\lambda_{\mathrm{G}}, \ldots\right\}$ and a subgroup H i.e. $\mathrm{G} \supset \mathrm{H}$ with elements $\{h, \ldots\}$ and irreducible representations $\left\{\mu_{\mathrm{H}}, \cdots\right\}$. The restriction of the set of matrices $\left\{\lambda_{\mathrm{G}}(g)\right\}$ forming the representation $(\lambda)_{\mathrm{G}}$ of G to the $\operatorname{set}\left\{\lambda_{\mathrm{G}}(h)\right\}$ yields a representation of H which is generally reducible. If

$$
\begin{equation*}
\lambda_{\mathrm{G}}(h)=\sum_{{ }^{\mu} \mathrm{H}} m_{\lambda_{\mathrm{G}}}^{{ }^{\mu} \mathrm{H}_{\mathrm{G}}} \mu_{\mathrm{H}}(h) \quad \text { for all } \quad h \in \mathrm{H} \tag{7.1}
\end{equation*}
$$

then under $\mathrm{G} \downarrow \mathrm{H}$ we have the branching rule

$$
\begin{equation*}
\mathrm{G} \downarrow \mathrm{H} \quad(\lambda)_{\mathrm{G}} \downarrow \sum_{{ }_{\mu} \mathrm{H}} m_{\lambda}^{\mu_{\mathrm{A}} \mathrm{H}}(\mu)_{\mathrm{H}} \tag{7.2}
\end{equation*}
$$

where the $m_{\lambda_{\mathrm{G}}}^{{ }_{\mathrm{G}} \mathrm{H}}$ are known as the branching rule multiplicities.
■ 7.2 The Unitary, $U(n)$, and Special Unitary, $S U(n)$, groups
We have already noted the relationship between S-functions and the characters of the unitary group and the fact that the irreducible representations of $U(n)$ may be labelled by ordered partitions of integers, thus $\{\lambda\} \equiv\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. (NB in addition to these covariant irreducible representations there are irreducible representations involving both covariant and contravariant indices - see the above reference for more details). In practice zero parts are omitted. Under the restriction $U(n) \downarrow S U(n)$ an irreducible representation $\{\lambda\}$ of $U(n)$ remains irreducible and hence we may still label the irreducible representations of $S U(n)$ by ordered partitions with the proviso that irreducible representations of $U(n)$ involving partitions with n positive integers are equivalent to an irreducible representation of $S U(n)$ involving fewer than n positive integers. The equivalence is such that

$$
\begin{equation*}
\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \equiv\left\{\lambda_{1}-\lambda_{n}, \ldots, 0\right\} \quad \text { if } \lambda_{n}>0 \tag{7.3}
\end{equation*}
$$

Thus for $S U(n)$ the irreducible representations involve at most $n-1$ positive integers. Thus under $U(3) \downarrow S U(3)$ we have, for example, the equivalences

$$
\{321\} \equiv\{21\}, \quad\{432\} \equiv\{21\}, \quad\left\{1^{3}\right\} \equiv\{0\}
$$

NB. irreducible representations that are inequivalent in $U(n)$ may, under the restriction $U(n) \downarrow S U(n)$ be equivalent to the same $S U(n)$ irreducible representation. Irreducible representations of $S U(n)$ that involve partitions $\{\lambda\}$ such that

$$
\begin{equation*}
\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\} \equiv\left\{\lambda_{1}-\lambda_{n}, \lambda_{2}-\lambda_{n-1}, \ldots, 0\right\} \tag{7.4}
\end{equation*}
$$

are said to be contragredient to one another and are of the same dimension. Thus in $S U(3)$ we have the pairs $\{2\},\left\{2^{2}\right\},\{31\},\{32\}$ etc. Such pairs are sometimes labelled as $\{\lambda\},\{\bar{\lambda}\}$. If $\{\lambda\} \equiv\{\bar{\lambda}\}$ then $\{\lambda\}$ is
said to be self-contragredient. Thus in $S U(3)\{21\},\{42\}$ are examples of self-contragredient irreducible representations.

- 7.3 Kronecker products in $U(n)$ and $S U(n)$

The Kronecker product of a pair of irreducible representations of $U(n)$, say $\{\lambda\}$ and $\{\mu\}$ may be resolved into a sum of irreducible representations of $U(n)$ by use of the Littlewood-Richardson rule for S-functions to give

$$
\begin{equation*}
\{\lambda\} \times\{\mu\}=\sum_{\nu} c_{\lambda \mu}^{\nu}\{\nu\} \tag{7.5}
\end{equation*}
$$

with the proviso that all $\{n u\}$ involving more than n non-zero parts are to be discarded. For example, in $U(3)$ we have upon application of the Littlewood-Richardson rule $\{21\} \times\{31\}=$

$$
\begin{array}{lllll}
\left\{321^{2}\right\} & +\left\{32^{2}\right\} & +\left\{3^{2} 1\right\} & +\left\{41^{3}\right\} & +2\{421\} \\
+\{43\} & +\left\{51^{2}\right\} & +\{52\} & \tag{7.6}
\end{array}
$$

However, the four part partitions $\left\{321^{2}\right\}+\left\{41^{3}\right\}$ must be discarded as null in $U(3)$. NB. for $n \geq 4$ holds as it stands. For the group $S U(3)(7.3)$ must be applied to the three part partitions occurring in (7.6) to give for $S U(3) \quad\{21\} \times\{31\}=$

$$
\begin{array}{llll}
\{1\} & +\left\{2^{2}\right\} & +2\{31\} & +\{4\}
\end{array}
$$

- Exercises

1. Verify that the product of the dimensions on the lhs of (7.7) is equal to the sum of the dimensions on the rhs.
2. Show that in $S U(3)$

$$
\{1\} \times\{\overline{1}\}=\{0\}+\{21\}
$$

3. Show that in $S U(3)$

$$
\{1\} \times\{1\} \times\{1\}=\{0\}+2\{21\}+\{3\}
$$

■ 7.4 The labelling of irreducible representations for the classical Lie groups

Hereon we follow

1. G R E Black, R C King and B G Wybourne, Kronecker products for compact semisimple Lie groups, J Phys A:Math.Gen. 16, 1555 (1983). (BKW)
The partition (λ) of weight w_{λ} serves to label an irreducible representation $\{\lambda\}$ of $U(n)$ and to specify the symmetry properties of the corresponding w_{λ} th-rank covariant tensor forming a basis for the irreducible representation. This same covariant tensor forms a basis for representations of the subgroups of $U(n)$, including the orthogonal group, $O(n)$, and if n is even, the symplectic group $S p(n)$. In general, these representations are reducible and will be labelled by the partitions $[\lambda]$ and $\langle\lambda\rangle$ respectively.

As well as the tensor irreducible representations labelled by $[\lambda], O(n)$ also has double-valued or spinor representations denoted by $[\Delta ; \lambda]$ where Δ is the fundamental spin representation of dimension $2^{[n / 2]}$.

For all linear groups there exists amongst the irreducible representations a one-dimensional irreducible representation, denoted by ε, which maps each group element to the value of its determinant. By definition all the elements of $S U(n), S O(n)$ and $S p(n)$ have determinant +1 , so that the irreducible representations ε coincide with the identity irreducible representations $\{0\},[0]$ and $\langle 0\rangle$ respectively. However, for $U(n)$ and $O(n)$ this is not the case. For $U(n) \varepsilon$ is the irreducible representation $\left\{1^{n}\right\}$ with an inverse

$$
\begin{equation*}
\varepsilon^{-1}=\bar{\varepsilon}=\left\{1^{-\bar{n}}\right\} \quad(\text { for } U(n)) \tag{7.8}
\end{equation*}
$$

For $O(n)$, all the group elements are of determinant ± 1 and hence

$$
\begin{equation*}
\varepsilon^{-1}=\varepsilon \quad \text { and } \quad \varepsilon \times \varepsilon \quad(\text { for } O(n)) \tag{7.9}
\end{equation*}
$$

The product of ε with any irreducible representation is also an irreducible representation, and inequivalent irreps related by some power of ε are said to be associated. For $U(n)$ there are an infinite number of inequivalent associated irreducible representations associated with a given irreducible representation, one of which will be specified by a partition into less than n parts. For instance ... $\overline{\left\{6^{2} 521\right\}}, \overline{\left\{5^{2} 41\right\}}, \overline{\left\{4^{2} 3 ; 1\right\}} \ldots\{541\},\left\{6521^{2}\right\}$ are all associated irreducible representations of $U(5)$.

Since under $U(n) \downarrow S U(n) \varepsilon \downarrow\{0\}$ it follows that all mutually associated irreducible representations of $U(n)$ give equivalent irreducible representations of $S U(n)$.

In the case of $O(n)$ any given irreducible representation can possess at most one inequivalent associated irreducible representation. Irreducible representations for which the character is zero for all group elements of determinant -1 possess an associate that is equivalent to itself. Such irreducible representations are said to be self-associate. For $O(2 k)$ all the spinor irreducible representations and all the tensor irreducible representations labelled by exactly k parts are self-associate. The remaining tensor irreducible representations of $O(2 k)$ and all irreducible representations, tensor and spinor, of $O(2 k+1)$ are not self-associate. Associated pairs of irreducible representations are denoted by $[\lambda]$ and $[\lambda]^{*}$ and $[\Delta ; \lambda]$ and $[\Delta ; \lambda]^{*}$ where

$$
\begin{equation*}
[\lambda]^{*}=\varepsilon \times[\lambda] \quad \text { and } \quad[\Delta ; \lambda]^{*}=\varepsilon \times[\Delta ; \lambda] \tag{7.10}
\end{equation*}
$$

Under $O(n) \downarrow S O(n)$ the distinction between an irreducible representation and its associate is lost. However, only those irreducible representations of $O(n)$ which are NOT self-associated remain irreducible under $O(n) \downarrow S O(n)$. Each self-associate irreducible representation of $O(2 k)$ yields on restriction to $S O(2 k)$ two inequivalent irreducible representations of the same dimension which we shall label as $[\lambda]_{ \pm}$ and $[\Delta ; \lambda]_{ \pm}$where in the former case λ is necessarily a partition into k non-zero parts.

Table 7.1 Standard labels for the irreducible representations of the classical groups of rank k.

Group G	Label λ_{G}	Constraint
$U(n)$	$\{\lambda\}$	$\ell_{\lambda} \leq n$
$S U(n)$	$\{\lambda\}$	$\ell_{\lambda} \leq n-1$
$O(2 k+1)$	$[\lambda]^{\prime},[\lambda]^{*}$	$\ell_{\lambda} \leq k$
	$[\Delta ; \lambda]^{\prime},[\Delta ; \lambda]^{*}$	$\ell_{\lambda} \leq k$
$S O(2 k+1)$	$[\lambda]$	
	$[\Delta ; \lambda]$	$\ell_{\lambda} \leq k$
$O(2 k)$	$[\lambda],[\lambda]^{*}$	$\ell_{\lambda} \leq k$
	$[\lambda]$	$\ell_{\lambda}<k$
$S O(2 k)$	$[\Delta ; \lambda]$	$\ell_{\lambda}=k$
	$[\lambda]$	$\ell_{\lambda} \leq k$
	$[\lambda]_{+},[\lambda]_{-}$	$\ell_{\lambda}<k$
$S p(2 k)$	$[\Delta ; \lambda]_{+},[\Delta ; \lambda]_{-}$	$\ell_{\lambda}=k$
	$\langle\lambda\rangle$	$\ell_{\lambda} \leq k$
		$\ell_{\lambda} \leq k$

- 7.5 Modification rules

The labels given in Table 7.1 uniquely label the inequivalent irreducible representations of the classical groups. However in many practical applications non-standard labels may arise. In such cases the corresponding character may either vanish or be equal to the character of an irreducible representation specified by a G-standard label or be the negative of such a character.

All the classical groups modification rules can be associated with a common procedure. The key operation is the removal of a continuous boundary strip of boxes of length h from the Young diagram specified by the partition (λ), starting at the foot of the first column and ending in the $c-$ th column, to yield symbolically $\lambda-h$. If the resaulting Young diagram is regular then $\lambda-h$ is simply the partition which serves to specify the diagram to which we associate a sign factor $(-1)^{c}$. If the resulting diagram is not regular then it is discarded since the character vanishes identically. The procedure is repeated until the diagram either corresponds to that of a standard label or vanishes.

Table 7.2. Modification rules for the classical groups. $\left(p=\ell_{\lambda}, q=\ell_{\mu}\right)$

$U(n), S U(n)$	$\{\bar{\mu} ; \lambda\}=(-1)^{c+d-1}\{\overline{\mu-h} ; \lambda-h\}$	$h=p+q-n-1 \geq 0$
$O(2 k+1)$	$[\lambda]=(-1)^{c-1}[\lambda-h]^{*}$	$h=2 p-2 k-1>0$
	$[\lambda]^{*}=(-1)^{c-1}[\lambda-h]$	$h=2 p-2 k-1>0$
	$[\Delta ; \lambda]=(-1)^{c}[\Delta ; \lambda-h]^{*}$	$h=2 p-2 k-2 \geq 0$
$S O(2 k+1)$	$[\Delta ; \lambda]^{*}=(-1)^{c}[\Delta ; \lambda-h]$	$h=2 p-2 k-2 \geq 0$
	$[\lambda]=(-1)^{c-1}[\lambda-h]$	$h=2 p-2 k-1>0$
$O(2 k)$	$[\Delta ; \lambda]=(-1)^{c}[\Delta ; \lambda-h]$	$h=2 p-2 k-2 \geq 0$
	$[\lambda]=(-1)^{c-1}[\lambda-h]^{*}$	$h=2 p-2 k>0$
$S O(2 k)$	$[\lambda]^{*}=(-1)^{c-1}[\lambda-h]$	$h=2 p-2 k>0$
	$[\Delta ; \lambda]=(-1)^{c}[\Delta ; \lambda-h]$	$h=2 p-2 k-1 \geq 0$
	$[\lambda]=(-1)^{c-1}[\lambda-h]$	$h=2 p-2 k>0$
	$[\Delta ; \lambda]=(-1)^{c}[\Delta ; \lambda-h]$	$h=2 p-2 k-1 \geq 0$
	$[\square ; \lambda]=(-1)^{c-1}[\square ; \lambda-h]$	$h=2 p-2 k-2 \geq 0$
	$[\Delta ; \lambda]_{ \pm}=(-1)^{c}[\Delta ; \lambda-h]_{\mp}$	$h=2 p-2 k-1 \geq 0$
$S p(2 k)$	$[\square ; \lambda]_{ \pm}=(-1)^{c-1}[\square ; \lambda-h]-\mp$	$h=2 p-2 k-2 \geq 0$
	$\langle\lambda\rangle=(-1)^{c}\langle\lambda-h\rangle$	$h=2 p-2 k-2 \geq 0$

- Exercises

7.1 Verify for $O(6)$ that

$$
[3211]=[32]^{*}, \quad \text { and } \quad[\Delta ; 3211]=-[\Delta ; 321]
$$

7.2 Verify for $S p(4)$ that

$$
\left\langle 2^{2} 1^{2}\right\rangle=-\left\langle 2^{2}\right\rangle, \quad \text { and } \quad\left\langle 1^{6}\right\rangle=-\langle 0\rangle
$$

7.3 Verify for $S O(8)$ that

$$
\left[32^{2} 1^{2}\right]=\left[32^{2}\right], \quad\left[32^{2} 1^{3}\right]=0, \quad\left[32^{2} 1^{4}\right]=-[32]
$$

■ 7.6 Note on Mixed tensor irreducible representations of $U(n)$

So far we have only discussed the covariant tensor irreducible representations of $U(n)$ which herein will be our principal concern. In addition to the covariant tensor irreducible representations $\{\lambda\}$ there are inequivalent irreducible representations associated with m-th rank contravariant tensors specified by $\{\bar{\mu}\}$ and more generally irreducible representations associated with mixed tensors specified by $\{\bar{\mu} ; \lambda\}$. The technical details are given in BKW.

