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Symmetric Functions and the Symmetric Group 3

B. G. Wybourne

For every complex question there is a simple answer

and it’s wrong.

H. L. Mencken

3.1 Semistandard numbering and Young tableaux

Many different prescriptions can be given for injecting numbers into the boxes of a frame.

The standard numbering is intimately associated with the symmetric group Sn.

Another important numbering prescription is that of semistandard numbering where now numbers
1, 2, . . . , d are injected into the boxes of a frame Fλ such that:

i. Numbers are non-decreasing across a row going from left to right.

ii. Numbers are positively increasing in columns from top to bottom.

The first condition permits repetitions of integers.

Using the numbers 1, 2, 3 in the frame F 2 1 we obtain the 8 tableaux

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

(3.1)

Had we chosen d = 2 we would have obtained just two tableaux while d = 4 yields twenty tableaux. In
general, for a frame Fλ a semistandard numbering using the integers 1, 2, . . . , d leads to

fλ
d =

Gλ
d

Hλ
(3.2)

where Hλ is the product of the hook lengths hij of the frame and

Gλ
d =

∏

(i,j)∈λ

(d+i−j) (3.3)

Thus for d = 5 and λ = (4 2 1) we have H(4 2 1) = 144 and G
{4 2 1}
5 = 100800 from which we deduce that

f
{4 2 1}
5 = 700

which is the dimension of the irreducible representation {4 2 1} of the general linear group GL(5).

In general, fλ
d is the dimension of the irreducible representation {λ} of GL(d). Since the representations

of GL(d) labelled by partitions λ remain irreducible under restriction to the unitary group U(d) Eq.(3.3)
is valid for computing the dimensions of the irreducible representations of the unitary group U(d).

The same rules for a semistandard numbering may be applied to the skew frames Fλ/µ. Thus for
F 542/21 an allowed semistandard numbering using just the integers 1 and 2 would be

1 1 1
1 2 2

1 2

Note that our semistandard numbering yields what in the mathematical literature are commonly
referred to as semistandard Young tableaux. Other numberings are possible and have been developed for
all the classical Lie algebras.
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Exercises

3.1 Draw the frames F 22/1, F 4321/4212

, and F 321/21.

3.2 Use the integers 1, 2, 3 to construct the complete set of semistandard tableaux for the frame
F 4321/4212

and show that the same number of
tableaux arise for the frame F 21.

3.3 Make a similar semistandard numbering for the frame F 321/21 and show that the same number
of semistandard tableaux arise in the set of frames
F 3 + 2F 21 + F 13

.

3.2 Young tableaux and monomials

A numbered frame may be associated with a unique monomial by replacing each integer i by a variable
xi. Thus the Young tableau

1 1 2 4 5
3 3 3 5
4 6 7
5 7 8
6 8
7

can be associated with the monomial
x2

1 x2 x3
3 x2

4 x3
5 x2

6 x3
7 x2

8

3.3 Monomial symmetric functions

Consider a set of variables (x) = x1, x2, . . . , xd. A symmetric monomial

mλ(x) =
∑

α xα

(3.4)

involves a sum over all distinct permutations α of (λ) = (λ1, λ2, . . .). Thus if (x) = (x1, x2, x3) then

m21(x) = x2
1 x2 + x2

1 x3 + x1 x2
2 + x1 x2

3 + x2
2 x3

m13(x) = x1 x2 x3

The semistandard numbering of (λ) = (2 1) with 1, 2, 3 corresponds to the sum of monomials

m21(x) + 2m13(x)
(3.5)

The same linear combination occurs for any number of variables with d ≥ 3.

The monomials mλ(x) are symmetric functions. If λ ⊢ n then mλ(x) is homogeneous of degree n. Unless
otherwise stated we shall henceforth assume that x involves an infinite number of variables xi.

The ring of symmetric functions Λ = Λ(x) is the vector space spanned by all the mλ(x). This space can
be decomposed as

Λ = ⊕n≥0Λ
n (3.6)

where Λn is the space spanned by all mλ of degree n. Thus the {mλ|λ ⊢ n} form a basis for the space
Λn which is of dimension p(n) where p(n) is the number of partitions of n. It is of interest to ask if other
bases can be constructed for the space Λn.

3.4 The classical symmetric functions

Three other classical bases are well-known - some since the time of Newton.

1. The elementary symmetric functions
The n−th elementary symmetric function en is the sum over all products of n distinct variables
xi, with e0 = 1 and generally

en = m1n =
∑

i1<i2...<in

xi1 xi2 . . . xin
(3.7)
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The generating function for the en is

E(t) =
∑

n≥0

entn =
∏

i≥1

(1+xit) (3.8)

2. The complete symmetric functions
The n−th complete or homogeneous symmetric function hn is the sum of all monomials of total
degree n in the variables x1, x2, . . ., with h0 = 1 and generally

hn =
∑

|λ|=n

mλ =
∑

i1≤i2...≤in

xi1 xi2 . . . xin
(3.9)

The generating function for the hn is

H(t) =
∑

n≥0

hntn =
∏

i≥1

(1−xit)
−1 (3.10)

3. The power sum symmetric function
The n−th power sum symmetric function is

pn = mn =
∑

i≥1

xn
i (3.11)

The generating function for the pn is

P (t) =
∑

n≥1

pntn−1 =
∑

i≥1

∑

n≥1

xn
i tn−1

=
∑

i≥1

xi

1 − xit

=
∑

i≥1

d

dt
log

1

1 − xit
(3.12)

and hence

P (t) =
d

dt
log

∏

i≥1

(1 − xit)
−1

=
d

dt
log H(t)

= H
′

(t)/H(t) (3.13)

Similarly,

P (−t) =
d

dt
log E(t) = E

′

(t)/E(t) (3.14)

Equation (3.13) leads to the relationship

nhn =

n
∑

r=1

pr hn−r (3.15)

It follows from (3.13) that

H(t) = exp
∑

n≥1

pn tn/n

=
∏

n≥1

exp(pn tn/n)

=
∏

n≥1

∞
∑

mn=0

(pn tn)mn/nmn .mn! (3.15)
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and hence

H(t) =
∑

λ

z−1
λ pλ t|λ| (3.16)

where

zλ =
∏

i≥1

imi .mi! (3.17)

where mi = mi(λ) is the number of parts of λ equal to i.
Defining

ελ = (−1)|λ|−ℓ(λ) (3.18)

we can show in an exactly similar manner to that of Eq.(3.16) that

E(t) =
∑

λ

ελz−1
λ pλ t|λ| (3.19)

It then follows from Eqs.(3.16) and (3.19) that

hn =
∑

|λ|=n

z−1
λ pλ (3.20)

and

en =
∑

|λ|=n

ελz−1
λ pλ (3.21)

Exercises

3.4 Show that for n = 3

p3 = x3
1 + x3

2 + x3
3 + . . .

e3 = x1 x2 x3 + x1 x2 x4 + x2 x3 x4 + . . .

h3 = x3
1 + x3

2 + . . . + x2
1 x2 + x1 x2

2 + . . . + x1 x2 x3 + x1 x2 x4 + . . .

(3.22)

3.5 Noting Eqs. (3.8) and (3.10) and that H(t)E(−t) = 1, show that

n
∑

r=0

(−1)rhn−r er = 0 (3.23)

for n ≥ 1.

3.6 Use Eq.(3.15) to show that

en = det(h1−i+j)1≤i,j≤n (3.24)

and hence

hn = det(e1−i+j)1≤i,j≤n (3.25)

3.7 Use Eq.(3.15) to obtain the determinantal expressions

pn =

∣

∣

∣

∣

∣

∣

∣

∣

e1 1 0 . . . 0
2e2 e1 1 . . . 0
...

...
...

...
nen en−1 en−2 . . . e1

∣

∣

∣

∣

∣

∣

∣

∣

(3.26)

n!en =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p1 1 0 . . . 0
p2 p1 2 . . . 0
...

...
...

...
pn−1 pn−2 . . . . n − 1
pn pn−1 . . . . p1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.27)
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(−1)n−1pn =

∣

∣

∣

∣

∣

∣

∣

∣

h1 1 0 . . . 0
2h2 h1 1 . . . 0
...

...
...

...
nhn hn−1 hn−2 . . . h1

∣

∣

∣

∣

∣

∣

∣

∣

(3.28)

n!hn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p1 −1 0 . . . 0
p2 p1 −2 . . . 0
...

...
...

...
pn−1 pn−2 . . . . −n + 1
pn pn−1 . . . . p1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.29)

3.5 Multiplicative bases for Λn

The three types of symmetric functions, hn, en, pn, do not have enough elements to form a basis for Λn,
there must be one function for every partition λ ⊢ n. To that end in each case we form multiplicative

functions fλ so that for each λ ⊢ n

fλ = fλ1
fλ2

. . . fλℓ
(3.30)

where f = e, h, or p Thus, for example,

e21 = e2 · e1 = (x1 x2 + x1 x3 + x2 x3 + . . .)(x1 + x2 + x3 + . . .)

3.6 The Schur functions

The symmetric functions

mλ, eλ, hλ, pλ (3.31)

where λ ⊢ n each form a basis for Λn. A very important fifth basis is realised in terms of the Schur
functions, sλ, or for brevity, S−functions which may be variously defined. Combinatorially they may be
defined as

sλ(x) =
∑

T

xT (3.32)

where the summation is over all semistandard
λ−tableaux T . For example, consider the S−functions sλ in just three variables (x1, x2, x3). For λ = (2 1)
we have the eight tableaux T found earlier

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

(3.33)

Each tableaux T corresponds to a monomial xT to give

s2 1(x1, x2, x3) =x2
1 x2 + x2

1 x3 + x1 x2
2 + x1 x2 x3 + x1 x2 x3 + x1 x2

3

+ x2
2 x3 + x2 x2

3 (3.34)

We note that the monomials in Eq.(3.34) can be expressed in terms of just two symmetric monomials in
the three variables (x1, x2, x3) to give

s2 1(x1, x2, x3) = m2 1(x1, x2, x3) + 2m13(x1, x2, x3) (3.35)

In an arbitrary number of variables

s2 1(x) = m2 1(x) + 2m13(x) (3.36)

This is an example of the general result that the
S−function may be expressed as a linear combination of symmetric monomials as indeed would be
expected if the S−functions are a basis of Λn. In fact

sλ(x) =
∑

µ⊢n

Kλµmµ (3.37)
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where |λ| = n and Kλλ = 1. The Kλµ are the elements of an upper triangular matrix K known as
the Kostka matrix. K is an example of a transition matrix that relates one symmetric function basis to
another.

3.7 Calculation of the elements of the Kostka matrix

The elements Kλµ of the Kostka matrix may be readily calculated by the following algorithm :

i. Draw the frame Fλ.

ii. Form all possible semistandard tableaux that arise in numbering Fλ with µ1 ones, µ2 twos etc.

iii. Kλµ is the number of semistandard tableaux so formed.

Thus calculating K(42) (22 12) we obtain the four semistandard tableaux

1 1 2 2
3 4

1 1 2 3
2 4

1 1 2 4
2 3

1 1 3 4
2 2

and hence K(42) (22 12) = 4.

Exercises

3.8 Construct the Kostka matrix for λ, µ ⊢ 4.

3.9 Show that in the variables (x1, x2, x3) the evaluation of the determinantal ratio
∣

∣

∣

∣

∣

∣

x4
1 x2

1 1
x4

2 x2
2 1

x4
3 x2

3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

∣

∣

∣

∣

∣

∣

yields the monomial content of the S−function s21 in three variables as found in Eq.(3.36). N.B.
The above exercise is tedious by hand but trivial using MAPLE.

The last exercise is an example of the classical definition, as opposed to the equivalent combina-
torial definition given in Eq.(3.32), given first by Jacobi, namely,

sλ = sλ(x1, x2, . . . , xn) =
aλ+δ

aδ
(3.38)

where λ is a partition of length ≤ n and
δ = (n − 1, n − 2, . . . , 1, 0) with

aλ+δ = det(x
λj+n−j
i )1≤i,j≤n (3.39)

and
aδ =

∏

1≤i,j≤n

(xi − xj) = det(xn−j
i ) (3.40)

is the Vandermonde determinant. Note that the Vandermonde determinant is an alternating or antisym-

metric function. Any even power of the Vandermonde determinant is an symmetric function. This has
important applications in the interpretation of the quantum Hall effect.

3.8 Non-standard S−functions

The S−functions are symmetric functions indexed by ordered partitions λ. We shall frequently write
S−functions sλ(x) as {λ}(x) or, since we will generally consider the number of variables to be unre-
stricted, just {λ}. As a matter of notation the partitions will normally be written without spacing or
commas separating the parts where λi ≤ 9. A space will be left after any part λi ≥ 10. Thus we write
{12, 11, 9, 8, 3, 2, 1} ≡ {12 11 98321} While we have defined the S−function in terms of ordered par-
titions we sometimes encounter S−functions that are not in the standard form and must convert such
non-standard S−functions into standard S−functions. Inspection of the determinantal
forms of the S−function leads to the establishment of the following modification rules :

{λ1, λ2, . . . ,−λℓ} = 0 (3.41)
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{λ1, . . . , λi, λi+1, . . . , λℓ} = −{λ1, . . . , λi+1 − 1, λi + 1, . . . , λℓ}

(3.42)

{λ} = 0 if λi+1 = λi + 1 (3.43)

Repeated application of the above three rules will reduce any non-standard S−function to either zero or
to a signed standard S−function. In the process of using the above rules trailing zero parts are omitted

Exercise

3.10 Show that

{24} = −{32}, {141} = −{321}

{14 − 25 − 14} = −{332}

{3042} = 0, {3043} = {322}

3.9 Skew S−functions

The combinatorial definition given for S−functions in Eq.(3.32) is equally valid for skew tableaux and can
hence be used to define skew S−functions sλ/µ(x) or {λ/µ}. Since the sλ/µ(x) are symmetric functions
they must be expressible in terms of S−functions sν(x) such that

sλ/µ =
∑

ν

cλ
µνsν (3.44)

It may be shown that the coefficients cλ
µν are necessarily non-negative integers and symmetric with respect

to µ and ν. The coefficients cλ
µν are commonly referred to as Littlewood-Richardson coefficients.

3.10 Slinkies and Modification Rules

In situations involving extensive use of modification rules and in particular when one is trying
to derive general formulae the use of slinkies can be very useful (KWY:King, Wybourne and Yang, J.

Phys. A: Math. Gen. 22, 4519 (1989)). (see also Chen, Garsia and Remmel, Contemp. Math. 34, 109
(1984)). A slinky of length q is a diagram of q circles joined by q − 1 links. A slinky can be folded so
as to take the shape of a continuous boundary strip of a regular Young diagram, with each of the links
eithehorizontal or vertical and its circles forming part of the boundary of such a diagram. The sign of
the slinky is defined to be (−1)r−1 where r is the number of rows occupied by the circles of the slinky,
so that r − 1 is the number of vertical links of the slinky.

The modification rules for non-standard S−functions can be implemented in terms of folding
operations of the slinkies that make up the Young diagram as follows:

1. Draw the slinky diagram corresponding to the non-standard S−function {λ1, λ2, . . . , λp}.

2. Successively, for i = 1, 2, . . . , p, while holding the starting positions of the slinkies fixed, fold
(if necessary) the i−th slinky of length λi into the shape of the unique standard continuous
boundary strip such that the first i rows of the resulting diagram constitute a regular Young
diagram. If this is not possible then {λ} = 0. Otherwise we obtain, after folding the last slinky,
the regular Young diagram corresponding to some standard S−function {µ}. The final result is
then {λ} = (−1)v{µ} where v is the total number of vertical links in the diagram.
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We illustrate the application of the method of slinkies with two examples.

© © © ©

•

•

© © © ©

© © © ©

© ©

©

©

{4004} ⇒ {4211}

© © © © © ©

•

© © © © ©

© © ©

©

•

© © © © © © ©

•

© © © © © ©

© © © ©

© © ©

© © ©

© © ©

© ©

©

•

{60531070} ⇒ {64333210}

The principal application of the slinky method is to the expansion of symmetric generating
functions as a sum of S−functions. Thus, for example, one (KWY) can show that

∏

i

(1 + xi − xi2) =

∞
∑

q,r=0

(−1)qfr+1{2
q1r}

where fr+1 is the (r + 1)−th Fibonacci number.

Exercises

3.11 Show that

{24} = −{32}, {141} = −{321}, {3042} = 0, {3043} = +{322}, {14−25−14} = −{332}

3.12 Extend the slinky algorithm to include the possibility of negative parts and then show that
{14 − 25 − 14} = −{332}.
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3.13 Use the method of slinkies to show that

{60531070} = {643321} and {61131090} = 0

General Remarks concerning S−functions

The S−functions are symmetric functions and form an integral basis for the ring of symmetric
functions and hence may be expressed in terms of the classical symmetric functions eλ, hλ, mλ, fλ.
Transition matrices can be defined for taking one from members of one basis to another. The transition
matrices can be expressed in terms of the Kostka matrix Kλµ and the transposition matrix

Jλµ =

{

1, ifλ̃ = µ;
0. otherwise

(59)

The relevant transition matrices are tabulated in Macdonald (p56). These matrices all involve integers
only.

The elementary and homogeneous symmetric functions en and hn are special cases of S−functions
, namely,

en ≡ {1n} hn ≡ {n} (3.45)

S−functions arise in many situations. In the next few lectures we shall explore some of their
properties that are relevant to applications in physics an chemistry. To proceed to these we must first
consider the Littlewood-Richardson rule and then discuss the role of S−functions in the character theory
of the symmetric group S(n) and the unitary group U(n).


