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With the odd number five strange natures laws

Plays many freaks nor once mistakes the cause

And in the cowslap peeps this very day

Five spots appear which time neer wears away

Nor once mistakes the counting - look within

Each peep and five nor more nor less is seen

And trailing bindweed with its pinky cup

Five lines of paler hue goes streaking up

And birds a many keep the rule alive

And lay five eggs nor more nor less then five

And flowers how many own that mystic power

With five leaves making up the flower

John Clare ˜ 1821

2.1 Permutations and the Symmetric Group

Permutations play an important role in the physics of identical particles. A permutation leads to a
reordering of a sequence of objects. We can place n objects in the natural number ordering 1, 2, . . . , n.
Any other ordering can be discussed in terms of this ordering and can be specified in a two line notation

1 2 . . . n

π(1) π(2) . . . π(n)
(2.1)

For n = 3 we have the six permutations
(

1 2 3
1 2 3

) (

1 2 3
2 1 3

) (

1 2 3
1 3 2

)

(

1 2 3
3 2 1

) (

1 2 3
3 1 2

) (

1 2 3
2 3 1

)

(2.2)

Permutations can be multiplied working from right to left. Thus
(

1 2 3
3 1 2

)

×

(

1 2 3
2 3 1

)

=

(

1 2 3
1 2 3

)

The six permutations in (2.2) satisfy the following properties:

1. There is an identity element

(

1 2 3
1 2 3

)

.

2. Every element has an inverse among the set of elements.

2. The product of any two elements yields elements of the set.

4. The elements satisfy the associativity condition a(bc) = (ab)c. These conditions establish that the
permutations form a group. In general the n! permutations form the elements of the symmetric

group Sn.

Exercise 2.1 Construct a multiplication table (The Cayley Table) for the six permutations given in
(2.2) and verify that the set of six permutations form a group.

Exercise 2.2 Inspect your Cayley table and see what subsets of the elements satisfy the four group
axioms and thus form a subgroup of S6.
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2.2 Cycle Structure of Permutations

It is useful to express permutations as a cycle structure. A cycle (i, j, k, . . . , l) is interpreted as i → j, j → k

and finally l → i. Thus our six permutations have the cycle structures

(1)(2)(3), (1, 2)(3), (1)(2, 3), (1, 3)(2), (1, 3, 2), (1, 2, 3) (2.3)

The elements within a cycle can be cyclically permuted and the order of the cycles is irrelevant. Thus
(123)(45) ≡ (54)(312).

A k-cycle or cycle of length k contains k elements. It is useful to organise cycles into types or classes.
We shall designate the cycle type of a permutation π by

(1m12m2 . . . , nmn) (2.4)

where mk is the number of cycles of length k in the cycle representation of the permutation π.

For S4 there are five cycle types

(14), (12 21), (22), (11 31), (41) (2.5)

Normally exponents of unity are omitted and Eq.(2.5) written as

(14), (122), (22), (13), (4) (2.6)

Cycle types may be equally well labelled by ordered partitions of the integer n

λ = (λ1λ2 . . . λℓ) (2.6)

where the λi are weakly decreasing and
ℓ

∑

i=1

λi = n (2.7)

The partition is said to be of length ℓλ and of weight wλ = n. In terms of partitions the cycle types for
S5 are

(15), (213), (221), (32), (312), (41), (5) (2.8)

2.3 Conjugacy Classes of Sn

In any group G the elements g and h are conjugates if

g = khk−1 for some k ∈ G (2.9)

The set of all elements conjugate to a given g is called the conjugacy class of g which we denote as Kg.

Exercises

2.3 Show that for S4 there are five conjugacy classes that may be labelled by the five partitions of
the integer 4.

2.4 Show that the permutations, expressed in cycles, with cycles of length one suppressed, divide
among the conjugacy classes as

(14) ⊃e

(212) ⊃(12), (13), (14), (23), (24), (34)

(22) ⊃(12)(34), (13)(24), (14)(23)

(31) ⊃(123), (124), (132), (134), (142)

(143), (234), (243)

(4) ⊃(1234), (1243), (1342), (1432) (2.10)

In general two permutations are in the same conjugacy class if, and only if, they are of the same
cycle type. The number of classes of Sn is equal the number of partitions of the integer n.
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If λ = (1m12m2 . . . nmn) then the number of permutations kλ in the class (λ) of Sn is

kλ =
n!

1m1m1!2m2m2! . . . nmnmn!
(2.11)

2.4 The Cayley Table for S3

e (12) (13) (23) (132) (123)

e e (12) (13) (23) (132) (123)

(12) (12) e (132) (123) (13) (23)

(13) (13) (123) e (132) (23) (12)

(23) (23) (132) (123) e (12) (13)

(132) (132) (23) (12) (13) (123) e

(123) (123) (13) (23) (12) e (132)

2.5 Transpositions and cycles of Sn

1. A cycle of order two is termed a transposition.

2. A transposition (i, i + 1) is termed an adjacent transposition.

3. The entire symmetric group Sn can be generated (or given a presentation in terms of the set of
adjacent transpositions

(1 2), (2 3), . . . , (n − 1 n) (2.12)

If π = τ1τ2 . . . τk, where the τi are transpositions then the sign of π is defined to be

sgn(π) = (−1)k (2.13)

If the number of cycles of even order is even then the permutation is even or positive; if it is odd

then the permutation is odd or negative.

2.6 The Presentation of Sn

Let us designate an adjacent transposition by

si = (i, i + 1) for i = 1, 2, . . . , n − 1 (2.14)

then we can give a presentation of the symmetric group Sn in terms of the si via the following three
relations:-

s2
i = 1 for i = 1, 2, . . . , n − 1 (2.15a)

sisi+1si = si+1sisi+1 for i = 1, 2, . . . , n − 2 (2.15b)

sisj = sjsi for |i − j| ≥ 2 (2.15c)

Every permutation π in Sn can be expressed as a reduced word of minimal length ℓ(π) in the si.

Exercise

2.5 Verify the last sentence in the case of S3

2.7 Note on Hecke algebra Hn(q) of type An−1

We can q−deform the presentation of Sn to give the complex Hecke algebra Hn(q), with q an arbitrary
but fixed complex parameter, generated by gi with i = 1, 2, . . . , n − 1 subject to the relations:

g2
i = (q − 1)gi + q for i = 1, 2, . . . , n − 1 (2.16a)

gigi+1gi = gi+1gigi+1 for i = 1, 2, . . . , n − 2 (2.16b)

gigj = gjgi for |i − j| ≥ 2 (2.16c)

For q = 1 these relations are exactly those appropriate to the symmetric group Sn. There exists a map h

from Sn to Hn(q) such that h(si) = gi and h(π) = gi1gi2 . . . gim
for any permutation π = si1si2 . . . sim

∈
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Sn. The set of reduced words h(π) for all n! permutations π ∈ Sn forms a basis of Hn(q). For more details

see:- R. C. King and B. G. Wybourne, J. Phys. A: Math. Gen. 23 L1193 (1990).

2.8 The Alternating Group An

The set of even permutations form a subgroup of Sn known as the alternating group An and has precisely
half the elements of Sn i.e. (1

2
)n!.

Exercises

2.6 Show that the set of six matrices
[

1 0
0 1

] [

0 1
−1 −1

] [

−1 −1
1 0

]

[

0 1
1 0

] [

−1 −1
0 1

] [

1 0
−1 −1

]

(3.17)

with the usual rule of matrix multiplication form a group isomorphic to S3.

2.7 Show that the symmetric group Sn has two one-dimensional representations, a symmetric repre-
sentation where every element is mapped onto
unity and an antisymmetric representation where the elements are mapped onto the sign defined
in Eq. (2.13).


