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Oh, he seems like an okay person, except for being
a little strange in some wa he sits at

S. a
his desk and scribbles, scm’bglles. scribbles. Then at
the end of the day, he takes the sheets of paper he’s
scribbled on, scrunges them all up, and throws them
in the trash can

— J von Neumann’s housekeeper

m 10.1 A Hamiltonian for Quantum Dots

Experimentally the electrons of a quantum dot are contained in a parabolic potential and hence we
expect a close relationship with a many-electron system subject to a harmonic oscillator potential. The
interaction potential V (r;,7;) between particles ¢ and j moving in a two-dimensional confining potential
in the x — y plane is taken to saturate at small particle separations and to decrease quadratically with
increasing separation. In free space we would expect the interaction between two electrons to vary
as |r; —rj|7'. In a quantum dot the form of V(r;,7;) is modified by the presence of image charges.
The wavefunctions of the electrons confined in the quantum dots have a small but finite extent in the
z—direction perpendicular to the z —y plane. This results in a smearing of the electron charges along the
z—direction. As a result the interparticle repulsion tends to saturate at small distances. This suggests
choosing the interaction as

1, . .
V(ri,ry) = 2Vo — §m*ﬂz|r,- —r;)? (10.1)

where m* is the electron effective mass and Vj and ) are positive parameters.

Consider an N —electron quantum dot each with a charge —e, a g—factor ¢g*, spatial coordinates r; and
spin components s ; along the z—axis. Suppose there is a magnetic field B along the z—axis. The spatial
part of the Hamiltonian can be written as

1 eA 1 1, )
Hspace :2—771*22: |:pi+ - :| +§m wozi:|7“i| +ZV(T¢,TJ') (102)

i<j

and the spin part as
Hspin = _g*,UfBB Z Sz, (103)
i

where the momentum and vector potential associated with the ¢ — th electron are given by

Pi = (Pa,i, Py,i) A = (Api, Ayi) (10.4)

and pp is the Bohr magneton.

The eigenstates of H will involve the product of the spatial and spin eigenstates obtained from Hpatial
and Hgp;,. The total spin projection Sy = Zi s.; will be a good quantum number. Choosing a circular
gauge A; = B(—y;/2,2;/2,0) Eqn. (10.2) becomes

1 1, 1, We
Hipace = T Zpg +5m wi(B) Z Iri|? + Z [2V0 —3m Q2|ri,rj|2] +5 ZL (10.5)
7 4 1<) i
where w3 (B) = w3 + w?/4 and w. = eB/m*c.
m 10.2 Note on Commutators and Second-quantisation

In much that follows we will need to be able to manipulate bosonic annihilation (a;) and creation operators
(a;-r). The basic bosonic commutation relations are

[aiaaj] =0, [a;f,a;[] =0, [aiaa}] = 6i,j (10'6)



These can be used to simplify expressions. As an example, consider the anticommutator {a;f,aj} =

Ta; + a;ja} and let us evaluate the commutator [{a!, a;}, ax]. Expanding out we have

a;
[ofa; + aja}, ai] = [alaj, ai] + [aj], ] (10.7)
Expanding out the first commutator we have
[ala;,ar] = alaja, — arala; (10.8)

To simplify this commutator we want to try to rearrange the first term on the right-hand-side to cancel
the second term. Using the first commutator in Eqno. (10.6) we can rearrange the first term as

a:-rajak — a;-rakaj (10.9)
and hence the right-hand-side of Eqn. (10.9) becomes

T T T ) T
a;a;0 — ARA;a; — Q;QR0; — Apa,;;

= [a, ax]a;
—~[ak, alla;

= —0i k4,

m Exercise

Show that if
Tij = %{aj,aj}
then
[Tij: TTS] = 5j,rTis - 5i,sTrj

m 10.3 The Degeneracy Group for Mesoscopic Systems

In this lecture we enlarge the concept of a degeneracy group to a dynamical group. The degeneracy
group for the isotropic harmonic oscillator was found to be SU(3). Each irreducible representation {n00}
is spanned by a set of %2(””) eigenstates of the Hamiltonian and associated with the same energy
eigenvalue E,, of the harmonic oscillator. There is one weight vector for every eigenstate. The algebra of
the degeneracy group contains a set of operators that allow us to start from any eigenstate and ladder
through the entire set of degenerate eigenstates associated with a given degenerate eigenvalue. Thus the
angular momentum ladder operators L1 take us from one |«LM) eigenstate to another |« LM + 1) but
leaving L fixed. The operators L,, L1 that generate the angular momentum group SO3 but cannot take
us from states belonging to one irreducible representation of SO3 to another. To do that we must use the
operators contained in the degeneracy algebra that lie outside of those of the angular momentum algebra.
In addition the algebra of the degeneracy group contains operators that allow us to ladder between states
of a given SU(3) multiplet changing both L and M quantum numbers but not n. These additional
operators reflect the fact that the isotropic harmonic oscillator has, like the H—atom, symmetry higher
that just rotational symmetry.

m 10.4 A Dynamical Group

We seek a dynamical group that contains the degeneracy group as a subgroup and has the energy eigen-
states belonging to a single irreducible representation. Such a group contains among its generators
operators that allow one to ladder between different irreducible representations of the degeneracy group.
The degeneracy group contains an infinite set of finite dimensional unitary irreducible representations and
hence the dynamical group must necessarily be a non-compact group with infinite dimensional unitary
irreducible representations . We now construct the dynamical group for mesoscopic quantum systems.

m 10.5 The Dynamical Group for Mesoscopic Quantum Systems

1. Assume the Hamiltonian of the N —particle system is a function of coordinate and momentum
operators of the individual particles.



2. Designate the coordinates of the r—th particle by ,; with r =1,..., N and the momentum by
pr; With i =1,...,d.

3. The associated operators X,; and P,; obey the usual Heisenberg commutation relations (We
choose units such that i = 1)

[Xriaij] = 07 [Xri7 Ps]] = iérs(sija [Priapsj] =0 (1010)
4. The (2Nd)? bilinear operators
{Xriij:XristaPriij:Prist} (10]—]—)

close under commutation. However, only
(2Nd 4+ 1)Nd of these operators are independent since

PriXy; = XyjPri — i67503 (10.12)
5. Consider the (2Nd + 1) Nd independent operators
Qrisj = %{Xri;ij}; Viisj = %{mesj},
K, isj = %{PM,PSJ'} (10.13)

They close under commutation on the non-
compact Lie algebra Sp(2Nd, R) which we can take as the dynamical algebra of our mesoscopic
N — electron system.

m 10.6 Subalgebras of the Dynamical Algebra

1. We can construct subalgebras of Sp(2Nd, R by forming subsets of the defining generators that
close under commutation. Thus, for example, the V’s close under commutation forming the
elements of the GL(Nd, R) algebra.

2. Contracting on particle or spatial indices can yield further Lie subalgebras. Thus the two sets of
operators (summing on repeated indices)

Qij = XpiXpj,  Lij = XpiPrj — Xoj P,
Kij = PriPrj
1

and
Qrs = X0i Xy, Lps = X0i Py — X5 Py,
K.s = PPy
Tys = 5(X0iPoi + XoiPri + PriXai + PuXy) (10.15)

close under commutation and separately generate the Lie algebras Sp(2d, R) and Sp(2N, R).

3. The above two algebras do not commute but the subsets {L;;} and {L,;} do separately close
under commutation with

[Lij, Lyt) = i(Lixdji — Lk + Ljn0y + Ljrds — Ljidsx)
[Lys, Liw]) = i1(Lredsu — Lrubst + LstOry — LsuOrt) (10.16)
and form the generators of the subalgebras O(d) and O(N).
4. Continuing we are led to the following possible Lie subalgebras of Sp(2Nd, R):-
Sp(2,R) x O(Nd) D Sp(2,R) x O(N) x O(d)



U(Nd) DU(N) xU(d) DU(1) x O(N) x O(d) (10.20)
Note the separation of the spatial and particle dependencies.
m 10.7 Identification of the Sp(2, R) Subgroup
Let us introduce three operators defined by

Q=X Xpi, T=XpiPri+ PiXyy, K=PPy (102]—)
and having the non-zero commutation relations
[Q,K]=2T, [Q,T]=4iQ, [K,T]=-4K (10.21)

These commutation relations are those of a three element Lie algebra. Let us first decide if the algebra
is compact or non-compact. This we may do by calculating the metric tensor

g9ij = chpchy (10.22)
where the ¢}, are the structure constants of the Lie algebra. Noting Eqn. (10.21) we have
Chx =20, Fp=4i, chp=—4i (10.23)

Recall that the structure constants are antisymmetric. We now find for the diagonal elements of the
metric tensor

9@ = 9xk =0

97T = CFo o + Chcche = —4i x —4i+ 4i x 4i = —32 (10.24)
In addition we have the off-diagonal elements
9QK = gKQ = CorChq + Corciop = 41 x —2i +2i x —4i = 16 (10.25)
and thus the complete metric tensor is represented by the matrix
Q K T
Q [0 16 O
[gij] =K|16 0 0 (10.26)

T \0 0 =32

We can produce a diagonal metric tensor by putting

1
AL = —(Q+ K 10.27
+ ﬁ(Q ) ( )
to give the Lie algebra as
[As,T] = 4iA-, [Af, A =2T (10.28)
and the metric tensor as
Ap  A_ T
Ay /=16 0 0

T 0 0 =32

We first note that the metric tensor has det |g;;| 0 and hence we can conclude that the Lie algebra is
semisimple. Furthermore the metric tensor is indefinite as required for the algebra to correspond to be
non-compact. and hence our Lie algebra is necessarily

SO(2,1) ~ Sp(2, R) (10.30)
m 10.8 Back to the Quantum Dot Hamiltonian
We can express terms in the Hamiltonian of an isotropic harmonic oscillator

1 2
Hy = 5= PriPri+ %XNXM (10.31)



in terms of the group generators of Sp(2, R) by noting that

1 1
om = g
and ) N
mw mw
TXrini = TQ
to give
1 mw?
H,=—K
2m + 2 @

Now consider our earlier Hamiltonian

space = Zpl + m UJO )Z |7"1|2 + Z |:2‘/0 — =m 92|7"l,7"j|2:| C ZLz’i
i

i<j

We can write the electron-electron interaction term for an N —electron quantum dot as

NV — 1y = P 3 (Xri — X)) (Xri — Xoi)
0 4 - T s T si
leading to
Hiypnoo = ——K + OQ—ﬁL +N(N _1V+—ZQ
space — om dme 12 0 s
with

. eB .
05 = w? + (%)2 — NQ?

(10.31)

(10.32)

(10.33)

(10.5)

(10.34)

(10.35)

The significance of these results is that the first three terms in Eqno. (10.34) have been expressed in
terms of the generators of Sp(2, R) (K, Q) and O(d) (L12) and the last term in terms of generators of the
group Sp(2N, R). A practical calculation then involves the evaluation of matrix elements of the group

generators in a harmonic oscillator basis.



