
1 Symmetri
 Fun
tions and the Symmetri
 Group 10B. G. WybourneOh, he seems like an okay person, ex
ept for beinga little strange in some ways. All day he sits athis desk and s
ribbles, s
ribbles. s
ribbles. Then atthe end of the day, he takes the sheets of paper he'ss
ribbled on, s
runges them all up, and throws themin the trash 
an| J von Neumann's housekeeper10.1 A Hamiltonian for Quantum DotsExperimentally the ele
trons of a quantum dot are 
ontained in a paraboli
 potential and hen
e weexpe
t a 
lose relationship with a many-ele
tron system subje
t to a harmoni
 os
illator potential. Theintera
tion potential V (ri; rj) between parti
les i and j moving in a two-dimensional 
on�ning potentialin the x � y plane is taken to saturate at small parti
le separations and to de
rease quadrati
ally within
reasing separation. In free spa
e we would expe
t the intera
tion between two ele
trons to varyas jri � rj j�1. In a quantum dot the form of V (ri; rj) is modi�ed by the presen
e of image 
harges.The wavefun
tions of the ele
trons 
on�ned in the quantum dots have a small but �nite extent in thez�dire
tion perpendi
ular to the x�y plane. This results in a smearing of the ele
tron 
harges along thez�dire
tion. As a result the interparti
le repulsion tends to saturate at small distan
es. This suggests
hoosing the intera
tion as V (ri; rj) = 2V0 � 12m�
2jri � rj j2 (10:1)where m� is the ele
tron e�e
tive mass and V0 and 
 are positive parameters.Consider an N�ele
tron quantum dot ea
h with a 
harge �e, a g�fa
tor g�, spatial 
oordinates ri andspin 
omponents sz;i along the z�axis. Suppose there is a magneti
 �eld B along the z�axis. The spatialpart of the Hamiltonian 
an be written asHspa
e = 12m�Xi �pi + eAi
 �2 + 12m�!20Xi jrij2 +Xi<j V (ri; rj) (10:2)and the spin part as Hspin = �g��BBXi sz;i (10:3)where the momentum and ve
tor potential asso
iated with the i� th ele
tron are given bypi = (px;i; py;i) Ai = (Ax;i; Ay;i) (10:4)and �B is the Bohr magneton.The eigenstates of H will involve the produ
t of the spatial and spin eigenstates obtained from Hspatialand Hspin. The total spin proje
tion SZ =Pi sz;i will be a good quantum number. Choosing a 
ir
ulargauge Ai = B(�yi=2; xi=2; 0) Eqn. (10.2) be
omesHspa
e = 12m�Xi p2i + 12m�!20(B)Xi jrij2 +Xi<j �2V0 � 12m�
2jri; rj j2�+ !
2 Xi Lz;i (10:5)where !20(B) = !20 + !2
=4 and !
 = eB=m�
.10.2 Note on Commutators and Se
ond-quantisationIn mu
h that follows we will need to be able to manipulate bosoni
 annihilation (ai) and 
reation operators(ayi ). The basi
 bosoni
 
ommutation relations are[ai; aj ℄ = 0; [ayi ; ayj ℄ = 0; [ai; ayj ℄ = Æi;j (10:6)



2 These 
an be used to simplify expressions. As an example, 
onsider the anti
ommutator fayi ; ajg =ayiaj + ajayi and let us evaluate the 
ommutator [fayi ; ajg; ak℄. Expanding out we have[ayiaj + ajayi ; ak℄ = [ayiaj ; ak℄ + [ajayi ; ak℄ (10:7)Expanding out the �rst 
ommutator we have[ayiaj ; ak℄ = ayiajak � akayiaj (10:8)To simplify this 
ommutator we want to try to rearrange the �rst term on the right-hand-side to 
an
elthe se
ond term. Using the �rst 
ommutator in Eqno. (10.6) we 
an rearrange the �rst term asayiajak ! ayiakaj (10:9)and hen
e the right-hand-side of Eqn. (10.9) be
omesayiajak � akayiaj ! ayiakaj � akayiaj= [ayi ; ak℄aj= �[ak; ayi ℄aj= �Æi;kajExer
iseShow that if Tij = 12fayi ; ajgthen [Tij ; Trs℄ = Æj;rTis � Æi;sTrj10.3 The Degenera
y Group for Mesos
opi
 SystemsIn this le
ture we enlarge the 
on
ept of a degenera
y group to a dynami
al group. The degenera
ygroup for the isotropi
 harmoni
 os
illator was found to be SU(3). Ea
h irredu
ible representation fn00gis spanned by a set of (n+1)(n+2)2 eigenstates of the Hamiltonian and asso
iated with the same energyeigenvalue En of the harmoni
 os
illator. There is one weight ve
tor for every eigenstate. The algebra ofthe degenera
y group 
ontains a set of operators that allow us to start from any eigenstate and ladderthrough the entire set of degenerate eigenstates asso
iated with a given degenerate eigenvalue. Thus theangular momentum ladder operators L� take us from one j�LMi eigenstate to another j�LM � 1i butleaving L �xed. The operators Lz; L� that generate the angular momentum group SO3 but 
annot takeus from states belonging to one irredu
ible representation of SO3 to another. To do that we must use theoperators 
ontained in the degenera
y algebra that lie outside of those of the angular momentum algebra.In addition the algebra of the degenera
y group 
ontains operators that allow us to ladder between statesof a given SU(3) multiplet 
hanging both L and M quantum numbers but not n. These additionaloperators re
e
t the fa
t that the isotropi
 harmoni
 os
illator has, like the H�atom, symmetry higherthat just rotational symmetry.10.4 A Dynami
al GroupWe seek a dynami
al group that 
ontains the degenera
y group as a subgroup and has the energy eigen-states belonging to a single irredu
ible representation. Su
h a group 
ontains among its generatorsoperators that allow one to ladder between di�erent irredu
ible representations of the degenera
y group.The degenera
y group 
ontains an in�nite set of �nite dimensional unitary irredu
ible representations andhen
e the dynami
al group must ne
essarily be a non-
ompa
t group with in�nite dimensional unitaryirredu
ible representations . We now 
onstru
t the dynami
al group for mesos
opi
 quantum systems.10.5 The Dynami
al Group for Mesos
opi
 Quantum Systems1. Assume the Hamiltonian of the N�parti
le system is a fun
tion of 
oordinate and momentumoperators of the individual parti
les.



3 2. Designate the 
oordinates of the r�th parti
le by xri with r = 1; : : : ; N and the momentum bypri with i = 1; : : : ; d.3. The asso
iated operators Xri and Pri obey the usual Heisenberg 
ommutation relations (We
hoose units su
h that �h = 1)[Xri; Xsj ℄ = 0; [Xri; Psj ℄ = iÆrsÆij ; [Pri; Psj ℄ = 0 (10:10)4. The (2Nd)2 bilinear operators fXriXsj ; XriPsj ; PriXsj ; PriPsjg (10:11)
lose under 
ommutation. However, only(2Nd+ 1)Nd of these operators are independent sin
ePriXsj = XsjPri � iÆrsÆij (10:12)5. Consider the (2Nd+ 1)Nd independent operatorsQrisj = 12fXri; Xsjg; Vrisj = 12fXri; Psjg;Krisj = 12fPri; Psjg (10:13)They 
lose under 
ommutation on the non-
ompa
t Lie algebra Sp(2Nd;R) whi
h we 
an take as the dynami
al algebra of our mesos
opi
N� ele
tron system.10.6 Subalgebras of the Dynami
al Algebra1. We 
an 
onstru
t subalgebras of Sp(2Nd;R by forming subsets of the de�ning generators that
lose under 
ommutation. Thus, for example, the V 's 
lose under 
ommutation forming theelements of the GL(Nd;R) algebra.2. Contra
ting on parti
le or spatial indi
es 
an yield further Lie subalgebras. Thus the two sets ofoperators (summing on repeated indi
es)Qij = XriXrj ; Lij = XriPrj �XrjPri;Kij = PriPrjTij = 12(XriPrj +XrjPri + PriXrj + PrjXri) (10:14)and Qrs = XriXsi; Lrs = XriPsi �XsiPri;Krs = PriPsiTrs = 12(XriPsi +XsiPri + PriXsi + PsiXri) (10:15)
lose under 
ommutation and separately generate the Lie algebras Sp(2d;R) and Sp(2N;R).3. The above two algebras do not 
ommute but the subsets fLijg and fLrsg do separately 
loseunder 
ommutation with[Lij ; Lkl℄ = i(LikÆjl � LilÆjk + LjkÆil + LjkÆil � LjlÆik)[Lrs; Ltu℄ = i(LrtÆsu � LruÆst + LstÆru � LsuÆrt) (10:16)and form the generators of the subalgebras O(d) and O(N).4. Continuing we are led to the following possible Lie subalgebras of Sp(2Nd;R):-Sp(2; R)�O(Nd) � Sp(2; R)�O(N)�O(d) � U(1)�O(N)�O(d) (10:17)Sp(2N;R)�O(d) � U(N)�O(d) � U(1)�O(N)�O(d) (10:18)Sp(2d)�O(N) � U(d)�O(N) � U(1)�O(d) �O(N) (10:19)



4 U(Nd) � U(N)� U(d) � U(1)�O(N) �O(d) (10:20)Note the separation of the spatial and parti
le dependen
ies.10.7 Identi�
ation of the Sp(2; R) SubgroupLet us introdu
e three operators de�ned byQ = XriXri; T = XriPri + PriXri; K = PriPri (10:21)and having the non-zero 
ommutation relations[Q;K℄ = 2iT; [Q;T ℄ = 4iQ; [K;T ℄ = �4iK (10:21)These 
ommutation relations are those of a three element Lie algebra. Let us �rst de
ide if the algebrais 
ompa
t or non-
ompa
t. This we may do by 
al
ulating the metri
 tensorgij = 
tik
kjt (10:22)where the 
tik are the stru
ture 
onstants of the Lie algebra. Noting Eqn. (10.21) we have
TQK = 2i; 
QQT = 4i; 
KKT = �4i (10:23)Re
all that the stru
ture 
onstants are antisymmetri
. We now �nd for the diagonal elements of themetri
 tensor gQQ = gKK = 0gTT = 
QTQ
QTQ + 
KTK
KTK = �4i��4i+ 4i� 4i = �32 (10:24)In addition we have the o�-diagonal elementsgQK = gKQ = 
QQT 
TKQ + 
TQK
KKT = 4i��2i+ 2i��4i = 16 (10:25)and thus the 
omplete metri
 tensor is represented by the matrix[gij ℄ = 0� Q K TQ 0 16 0K 16 0 0T 0 0 �321A (10:26)We 
an produ
e a diagonal metri
 tensor by puttingA� = 1p2(Q�K) (10:27)to give the Lie algebra as [A�; T ℄ = 4iA�; [A+; A�℄ = 2iT (10:28)and the metri
 tensor as [gij ℄ = 0� A+ A� TA+ �16 0 0A� 0 +16 0T 0 0 �321A (10:29)We �rst note that the metri
 tensor has det jgij j 6 0 and hen
e we 
an 
on
lude that the Lie algebra issemisimple. Furthermore the metri
 tensor is inde�nite as required for the algebra to 
orrespond to benon-
ompa
t. and hen
e our Lie algebra is ne
essarilySO(2; 1) � Sp(2; R) (10:30)10.8 Ba
k to the Quantum Dot HamiltonianWe 
an express terms in the Hamiltonian of an isotropi
 harmoni
 os
illatorHo = 12mPriPri + m!22 XriXri (10:31)



5 in terms of the group generators of Sp(2; R) by noting that12mPriPri = 12mK (10:31)and m!22 XriXri = m!22 Q (10:32)to give Ho = 12mK + m!22 Q (10:33)Now 
onsider our earlier HamiltonianHspa
e = 12m�Xi p2i + 12m�!20(B)Xi jrij2 +Xi<j �2V0 � 12m�
2jri; rj j2�+ !
2 Xi Lz;i (10:5)We 
an write the ele
tron-ele
tron intera
tion term for an N�ele
tron quantum dot asN(N � 1)V0 � m
24 Xrsi (Xri �Xsi)(Xri �Xsi)leading to Hspa
e = 12mK + m
202 Q� eB4m
L12 +N(N � 1)V0 + m
22 Xrs Qrs (10:34)with 
20 = !2 + ( eB2m
 )2 �N
2 (10:35)The signi�
an
e of these results is that the �rst three terms in Eqno. (10.34) have been expressed interms of the generators of Sp(2; R) (K;Q) and O(d) (L12) and the last term in terms of generators of thegroup Sp(2N;R). A pra
ti
al 
al
ulation then involves the evaluation of matrix elements of the groupgenerators in a harmoni
 os
illator basis.


