
Judd-Ofelt theory in a new light on its (almost) 40th

anniversary

L Smentek†§ B G Wybourne‡% and B A Hess, Jr$#

† Instytut Fizyki, Uniwersytet Miko laja Kopernika, ul. Grudzia̧dzka
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Abstract. The standard Judd-Ofelt theory of one photon electric

dipole transitions in fN systems is discussed in the language of the

one particle parametrization scheme. An overview of various physical

mechanisms that contribute to the Judd-Ofelt intensity parameters is

performed. The analysis of the morphology of these parameters is based

on the static model of their original derivation, dynamic model, electron

correlation third order approach, spin orbit interaction influence, and

an exotic perturbation caused by a specific mass shift. As a new aspect

of the investigations on the physical nature of f ←→ f transitions, a

transformation of the Judd-Ofelt effective operators to their relativistic

version is presented. In this approach the transition amplitude is

expressed by the effective double tensor operators, acting within the

4fN shell, and effectively representing relativistic contributions. In

particular, the relativistic form of the crystal field potential is employed,

and in addition, the interactions through the crystal field potential

within the spin-orbital space are included.
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1. Introduction

It is a common opinion that the task of reproduction of spectra of rare earth doped

materials is reduced to the problem of adjusting at most three intensity parameters

in accordance with the following expression

Sf←−i =
∑

λ=2,4,6

Ωλ | 〈Ψf || U (λ) || Ψi〉 | 2 (1)

For the vast majority of researchers that are involved in the spectroscopy of rare earth

ions this technical point of view very often defines the well-known Judd-Ofelt theory

[1,2]; for some of them however, the Judd-Ofelt theory has a broader interpretation.

Without the definition of the physical model that characterizes the Judd Ofelt

theory, expression Eq. (1) is an algebraic scheme of the parametrization of the

spectrum. ¿From such a point of view, there is no reason to limit the terms in the

summation to just those with even ranks. Actually, treating the expression in Eq. (1)

in a formal way, it is possible to introduce in an ad hoc way completely new terms for

λ odd without giving them any physical explanation. However it should be realized

that such a technical improvement of the fitting procedure (more degrees of freedom,

better adjustment) loses its identity as an extension of the original Judd Ofelt theory

as introduced by its authors in 1962.

When the parameters Ωλ in Eq. (1) are determined in a semiempirical way, and

the intensities are reproduced, one may conclude that the one particle parametrization

scheme applied for the spectrum works well; and this is the success of the Judd-Ofelt

theory.

The aim of this presentation is to answer the question about the physical

mechanisms that contribute to the intensity parameters which are determined from

Eq. (1) in a semiempirical way. The present discussion demonstrates the generality

and universality of the Judd-Ofelt theory which, in fact, goes far beyond the initial

limitations of its original derivation.

2. Non-relativistic approach

2.1. Second order effective operators

The transition amplitude defined within the standard Judd-Ofelt theory, based on

the static model, is determined by matrix elements of the effective operators

Ωλ : TJ−O = 2

odd
∑

t,p

Bt
p

even
∑

λ,q

even
∑

ℓ′

(−1)q[λ]1/2
( t 1 λ

p ρ −q

)

Aλ
t (ℓ′)

〈̺1(4f −→ ℓ′) | rt | 4f〉 〈4fN Ψ0
f | U (λ)

q | 4fN Ψ0
i 〉 (2)
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where Bt
p are the crystal field parameters, and the angular term has the form

Aλ
t (ℓ′) = [λ]1/2

{

t λ 1

f ℓ′ f

}

〈f‖C(1)‖ℓ′〉 〈ℓ′‖C(t)‖f〉 (3)

The radial integral in Eq. (2) contains the perturbed function ̺1(4f −→ ℓ′) [3] that

represents the perturbing influence of all single excitations from the 4f shell to one

electron states of ℓ′ symmetry.

When the mutual interaction between the lanthanide ion and the ligands is taken

into account, a part of intensity parameters is interpreted as the terms that represent

the so-called dynamic coupling mechanism [4],

Ωλ : Tdyn = AL
λ+1 αλ(L)〈4f | rλ | 4f〉〈f || C(λ) || f〉 Uλ

q (4)

where AL
λ+1 is a structural parameter, and αλ(L) is related to the frequency dependent

polarizability of the ligand (see [5]).

2.2. Third order effective operators

The original model of Judd and Ofelt is based on the single configuration

approximation. When the effects of electron correlation are taken into account at

the third order, the transition amplitude in general is determined by the following

effective operators

Ωλ : 1Γ ≈
odd
∑

tp

{

even
∑

λ

{(TJ−O + 1Tstat.corr.) +

δ(t, λ + 1)(Tdyn + 1Tdyn.corr.)} U (λ)(ff) (5)

where 1Tstat.corr. and 1Tdyn.corr. are the third order terms that represent the impact of

electron correlation, and they originate from the static and dynamic models.

The results of a numerical analysis demonstrated that the major part of electron

correlation effects is represented by third order one-particle effective operators [5].

The angular part of these effective operators is the same as in the case of standard

Judd-Ofelt term in Eq. (2), while the radial parts are different. For example, the

static part of the transition amplitude defined up to the third order has the form

Ωλ : 1T λt
stat =

even
∑

ℓ′

[Rt
JO(ℓ′)−Rt

HF (ℓ′ f) +
(N − 1)

2
R0

t (ℓ
′ f)]Aλ

t (ℓ′) (6)

The radial terms in Eq. (6) have the following interpretation:

Rt
JO(ℓ′) represents the standard Judd-Ofelt theory (see Eq. (2)),

Rt
HF (ℓ′ f) =< ρ1(4f → ℓ′)|rt|ρHF (4f → f) > + < ρt(4f → ℓ′)|r1|ρHF (4f →

f) >, and these terms are associated with the third-order effective operators arising

from the Hartree-Fock potential,
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R0
t (ℓ
′ f) =< ρ0(4f → f)|r1|ρt((4f → ℓ′) > + < ρ0(4f → f)|rt|ρ1((4f → ℓ′) >,

and these terms are also of third-order but they are caused by the Coulomb

operator.

The perturbed functions ρt(4f → ℓ′), ρHF (4f → f) and ρs(4f → ℓ′′) contain the

first order corrections due to the perturbing influence of single excitations from the

4f shell to all (discrete and continuum) states of ℓ′, f and ℓ′′ symmetry [3].

As an example of an exotic interaction, the mass specific shift is regarded as

perturbation affecting the transition amplitude [6]. In this particular case the third

order effective operators are also one particle object, and therefore one may conclude

that they contribute to the intensity parameters evaluated from Eq. (1),

Ωλ : 1Tmass =
1

2

all
∑

λ,q

(−1)λ−q[λ]1/2
odd
∑

t,p

Bt
p

even
∑

ℓ′

( 1 t λ

ρ p −q

)

Aλ
t (ℓ′)

(ελ + ε∗λ) T P(λ)t
mass (ℓ′) U (λ)

q (ff) (7)

where ελ and ε∗λ select even and odd values of λ, and P(λ) determines the parity of

λ. It is interesting to note that also in this particular case the angular part of the

effective operator is the same as for the standard Judd-Ofelt term (Eq. (2)) The radial

term

T P(λ)t
mass (ℓ′) = − N

3M
[(−1)λ + δ(t, 1)] RP(λ)t

mass (ℓ′) (8)

is an appropriate combination of the following radial integrals [6],

R1
1(ℓ
′) = 〈̺1(4f −→ ℓ′) | δ

δr
|4f〉

R1
2(ℓ
′) = 〈̺1(4f −→ ℓ′) |1

r
|4f〉, (9)

where the perturbed functions are the same as in the radial integrals of the standard

Judd-Ofelt theory.

Due to the asymmetry of the reduced matrix elements of ▽∗(1) that defines the

specific mass shift operator, the sum of the radial integrals does not vanish for λ

odd, and therefore also the odd rank unit tensor operators associated with ǫ∗λ in Eq.

(7) contribute to the intensity parameters. This means that, in the nomenclature of

the semiempirical approach, the standard parametrization scheme of the Judd Ofelt

theory is extended now by additional parameters that are associated with the odd

rank unit tensor operators. As a consequence, the expression in Eq. (1) should be

enriched by the terms for λ = odd.
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3. Relativistic contributions

An alternative approach to the description of f ←→ f transitions is defined within

the relativistic framework where the relativistic crystal field potential is taken as a

perturbing operator, and relativistic version of the electric dipole radiation operator

is used for the evaluation of the transition amplitude. In such a way the second

order transition amplitude is determined by the matrix elements of double but still

one-particle effective operators of the form [7],

Ωλ : T rel =
√

3
∑

tp

Bt
p [t]1/2

∑

κ1=0,1

κ1+1
∑

k1≤|κ1−1|

∑

κ2=0,1

κ2+t
∑

k2≤|κ2−t|
∑

ℓ′

ε(f + 1 + ℓ′)ε(f + t + ℓ′) Aκ1κ2

k1k2
(tℓ′)

∑

κ3=0,1

t+1
∑

k3≤|t−1|

a

κ3+k3
∑

λ≤|κ3−k3|

[λ]1/2
∑

q

(−1)κ3+k3+t−q [κ3, k3]

( 1 t λ

̺ p −q

)

{

κ2 κ3 κ1
1
2

1
2

1
2

} {

k2 k3 k1

f ℓ′ f

}







κ1 k1 1

κ2 k2 t

κ3 k3 λ







W (κ3k3)λ
q (ff) (10)

where Aκ1κ2

k1k2
(tℓ′) is defined by the angular and radial terms in the following way

Aκ1κ2

k1k2
(tℓ′) =

2
∑

i1,i2

β
1ℓ′f
κ1k1

(ji1j
′
i2

)βtfℓ′

κ2k2
(j ′i2ji1)

R1(ji1j
′
i2

) Rt(j ′i2ji1) 〈ji1||C(1)||j ′i2〉 〈j
′
i2
||C(t)||ji1〉 (11)

and i1 and i2 number j± and j ′±. The factor a in Eq. (10) is equal 2 when the parity of

appropriate ranks of operators is the same, otherwise it vanishes. The angular factors

have the form

βxℓ′ℓ
κ1k1

(ji1j
′
i2

) = (−1)κ1+k1+x [ji1 , j
′
i2

]1/2







ℓ′ ℓ k1

s s κ1

j ′i2 ji1 x







, (12)

The radial integrals contain the large and small components, and they are defined as

follows

Rx(ji1 , j
′
i2) = 〈P ji1 |rx|P j′

i2〉 + 〈Qji1 |rx|Qj′
i2〉, (13)

The reduced matrix element of the spherical tensor in Eq. (11) is a generalization of

the intra-shell case introduced by Wybourne [8], namely

〈ji1||C(x)||j ′i2〉 = (−1)ji1
+1/2 [ji1 , j

′
i2

]1/2 ε(ℓ + x + ℓ′)
( ji1 x j ′i2
−1

2
0 1

2

)

. (14)
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The double tensor operator W (κ3k3)λ(ff) acts within the spin-orbital space. It

should be mentioned that a particular part of Eq. (10) associated with W 11 (spin-

orbit interaction) has been previously included at the third order [9], while here it is

taken into account already at the second order. In addition, for κ3 = 0 in Eq. (10)

the expression is reduced to the standard effective operator of Judd and Ofelt.

Finally it should be concluded that T rel gives a new picture of the Judd-Ofelt

theory, and its relativistic origin sheds a new light onto theoretical description of

f ←→ f transitions.

4. Summary

The short review presented here demonstrates that the intensity parameters Ωλ

of the Judd-Ofelt theory are indeed more general than one might expect from their

original derivation.

The list of physical mechanisms discussed here contains:

1. crystal field influence based on the static model at second order,

2. crystal field influence based on the dynamic model at the second order,

3. electron correlation effects at the third order, and based on the static and dynamic

models,

4. spin-orbit interaction at the third order,

5. mass polarization shift at the third order,

and finally

6. relativistic effects

Do the results of ab initio calculations performed within the above scheme give

agreement with experiment, and do the contributions caused by these mechanisms

reproduce the values of Ωλ determined from the fitting procedure?

Obviously the above list of physical mechanisms is not complete yet, and

there are still some other mechanisms that have to be at least verified. At the

same time however, Judd-Ofelt theory, traditionally understood as a single particle

parametrization scheme, covers all aspects of these problematic questions.
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