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2 Chemistry Department, Vanderbilt University, Nashville, TN, USA

E-mail: smentek@phys.uni.torun.pl and bgw@phys.uni.torun.pl

Received 18 October 2000, in final form 4 January 2001

Abstract

A relativistic model of f ←→ f transitions introduced previously is completed

here by the third-order contributions caused by electron correlation. The

approach is based on the transformation of all tensor operators to their

relativistic effective form; the final effective operators that act within the 4f

shell are derived by means of the so-called partial closure. The tensorial

structure of the new effective operators, that are in general two-particle objects,

is discussed and their reduced form is analysed in the light of the standard

single-particle parametrization scheme of f ←→ f transition spectra.

1. Introduction

In the previous paper [1] (hereinafter denoted by I) a relativistic model of f ←→ f

transitions in rare earth ions in crystals was introduced. The approach was based on the

transformation of all inter-shell tensor operators to their effective relativistic form by means

of the transformation [2]

〈nℓ|rx |n′ℓ′〉〈ℓ||C(x)||ℓ′〉u(x)̺ (ℓ, ℓ
′) ∼

∑

κ1,k1

ARxw(κ1k1)x
̺ (sℓ, sℓ′) (1)

where A denotes, in a symbolic way, a coefficient that is responsible for such replacement,

Rx contains the large and small components of the appropriate wavefunctions and w is the

double-unit-tensor operator acting within the spin-orbital space (for details see equation (1)

in I).

Each operator of the third-order terms contributing to the transition amplitude has to be

transformed following the procedure described in I.

From the analysis presented in I it was concluded that the translation of the standard Judd–

Ofelt theory does not change the parametrization of f ←→ f spectra, and still, even in the

language of the relativistic approach, it is based on the one-particle scheme. However, due to

the fact that the unit-tensor operators of the Judd–Ofelt approach are replaced by the double-

unit-tensor operators, the traditional Judd–Ofelt parameters �λ are substituted by an object

that possesses an internal structure, 2�(κ3k3)λ, where the superscript shows that the approach in
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I includes the terms of second order. Thus, within the relativistic approach, of second order,

the line strength of the f ←→ f transition is determined by the reduced matrix element of a

W operator weighted by the newly defined parameters,

Sf←i =
all

∑

λ

∣

∣

∣

∣

∑

κ3k3

2�(κ3k3)λ〈�f ||W
(κ3k3)λ||�i〉

∣

∣

∣

∣

2

(2)

where λ is even or odd; the latter terms are new in comparison to the standard non-relativistic

Judd–Ofelt approach, and they create a possibility of a better description of difficult cases, and

make the theoretical description of transitions such as 0 ←→ 1 possible.

It is seen from equation (2) that the number of parameters is increased, and instead of at

most three standard Judd–Ofelt parameters �λ for λ = 2, 4 and 6 in the present approach,

there are 24 parameters in total, among which 12 are associated with even λ (see table 1 in I).

The aim of the present investigation is to introduce the third-order contributions to the

transition amplitude that represent the perturbing influence of electron correlation effects. In

such a way the single-configuration approximation of the second-order relativistic approach

presented in I is broken, and additional effective operators contributing to the transition

amplitude are introduced. This extension of the model of the theoretical description of

f ←→ f transitions is motivated by numerical evidence of the very strong impact of electron

correlation that has been observed in the case of the non-relativistic third-order model.

2. Third-order approach

The third-order terms contributing to the transition amplitude have the general form of a triple

product of matrix elements, that differ from each other by the sequence of various operators,

for example

Ŵ3
VDV =

∑

Xx

∑

Bb

〈�0
f |PVcorrQ|Bb〉〈Bb|D(1)̺ |Xx〉〈Xx|QVCFP |�0

i 〉/(E
0
i − E0

Bb)(E
0
i − E0

Xx)

(3)

where Vcorr represents the non-central part of the Coulomb interaction operator that is included

in the Hamiltonian as a second perturbing operator, in addition to VCF; Bb and Xx denote the

states of excited configurations B and X that are of the same and opposite parity to the parity

of 4f N . The counterpart terms for the expression defined in equation (3) are a triple product

of matrix elements with the positions of Vcorr and VCF interchanged. In order to complete

the list of all third-order terms contributing to the transition amplitude, the terms arising from

the corrections �11, in the matrix elements with �0, also should be taken into account (see

equation (25) in [3]).

3. Relativistic effective operators

The operators in equation (3) (as well as in the other perturbing expressions for the third-order

contributions) have to be replaced by their relativistic effective form [1,2], and partial closure

has to be performed. As a result, in the particular case of the term defined in equation (3),

the effective operator that is associated with the Coulomb potential has the form (without the

energy denominators),

T rel
corr =

√
3

∑

tp

B tp[t]1/2
∑

s

∑

ℓ′,ℓ′′

εsε
∗
t εℓ′ε

∗
ℓ′′

∑

κ1,k1

∑

κ2,k2

∑

κ3,k3

∑

κ4,k4

A
κ1κ2κ3κ4

k1k2k3k4
(stℓ′′ℓ′)
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×
∑

λ,q

(−1)t−q[s, λ]
1
2

(

1 t λ

̺ p −q

)

∑

κ5k5

[κ5, k5]

×
{

κ2 κ5 κ1
1
2

1
2

1
2

} {

k2 k5 k1

ℓ′′ ℓ′ f

}

{

κ1 k1 1

κ2 k2 t

κ5 k5 λ

}

×
∑

x

(−1)x+λ[x]
1
2

∑

κ6k6

(−1)κ6+k6+1[κ6, k6]

×
{

κ5 κ6 κ4
1
2

1
2

1
2

} {

k5 k6 k4

f ℓ′′ f

}

{

κ4 k4 s

κ5 k5 λ

κ6 k6 x

}

×
∑

i<j

[w
(κ3k3)s
i (ff )× w(κ6k6)x

j (ff )](λ) (4)

where A
κ1κ2κ3κ4

k1k2k3k4
(stℓ′′ℓ′) is defined by the angular and radial terms in the following way:

A
κ1κ2κ3κ4

k1k2k3k4
(stℓ′′ℓ′) =

2
∑

i1,i2

2
∑

i3,i4

β
sff

κ3k3
(ji3ji3)β

sℓ′′f
κ4k4

(ji1j
′′
i4
)β1ℓ′ℓ′′

κ1k1
(j ′′
i4
j ′
i2
)β
tf ℓ′

κ2k2
(j ′
i2
ji1)

×Rs(ji3ji1ji3j
′′
i2
)R1(j ′′

i4
j ′
i2
)Rt (j ′

i2
ji1)

×〈ji3 ||C
(s)||ji3〉〈ji1 ||C

(s)||j ′′
i4
〉〈j ′′

i4
||C(1)||j ′

i2
〉〈j ′

i2
||C(t)||ji1〉 (5)

and i1, i2, i3 and i4 number j± and j ′
±. This factor describes the transformation of the initial

operators to their relativistic effective form, and each pair of κk is associated with one of them.

Indeed, at third order there are four operators in total, since the contribution is expressed by a

triple product of matrix elements, and one of them contains the Coulomb interaction potential

that is a scalar product of two spherical tensors.

The angular terms β originate from the transformation from LS coupling to jj coupling

that is required for all relativistic investigations; this part of the procedure is reflected by the

structure of the 9-j symbol in the definition of β, namely,

βxℓ
′ℓ

κ1k1
(ji1j

′
i2
) = (−1)κ1+k1+x[ji1 , j

′
i2

]1/2

{

ℓ′ ℓ k1

s s κ1

j ′
i2

ji1 x

}

. (6)

In fact the whole procedure associated with the transformation of each operator to its relativistic

form is described by the indices of β. Namely, the inter-shell operator of rank x is replaced

by a tensor operator with ranks κ1k1 (that are coupled together to x). Furthermore, the initial

operator acts between shells ℓ and ℓ′, while after the transformation the resulting operator is

still an inter-shell object, but it acts between the shells defined within the jj coupling scheme.

The radial integrals contain the large and small components, and they are defined by

equation (3) of I. The reduced matrix element of the spherical tensor evaluated with the

functions defined within the jj coupling is presented in equation (4) of I.

It is seen from equation (4) that the third-order relativistic contributions that involve the

perturbing influence of the Coulomb interaction are associated with two particle operators

acting within the spin–orbital space. In the non-relativistic electron correlation approach the

third-order operators are expressed by the tensorial product of unit-tensor operators U while

here, since the active space is extended by spin, there is a tensorial product of double-tensor

operators. In fact, the operators in equation (4) are doubly effective, since the first step of the

translation of intensity theory to the language of relativity is to construct the operators that

are relativistic in an effective way (factor A, in equation (1)). The next step is to perform the

so-called partial closure to obtain the effective operators in the sense of their action within
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the space spanned by the wavefunctions of 4f N configuration (the 6-j and 9-j symbols in

equation (4)).

When certain ranks in the effective operators in equation (4) are set to zero, the third-order

contributions to the transition amplitude are determined by the one-particle double-tensor

operators similarly as in the case of the second-order terms. For example, with κ6 = k6 = 0

T rel
corr has the form

T rel
corr(x = 0) �⇒

√
3

√
2[ℓ]1/2

∑

tp

B tp[t]1/2
even
∑

λ,q

[λ]1/2(−1)t−q
∑

ℓ′,ℓ′′

ε∗
t εℓ′ε

∗
ℓ′′

×
∑

κ1,k1

∑

κ2,k2

∑

κ3,k3

∑

κ4,k4

A
κ1κ2κ3κ4

k1k2k3k4
(λtℓ′′ℓ′)

(

1 t λ

̺ p −q

)

×
{

κ2 κ4 κ1
1
2

1
2

1
2

} {

k2 k4 k1

ℓ′′ ℓ′ f

}

{

κ1 k1 1

κ2 k2 t

κ4 k4 λ

}

W (κ3k3)λ(ff ). (7)

The effective operators in equation (7) have a structure similar to the relativistic version

of the second-order contributions defined by equation (12) in I. The only difference between

the two expressions lies in the replacement of A
κ1κ2

k1k2
in equation (12) of I by A

κ1κ2κ3κ4

k1k2k3k4
. This

modification is obviously caused by the fact that at the third order there are four initial operators

to be coupled together, and for each one there is a pair of new ranks (κk) introduced (two

spherical tensors form the definition of Coulomb interaction, crystal field potential and electric

dipole radiation operator); at the same time at the second order there are only two operators

that have to be transformed to their relativistic forms, and therefore there are two sets of new

ranks.

There is another origin of the one-particle effective operators contributing to the transition

amplitude at the third order. When in equation (3) the Hartree–Fock potential for Vcorr is

inserted (in accordance with the definition of the electron correlation operator), then the

effective operator has the form

T rel
HF =

√
3

∑

tp

B tp[t]1/2
∑

ℓ′,ℓ′′

δ(ℓ′′, f )ε∗
t εℓ′

∑

κ1,k1

∑

κ2,k2

∑

κ3,k3

δ(κ1, k1)A
κ1κ2κ3

k1k2k3
(0tℓ′′ℓ′)

×
all
∑

λ,q

(−1)t−q[λ]
1
2 [k1]−

1
2

(

1 t λ

̺ p −q

)

∑

κ5k5

[κ5, k5]

×
{

κ2 κ5 κ1
1
2

1
2

1
2

} {

k2 k5 k1

f ℓ′′ ℓ′

} {

κ2 k2 1

k5 κ5 k1

}

×
∑

κ6k6

(−1)κ6+k6+k5 [κ6, k6]

{

κ3 κ6 κ5
1
2

1
2

1
2

} {

k3 k6 k5

f ℓ′ f

}

×

{

κ5 k5 1

κ3 k3 t

κ6 k6 λ

}

W (κ6k6)λ(ff ) (8)

where δ(ℓ′′, f ) results from the fact that the Hartree–Fock potential is associated with the

spherical tensor of rank zero; δ(κ3, k3) is also a result of the latter, that is taken into account for

the reduction of β (defined in equation (6)) associated with the transformation of the Hartree–

Fock potential to its relativistic form. In addition, the third 6-j symbol in equation (8) results

from the reduction of the 9-j coefficient that originates from the coupling of the zero-order

double-tensor operator (it represents the Hartree–Fock potential) with the relativistic electric

dipole radiation operator.
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The transformation factor in this particular case, where there are three operators under

consideration, has a general form

A
κ1κ2κ3

k1k2k3
(xtℓ′′ℓ′) =

2
∑

i1,i2,i3

β
xℓ′′f
κ3k3

(ji1j
′′
i3
)β1ℓ′ℓ′′

κ1k1
(j ′′
i3
j ′
i2
)β
tf ℓ′

κ2k2
(j ′
i2
ji1)

×RHF(ji1j
′′
i3
)R1(j ′′

i3
j ′
i2
)Rt (j ′

i2
ji1)

×〈ji1 ||C
(x)||j ′′

i3
〉〈j ′′

i3
||C(1)||j ′

i2
〉〈j ′

i2
||C(t)||ji1〉. (9)

It is interesting to mention that when the appropriate ranks associated with the spin part

of each operator are set to zero, the effective operators are reduced to their non-relativistic

form analysed previously. This property demonstrates that the approach presented here is well

defined and the expressions discussed originate from a well established background.

4. Discussion

In the present discussion the standard non-relativistic parametrization of the 4f N ion spectrum

is replaced by a more general expression that represents the interactions within the spin–orbital

space, namely

Sf←i =
∑

λ

∣

∣

∣

∣

∑

κ3k3

�(κ3k3)λ〈�f ||W
(κ3k3)λ||�i〉

∣

∣

∣

∣

2

.

The parameters�(κ3k3)λ contain, in addition to second-order terms that represent the interaction

via the crystal field potential, 2�(κ3k3)λ from equation (2), also the third-order contributions

caused by electron correlation, 3�(κ3k3)λ. The number of parameters that contain electron

correlation effects is the same as at the second order, since no new objects of unusual tensorial

structure are obtained at the third order. This conclusion is based on the assumption that

the third-order contributions associated with the two-particle operators, similarly to the case

of non-relativistic approach, are relatively unimportant. However, in order to consider this

assumption as a justified approximation, the relative magnitudes of the various terms have

to be evaluated numerically. Finally, it should be pointed out that the selection rules for the

non-vanishing matrix elements that contribute to the transition amplitude are the same at the

second and third order, but at the same time they are different from those of the non-relativistic

model. The main difference is caused by the fact that, in general, the final ranks, λ, of the

effective operators may have both even and odd values.

Due to the change of the selection rules it is possible now to describe theoretically such

transitions that are forbidden by a standard non-relativistic approach. Indeed, due to the

selection rules for the non-vanishing matrix element of unit-tensor operator U , the amplitude

of the transition 0 −→ 0 defined within the standard Judd–Ofelt theory vanishes. In the

language of the relativistic approach, and in accordance with equation (2), the amplitude of

this transition is determined by the following expression:

T0−→0 = �(11)0〈0||W (11)0||0〉.

The operator in the above matrix element represents the spin–orbit interaction. It should be

noted, however, that the amplitude of this unusual transition does not vanish only for such

symmetries for which in the expansion of the crystal field potential the term with the rank

t = 1 exists. In fact, this is the case of C2v symmetry, and the most interesting electric dipole

transitions 0 −→ 0 are observed in Eu in the host of this very symmetry.



630 L Smentek and B G Wybourne

The other special transition 0 −→ 1 is not allowed by the required parity of ranks of

effective operators in the standard Judd–Ofelt theory. In the present approach, the transition

amplitude is determined by three components, namely,

T0−→1 = �(01)1〈1||W (01)1||0〉 +�(10)1〈1||W (10)1||0〉 +�(11)1〈1||W (11)1||0〉.

Inspection of the expressions for the third-order contributions shows that the Coulomb

interaction potential does not contribute to the transition amplitude of this transition since

only the even-rank effective operators are defined in equation (7). At the same time the

effective operators associated with the Hartree–Fock potential, as defined by equation (8), do

contribute to the transition amplitude of the 0 −→ 1 transition.

In order to relate the newly introduced parameters to those of the standard Judd–Ofelt

approach, it is convenient to define the ratio of reduced matrix elements (introduced in [4])

X(κt)k(�,� ′) = 〈ℓN [αSL]J ||W (κt)k||ℓN [α′S ′L′]J ′〉/〈ℓN [αSL]J ||U (k)||ℓN [α′S ′L′]J ′〉

for all the reduced matrix elements of U �= 0. In such a way the basic expression of the

Judd–Ofelt theory

Sf←i =
∑

λ

�λ|〈�f ||Uλ||�i〉|2

where �λ represents various interactions within the orbital space [5], is generalized in the

following way:

S
rel
f←i =

∑

λ

�rel
λ (�f�i)|〈�f ||U

λ||�i〉|2

where

�rel
λ (�f�i) =

(

∑

κ3k3

�(κ3k3)λX
(κ3k3)λ(�f , �i)

)2

.

The parameters �rel
λ (�f�i) are new objects and they depend on the states involved in the

described process. In this sense the universality of the non-relativistic parametrization scheme

is lost when the relativistic effects are included. However, it is demonstrated here that the

f ←→ f spectra are still parametrized within the single-particle scheme.
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