Squares of S—functions of Special shapes
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Abstract. Three specific problems are introduced and solved. The first
is to determine the number of times the adjoint representation of SU,
occurs in the Kronecker square of a self-contragredientrepresentation.
The second is to determine the number of times the adjoint appears in
the symmetric part of the square with the third being the number of
times the adjoint appears in the antisymmetric part. These problems
are solved by recasting them as three problems concerning the squares of
self-complementary S—functions and an equivalent adjoint S—function

of a particular shape.

Submitted to J. Phys. A: Math. Gen.
Date: 10 February 1996

PACS number(s): 02.00,02.20

§ E-mail: mfmy@ecom4.ecn.bgu.edu

§ E-mail: bgw@phys.uni.torun.pl



1. Introduction

Problems in physics and mathematics can often be expressed in terms of ordered
partitions of integers associated with special shapes and special types of Schur
functions (S—functions). In this paper we study a problem that arose in the study of
properties of the real representations of the groups SU,. The entire problem may be
recast as a particular problem in the theory of S—functions. We shall first introduce
some definitions and then give a precise statement of the S—function problem followed
by its solution. Finally we relate the results to irreducible representations (irreps)
of the special unitary groups SU,. Throughout this paper we follow the notations
described in Macdonald’s book (Macdonald 1979).

2. Some definitions

Let A = (A1, Ag, ..., A¢) be an ordered partition such that (Ay > XAy > ... > Ay > 0),
possibly with trailing zeros to make the total number of parts of A equal to a positive
integer n. Such a partition may be inscribed in a box B = (A}) having A; columns

and n rows as illustrated for the particular case of the partition (4210).

The cells in the lower portion of B not occupied by those of A describe the shape of

a partition A° (after rotation by 7) which we shall term the complement of A where
AC:(Al—An,Al—An_l,...,O) (1)

A partition A\*¢ will be said to self-complementary if A = A°. In that case the box B
involves two equal parts (to within a rotation by ) as shown below for the partition

(6510).

We may associate with any self-complementary partition A*¢ an adjoint equivalent
partition A*° such that

A = (/\1 + 17 /\7;_27 /\1 - 1) (2)



of length ((A\*°) = n and weight |A*¢| = 2|A*°|. Thus A\*® = (6510) is associated with
the adjoint equivalent partition A*¢ = (7665).
The shape of A\*° for a given A’ is obtained by the simple procedure:-
1) draw the A\ X n box B.
2) add one cell to the first row of B.
3) delete the South-Eastern corner cell of B.
The shape for A% = (7665) is illustrated below.

3. Statement of the problem

Let the S—function indexed by the partition A be denoted by {A}. Denote the
coefficient of {\} in the expansion of a symmetric function F by (F,{A}). The three

problems to be considered involve the evaluation of the following non-negative integers

(A - {3 A7) (1)
({2} o {7}, {A")) (1T)
{17} o {A 3 {A ) (I11)

4. Some propositions

The explicit evaluation of (I) can be made as follows:
Tt is known that ({\}- {si}, {(71) = ({0}, (v b/ 4a)
To find the coefficient, we

a) draw the shape \*°/\*°

b) fill the shape with A:° copies of ¢ for 1 < i < L(AX*°), such that the numbers must
be weakly increasing from left to right for any row and strictly increasing from top
to bottom for any column.

¢) further, if the letters are read from right to left, row by row, then the word must
be a lattice permutation.
Thus for A*¢ = (11 8865330) we obtain the five numberings below to give

({11 88653301} - {11 8865330}, {12 11° 10}) = 5



HEREREN HanlNRNNN L
11112 11111
21213 2122
T[1]3]3 4] 112|333
N L[2[2]4]4]5] N L[ 2[3]4]4][4]
11112133556 111121314555
212131414667 21213|14]15|6|616
1111334 |5|5|7|7 1111|334 |5|7|7|7
L L
11171 11111
2122 2122
NN L[1[3]3]3] NN L[ 1[3]3]3]
222444‘ 1121214144
1113133555 112121313555
212141414 |16|6|6 213(3|4(4|6|616
TT[1|3[3|5]5[7|7]7] TIT[T|3[4[5]5]7|7]7]
HEREREN [ 1]
11171
2122
111|333
N L[2[2]4]4]4]
11112133555
212(13|14]4|6|6|6
11133455777

Examples such as the above suggested the following proposition:

Proposition 1.

(A} A ]) = (™) (3)

where d(A°°) is the number of distinct non-zero parts of the partition A\*°.

The above proposition comes from first noting that

{A/1}-{1} 2 d(A){A}

(with all other terms having multiplicities < 1.) and then that the shape of {\*/A*°}
decomposes into two disjoint shapes, one containing just a single cell and the other a

skew frame that has the same S—function content as {\*°/1} leading to

e/} = et {1)



and thence to the desired result of Eq. (3).
The square of an S—function {A} may be resolved into its symmetric and

antisymmetric terms by use of the power sum plethysms

2V o (A} =5 (o (A} +pr0 1A)) )
(12} o (A} = £ (p o (A} — pro {A}) (5)

If (p2o {\°},{A\**}) = 0 then

o

({2} o A1 AN ) = ({17} o A}, (A" = %HA}Z, {A"}) (6)

We may be assured that (py o {A*°},{A*¢}) = 0 if A\ has a non-null 2-core
(Littlewood 1951).

Proposition 2.

if n1s odd then A* has a non-null 2-core whereas if n 1s even then A\*® has a null
2-core.

Proof The 2-core of \*¢ is determined by the following steps:

1) Make ¢ = ((A\*°) even (adding a zero if needed).
2) Form the augmented partition, Aae by adding the staircase Ay = (. — 1,0 —

2,....3,2,1,0) to A" i.e. A% = A" 4+ A,

3) Count the number of even and odd parts of Aae, If the numbers are equal then \°°
has a null 2-core otherwise the 2-core 1s non-null.

When n is odd we find that A€ has more even than odd parts and hence the 2-core
cannot be null, conversely for n even the number of odd and even parts 1s always equal
and hence the 2-core 1s always null.

<

In the case when {A®“} has null 2-core, the coefficient (ps o {A\*°}, {A\*}) is
determined by the 2-content of {A**}(Littlewood 1951). Let ¢q,cy be the 2-content
of A\*¢ and e be the 2-sign of A*“. Then {\*“} appears in p; o {A\**} with coefficient k
and sign ¢ if

({er} e}, {X ) =k (7)

The 2-content of A*¢ is determined by
Proposition 3.
Let N = (N +1,A77% A\ — 1) with n even. If \; is even then the 2-content of \*°

o = (M;?) wnd e = (M;?) (8)

while if Ay 15 odd then the 2-content of \*¢ are

o = (A12+1> wnd e = (M;l) (9)

are

V|3
V|3

V|3
V|3




Proof
The 2-content of A" 1s obtained by reading the augmented partition \*° from right
to left and replacing the first even number by 0, the second by 2,... the & even number
by n — 2. Simailarly, the first odd number is replaced by 1, the second by 3, ..., the last
odd number by n — 1. Denote the resulting sequence by p*® Now, let
N = A U A (10)
ﬁae = ﬁzgen U ﬁz;d (11)
where Aeyen and Aogq denote the partitions made from the even and odd parts of A
respectively. Then the 2-contents of \*° are

1 Aae ~ae 1 Aae ~ae
§(Aeven - peven) and §(Aodd - podd) (12)
leading directly to the desired result.
<&
Proposition 4.
If Ay 1s even then the 2-sign of A% 1s ¢ = —1.

If Ay 15 odd then the 2-sign of A*“ ws ¢ = —1 if n = 0 mod 4 or if n = 2 mod 4
then ¢ = +1.

Proof
By definition the 2-sign is equal to (—1)"0*) where p* is as defined in Prop. §,
and inv(ny,ng, -+, ng) = Ele inv(n;), and inv(n;) = card{n; : j > 1 and n; > n;}.

This leads immediately to the proposition.
<&

Proposition 5.
If n s even, \*° D {e1} and X°° D {e2}, then,

({er} - {ea}, {A}) =1 (13)

Otherwise, the coefficient s zero.
In such a case all the S—functions of length < n — 1 arising in {c¢1} - {2} are

indexed by self-complementary partitions. The above proposition is known (Stanley

1971).

5. Final results

With the above propositions established it becomes a simple matter to solve
Problems (II) and (IIT) leading immediately to
1) If nis odd then
({2} o {A}, {A"}) = ({17} o {A}, {A"})
1
= §d(/\sc) (14)



2) If nis even and A*° 2 ¢; and ¢ then

{2} o A1 AN ) = ({17} o A7}, (A"}

1
= Zd(A*) (15)
2
3) Suppose n is even, A*° D ¢; and A*° D ¢y If Ay is odd and n = 2 mod 4, then
SC ae d ASC —I_ 1
(2} o ey, ey = 220 (16)
d(Nc) —1
() o (), ey = T a7

4) Suppose n is even, A\*° D ¢y and A*° D ey If Ay is even, or, A\; is odd and
n =0 mod 4, then

()0 (), ey = A2 (15)
() o (e, ey = 2200 (19)

We note that since the plethysm coefficients are integers, this proposition implies
that when n is odd, or, when n is even but A\*® % ¢; and ¢y, then d(A*°) must be an
even number. On the other hand, when n is even and A*° D ¢; and ¢y, then d(A*°)
must be an odd number. This result can also be verified directly by examining

the shapes of A%, ¢; and ¢,.

6. Self-contragredientand adjoint representations in SU,

The above problem was motivated by an analogous problem concerning
representations of the Lie groups of the generic type SU,. Let us recall a few
well-known properties of the irreducible representations of SU,. The inequivalent
irreducible representations of SU, may be labelled by ordered partitions of integers
involving at most n — 1 non-zero parts. Those involving n parts are equivalent to

irreps involving < (n — 1) parts via
{Al,AQ,...,An}E{Al—An,AQ—An,...,O} (20)

i.e. One can remove any number columns of length n. The generators of the group
SU, span the real adjoint representation {21"72}.

The Kronecker product {A} x {u} is equivalent to the Littlewood-Richardson
evaluation of the S—function product {\ - p} with partitions involving more than
n—parts are discarded and those with n—parts reduced to fewer than n—parts using
(19).

An irrep of SU,,, {1, As, ...}, has a contragredientpartner {A\; — A\, Ay — A\q, ...}
If

{Al,AQ,...}E{Al—An,Al—An_l,...} (21)



then the irrep {A1, A2, ...} is said to be self contragradient (sc). The irreps of SU,, are
real only if they are self-contragradient. All other irreps of SU, are complezr. Thus
the Kronecker square of an irrep {A} of SU, will yield the adjoint irrep if and only
if the irrep {A} is self-contragradient. Our problem was to determine the number
of times the adjoint representation {21"7%} occurs in the Kronecker square of a given
self-contragredientrepresentation {\*°} of SU,, and to determine the number of times it
occurs in the symmetric and antisymmetric parts of the square. The relevant results
follow directly from those found in the solution of the three S—function problems

discussed earlier simply by noting the equivalence in (20) with, for given n

e} — {21772} (22)
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