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Abstract

SCHUR is an interactive program for calculating properties of Lie groups and symmetric
functions of relevance to a wide range of problems in physics, chemistry and mathematics. The
basic operating principles of SCHUR are outlined along with examples of computations using
SCHUR.

1 Introduction

  

SCHUR is an interactive C package for calculating properties of representations of  Lie groups and
yet it is much more. SCHUR has been designed to answer questi of relevance to a wide range of problems of
special interest to physicists, chemists and mathematicians. These include not only problems directly
relating to Lie groups but also many properties of symmetric functions. The development of  SCHUR has
occurred over many years and has been driven by response to specific research problems and in the need to
make available to students a tool for learning about Lie groups by student creation of examples of
practical calculations.  

As the name of the package suggests much of the structure of  SCHUR derives from the pioneering
work of Issai Schur on symmetric functions and the representatio of matrix groups. Many persons find in
their work they need specific knowledge relating to some aspect of  Lie groups or symmetric functions and
yet do not wish to be encumbered with complex algorithms or a need to be familiar with particular
programming languages. The objective of SCHUR is to supply results with the complexity of the
algorithms fortunately hidden from view. The user is able to obtain specific results and use these results to
obtain further results in a fully interactive manner, effectively using SCHUR as a scratch pad. In using
SCHUR interactively the user is able to exploit the many commands built into SCHUR and to define his or
her own command structures. 

The basic object in SCHUR is the partition of an integer into integers. The partitions index the Schur

functions (or S−functions) which are a class of symmetric functions [15], [16]. The representations of

the compact Lie groups [10], [1] and certain of those of the non−compact groups [11] (e.g. Sp(2n,R))    
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may be uniquely labelled by certain constrained partitions of integers, as for tensor representations, or as
half−integers for spinor representations. Such a notatio is familiar to physicists in the use of Young
tableaux in describing tensors. Thus SCHUR is significantly different from programs involving weight
space constructions and Dynkin diagrams though SCHUR will give translations of partition labels into
Dynkin labels and vice versa.

The package SCHUR includes a manual of over 220 pages describing, usually with examples, every
command as well as explanatory chapters on the mathematics behind SCHUR, a detailed explanation of
notations used together with two tutorial chapters on using SCHUR. A number of examples drawn from
physics, chemistry and mathematics are included. On−line help is available. Descriptions of every
command, with an example, can be readily brought to screen.

2 The tasks of  SCHUR

Among the many tasks amenable to attack by SCHUR are the following:

 1. The calculation of Kronecker products for all compact Lie groups and for the ordinary and spin
representions of the symmetric group. Kronecker products for the unitary discrete representations

of the non−compact group Sp(2n, R) up to a user defined weight limit. Not only individual
representations but also lists of representations. List handling is a general feature of SCHUR.

 2. The calculation of branching rules with the ability to successively branch through a chain of nested

groups including certain non−compact groups involving subgroups of Sp(2n, R)  and the

metaplectic groups Mp(2n). 

 3. The calculation of properties of irreducible representations such as dimensions, second−order

Casimir and Dykin invariants, the trace of the n−th order Casimir invariants and the conversion
between partition and Dynkin labelling of representations. 

 4. The handling of direct products of several groups.

 5. The computation of a wide range of properties related to Schur function operations such as the
Littlewood−Richardson rule, inner products, skew products and plethysms as well as the inclusion of
commands for generating the terms in infinite series of Schur functions up to a user defined cutoff.

 6. The computation of properties of the symmetric Q − functions with respect to operations such as
the analogous Littlewood−Richardson rule, skew and inner products. 

 7. The standardisation of non−standard representations of groups by the use of modification
procedures. Generation of signed−sequences of non−standard labelled representations that modify
to within a sign of a chosen standard representations.

 8. Transformations between various types of symmetric functions.
 

3 Problems involving use of  SCHUR

The development of SCHUR has been research driven and as a result has involved a large range of
applications using various features of SCHUR [11], [27].

In [3] a study of spectrum−generating functions for strings and superstrings required SCHUR to

compute dimensions of representations of groups such as SO(16), E 8 , SO(32) etc as well as the terms in

certain generating functions. The study of spin representations of symmetric groups [18], S(n),

required SCHUR to form inner, skew and outer products of Q − functions and to compute Kronecker

products involving both ordinary and spin representations of S(n) .
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A study of the extension of the interacting boson model to the exceptional groups [17] required
SCHUR to be able to compute branching rules for group−subgroup combinations such as arise in the
group chains 

U(28) →SU(7) → SO(7) →(2) → SU(3) →  SO(3)

and 

U(28) →  SU(27) → E(6) → G(2) → SU(3) → SO(3)

as well as computing Kronecker products for the various groups in the chains.

An analysis of the normal forms for tensor polynomials involving the Riemann tensor [4], [26] drew

on SCHUR’s ability to compute products, skews and plethysms of S −functions. The enumeration and
counting of scalars required use of the modification rules for the full orthogonal groups. Here SCHUR’s

handling of lists of S − functions and representations of groups proved to be of particular value.

The problems associated with handling the infinite dimensional discrete unitary representations of
the non−compact Lie groups such as Sp(2n, R)  and the metaplectic groups Mp(2n) were considered in

[11] and [5], [22], [23]. These involved the full use of SCHUR to compute O(n) → S(n) branching rules,

inner and outer plethysms of S − functions, nested sets of commands, signed sequences of
representations etc. SCHUR was also used to calculate plethysms of the basic representations

of  Sp(2n, R) [7], [14] leading to hitherto unknown identities concerning infinite series of  S−functions
and new closed results for certain Sp(2n, R)  plethysms. This illustrates an important feature of
SCHUR in establishing conjectures that have then inspired efforts at formal proof construction.

The three−fold automorphisms of the group SO(8) were exploited in [25] using SCHUR to apply
the the automorphism operation to lists of representations of the group and to carry out the branching

decompositions for the different SO(8) ⊃ SO(7)⊃  G(2) embeddings.

The results reported in [19], [20] were stimulated by some initial studies using SCHUR which led to a
number of conjectures which in turn encouraged the development of formal proofs. Conversely a

conjecture [5] concerning the number of admissible Young tableaux that characterise the  S −functions

arising in the expansion of even powers of the Vandermonde determinant for N variables was disproved
as a result of the discovery of a counter example using SCHUR [20]. While the conjecture had been
shown to be correct for up to N = 5 SCHUR showed that the conjecture continued to hold for N ≤ 7  but

failed for N ≥ 8.

The study of the squares of self−complementary S −functions [27] led to a conjecture whose formal

proof then lead to the determination of the number of times the adjoint representation of SU(n)
occurs in the Kronecker square of an arbitrary self−contragredient representation and the
determination of the number of times the adjoint appears in the symmetric and antisymmetric parts of
the square. Similar studies have recently been completed for the simple Lie groups [14].

4 Input Output issues

The input of SCHUR consists of commands and integers while the output consists of written
statements and integers enclosed in a variety of brackets. SCHUR is case independent so that upper and
lower case letters may be freely used in all input statements. Spaces have no significance and may   be
inserted anywhere for clarity. Spaces or commas are mandatory between entries of the same type as for
example between two commands or two numbers.

SCHUR knows only of the existence of integers and hence all input and output of numbers is in the form
of integers. Most frequently input into SCHUR involves lists of numbers. In designing SCHUR
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considerable attention has been given to ease of input of partitions of integers and to maximise flexibility.
In reading in partitions SCHUR is unconcerned as to the order of the integers making up the partitions. In

normal usage SCHUR assumes that most partitions inputted will have parts ≤  9 in which cases the

integers may be simply entered together with no spaces required. Thus the partition "9 4 3 2 1" could be

simply entered as 94321. If a part is  ≥  10 it is entered prefixed with an exclamation sign and the part

terminated by a space or a non−digit. The usual power notation is used for partitions having repeated
parts. A partition having a negative part is entered by preceding the part by a tilde. Thus the partition
‘‘12 10 9−8754443322’’  may entered as !12!10  9 ~8754^33^22^2  or even    as

 !12 !10 9  ~8 7 5 4^3  33^2   2^2.  In each case the partition is outputted by SCHUR as 

{12  10  9 − 874^3  3^2  2 ^2   }

In the case of group representations labelled by partitions SCHUR will automatically encase the

partitions with brackets {, } if the group is a unitary, or special unitary, or symmetric group, [, ] for
orthogonal groups, <,>  for symplectic groups or (, ) for the exceptional Lie groups. For products of Lie
groups the appropriate brackets are supplied as appropriate to each of the groups in the product.

SCHUR can produce lists in response to the input of commands. Commands can also act on lists to
produce new lists. A user may nest commands inside commands with only the final output being displayed
with all the intermediate output (which may be massive) being suppressed.

5 Help files

SCHUR contains  200 help files which may be brought to screen at any time by entering ?filename.
Thus issuing the command ?help produces a list of all the help files. Issuing the command ?o produces the
following output

O_sfnProduct      

    Format:− O EXPR1,EXPR2       

     Modes:−SFN  
Definition:−Calculates the S−function outer product using the

               Littlewood−Richardson rule.     

Example:−              

         SFN>            

       −>o 21,21              
         {42} + {41^2} + {3^2} + 2{321} + {31^3} + {2^3} + {2^2 1^2}

            SFN>

6  Examples of using  SCHUR

Let us now illustrate a few of the features of SCHUR in action. In each case we have marked input with

an arrow  −  > . Issuing the command ‘‘schur’’  we obtain, apart from installation specifics, 

(If you wish to EXIT, enter END) 
(If you wish to obtain HELP, enter ?help) 

DPrep Mode (with function) 

DP>

To calculate the outer product of two lists of Schur functions we switch to the SFN mode as instructed
above to give 

−>sfn 
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Schur Function Mode   
SFN> 

−>o21+1,21+11       

       {42} + {41^2 } + {3^2 } + 2{321} + {32} + {31^3 } + {31^2 }

       + {31} + {2^3 } + {2^2 1^2 } + {2^2 1} + {2^2 } + {21^3 }     

       + {21^2 } + {21} + {1^3 } 

SFN> 

−>yhook last

2

5 4 2 1 6 3 2 1 4 3 2 5 3 1 4 3 1

2 1 2 3 2 1 3 1 2 1

1 1

6 2 1 5 2 1 4 2 1 4 3 5 2 4 2 3 2

3 2 1 3 2 4 1 3 1 2 1

2 1 2 1 2 1

1 1

5 1 4 1 3 1 3

3 2 1 2

2 1 1

1

 SFN>

 The instruction ‘‘yhook last’’ has taken the partitions obtained in the previous output ‘‘last’’  and
computed the hooklengths for every cell of the corresponding Young frame. We could have arrived at the
same final output by inputting the command sequence ‘‘yhook o21+1,21+11’’. Issuing the command

sequence ‘‘yhook wt5 o21+1,21+11’’ results in just the hooklengths for the partitions of weight  ≤  5

being output while  ‘‘yhook wt−5 o21+1,21+11’’  would give the output for partitions having exactly 5
parts.

SCHUR can calculate dimensions and other properties of irreducible representations  of groups as

illustrated below for the staircase representation of the symmetric group S(105)

−>rep 

REP mode 
REP>         

−>gr s105 

Group is S(105) 

REP> −>!14!13!12!11!10 987654321       
           {14 13 12 11 10 987654321} 

REP>         

−>dim last 

dimension= 5137825685807319573670197678030853203966327760999759
           18380865685412418054992691200  

REP>
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 SCHUR does not construct representation matrices. While the complete construction for every element
of the representation matrices for any irreducible representation of any S(n) group is known to

calculate just the diagonal elements of the matrix for the above case for an element of S(105) would
take a supercomputer many trillions of times longer than the age of the universe.

The group SO(8) has tensor representations that may be labelled by partitions of not more than 4
parts and in the case of 4 part partitions pairs of inequivalent representations occur that are
distinguished by an additional label ±. The spin representations are designated by a spin index s and a
partition into at most 4 parts. Spin representations occur in inequivalent pairs distinguished again by a

label ±. Some features of SCHUR for the group SO(8) are now shown by the results given below

REP> 

−>gr so8 

Group is SO(8) 
REP> 

−>s321+       

      [s;321]+ 

REP> 
−>prop last 

<dynkin label>(1121) 

dimension=12936   48  ⋆2nd−casimir=220   2nd−dynkin=12705
REP> 

−>prop11 

<dynkin label>(0100) 

dimension=28   48 ⋆2nd−casimir=48   2nd−dynkin=6 
REP> 

−>prod 11,s321+    

   [s;431]+ + [s;42^2]+ + [s;421^2]+ + [s;421]− + [s;42]+  

+ [s;41^2]+ + [s;3^22]+ + [s;3^21^2]+ + [s;3^21]− + [s;3^2]+  
+ [s;32^21]+ + [s;32^2]− + 4[s;321]+ +  [s;32]− + [s;31^3]+  

+ [s;31^2]− + [s;31]+ + [s;2^3]+ + [s;2^21^2]+ + [s;2^21]− 

+ [s;2^2]+ + [s;21^2]+  

 REP> 
−>prop last 

<dynkin label> (1221) + (2032) + (2130) + (2112) + (2210) + (3021)

+ (0132) + (0230) + (0212) + (0310) + (1041) + (1023) + 4(1121)

+ (1201) + (2030) + (2012) + (2110) + (0032) + (0130) + (0112)
+ (0210) + (1021) 

dimension=362208   2nd−dynkin=433356 

REP>

In the above example, we first illustrate the calculation of some of the properties of irreducible
representations  of SO(8) and then compute the Kronecker product of   two irreducible representations
and then compute the corresponding dynkin labels, dimension and second order dynkin index of the
result.

The group SO(8) has a three−fold automorphism and continuing with the above output we have the
automorphisms of the previous result given below

−>au so8,last 
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Group is SO(8)       
   [531] +  [52^2] +  [521^2]+ +  [521^2]− +  [52] +  [51^2]    

+  [432] +  [431^2]+ +  [431^2]− +  [43] +  [42^21]+ +  [42^21]−    

+  4[421] +  [41^3]+ +  [41^3]− +  [41] +  [3^21] +  [32^2]    

+  [321^2]+ +  [321^2]− +  [32] +  [31^2] 

REP>      

−>au so8,last 

Group is SO(8)       

   [s;431]− +  [s;42^2]− +  [s;421^2]− +  [s;421]+ +  [s;42]−    
+  [s;41^2]− +  [s;3^22]− +  [s;3^21^2]− +  [s;3^21]+ +  [s;3^2]−   

+  [s;32^21]− +  [s;32^2]+ +  4[s;321]− +  [s;32]+ +  [s;31^3]−    

+  [s;31^2]+ +  [s;31]− +  [s;2^3]− +  [s;2^21^2]− +  [s;2^21]+    

+  [s;2^2]− +  [s;21^2]− 

REP>
−>au so8,last 

Group is SO(8)       

   [s;431]+ +  [s;42^2]+ +  [s;421^2]+ +  [s;421]− +  [s;42]+    

+  [s;41^2]+ +  [s;3^22]+ +  [s;3^21^2]+ +  [s;3^21]− +  [s;3^2]+   
+  [s;32^21]+ +  [s;32^2]− +  4[s;321]+ +  [s;32]− +  [s;31^3]+    

+  [s;31^2]− +  [s;31]+ +  [s;2^3]+ +  [s;2^21^2]+ +  [s;2^21]−    

+  [s;2^2]+ +  [s;21^2]+ 

REP>

Note that the third application of the automorphism returns us to the original Kronecker product
output. The above examples are, for SCHUR, very simple and fast. There is no difficulty in computing
very large Kronecker products. For example SCHUR will rapidly produce the 292 distinct
representations whose sum of multiplicities total 4508, with a maximum multiplicity of 80, for the

Kronecker product [s; 4321] + ×[432] which is of total dimension 2,825,222,400. Likewise, for example,

the  E(8) product (21)×(15 76 ^5 5) ((00000010)×(5100010) in Dynkin notation) of dimension 51, 677,
377, 007, 616, 000, 000 may likewise be rapidly       resolved. Throughout this article we have limited the size
of our examples for reasons of space rather than computational capability.

SCHUR can also compute Kronecker products, plethysms and branching rules for the unitary

harmonic representations of the non−compact Lie group Sp(2N, R) up to a user defined cutoff. These
computations find important applications in physical problems related to quantum dots and to
symplectic models of nuclei. The labelling of these infinite dimensional irreducible representations  is in

terms of that of the lowest weight irreducible representation  of U(1)×U(N) arising in the

decomposition of the irreducible representation of    Sp(2N, R) under the restriction  Sp(2N, R)
 � 7   U(1)×U(N). 

REP> 

−>gr spr8 

Group is Sp(8,R) 
REP>      

−>s1;2       

  <s1;(2)> 

REP>
−>prod s1;2,1;11    

   <s2;(91)> + <s2;(82)> + <s2;(81^2 )> + 2<s2;(73)> + <s2;(721)> 
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   + <s2;(71)> + <s2;(64)> + <s2;(631)> + <s2;(62)> + <s2;(61^2 )>
   + <s2;(5^2)> + <s2;(541)> + 2<s2;(53)> + <s2;(521)> + <s2;(51)>

   + <s2;(431)> + <s2;(42)> + <s2;(41^2)> + <s2;(3^2)> +<s2;(321)>

   + <s2;(31)> + <s2;(21^2 )> 

REP> 

−>sb_tex true 
REP>      

−>last      

  \+$<2;(91)>$&$ +\ <2;(82)>$&$+ \ <2;(81^2)>$&$ + \2<2;(73)>$\cr

  \+$ + \<2;(721)>$&$ +\<2;(71)>$&$ +\<2;(64)>$&$ +\<2;(631)>$\cr 

  \+$ +\ <2;(62)>$&$ + \ <2;(61^2)>$&$ + \ <2;(5^2)>$&$ + \ <2;(541)>$\cr   

  \+$ + \ 2<2;(53)>$&$ + \ <2;(521)>$&$ + \ <2;(51)>$&$ + \ <2;(431)>$\cr   

  \+$ + \ <2;(42)>$&$ + \ <2;(41^2)>$&$ + \ <2;(3^2)>$&$ + \ <2;(321)>$\cr

  \+$ + \ <2;(31)>$&$ + \ <2;(21^2)>$\cr 

REP>

The above verbatim output illustrates that setting the Boolean  true gives TeX output in a form
suitable for setting a TeX box. Indeed we need simply to prefix the last output with the TeX statement
\setbox1 = \vbox{\settabs4\columns and add a closing parenthesis and we can print the box
with $$\box1$$  to produce the display given below

<2;(91)> +<2;(82)> +<2; (81)2 )> +2<2;(73)>

+<2;(721)> +<2;(71)> +<2;(64)> +<2;(631)>

+<2;(62)> +<2; (61)
2

)> +<2; (5)
2

)> +<2;(541)>

+2<2;(53)> +<2;(521)> +<2;(51)> +<2;(431)>

+<2;(42)> +<2; (41)2 )> +<2; (3)2)> +<2;(321)>

+<2;(31)> +<2; (21)2 )>

The following example illustrates the way in which SCHUR handles direct product groups, sets the groups
and encases the inputted partitions with brackets appropriate to the various groups.

DP>       

−>gr5su5sp8so8g2e8 

Groups are   SU(5) ⋆ Sp(8) ⋆ SO(8) ⋆ G(2) ⋆ E(8) 

DP>       

−>[4321 ⋆4321 ⋆s4321− ⋆42⋆21^7]       

      {4321}<4321>[s;4321]−(42)(21^7 ) 

DP>       
−>dim last 

Dimension = 92361051202387968 

DP>

Below is an example of the calculation of a Kronecker product for a direct product group

DP>       

−>gr2su5so8 

Groups are   SU(5) * SO(8) 

DP>       
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−>prod[21*s0−],[3*1^4−]    
  {51}[s;1^4 ]− + {51}[s;1^2 ]− + {51}[s;0]− + {42}[s;1^4 ]−  

+ {42}[s;1^2]− + {42}[s;0]− + {41^2}[s;1^4 ]− + {41^2 }[s;1^2]−

+ {41^2 }[s;0]− + {321}[s;1^4 ]− + {321}[s;1^2 ]− + {321}[s;0]−

DP>       

−>dim last 
Dimension = 392000

7 Group−subgroup branchings

SCHUR incorporates some 59 different possibilities for obtaining group−subgroup decompositions.
Many of these are unique to SCHUR and most involve algorithms that exploit the properties of Schur
functions and are, unlike the common weight space algorithms, essentially rank independent. Thus for

example if under U(N) ⇒ U(N − 1) the vector irreducible representation  {1} of  U(N) decomposes as

{1} ⇒ {1} + {0} then for an arbitrary irreducible representation   {λ } of  U(N) decomposes as 

{λ}   ⇒  {λ/M}

where M is the infinite set of Schur functions indexed by one part partitions. SCHUR generates the finite

set of the members of the M−series that can skew with the Schur function indexed by the

partition{λ }. Any Schur functions in the resultant having more than N − 1 non−zero parts are
non−standard and must be modified to produce either a null result or a standard irreducible
representation  label. In the above case the modification rule is simply to make null all Schur functions

involving partitions of more than N − 1 parts. For other group−subgroup structures more complicated
modification rules arise but these are automatically carried out in SCHUR without requiring user
intervention.

SCHUR includes branching rules for some supersymmetric groups, the various decompositions, up

to a user defined cutoff, for the non−compact groups  Sp(2N, R)) and Mp(2N) required in studies of
symplectic models of nuclei and quantum dots. Branching rules for group−subgroup combinations such

as O(N) ⇒ S(N) and S(M + N) ⇒  S(N)×S(N) are also available as well as those involving the

exceptional groups. SCHUR can branch successively through a chain of groups. A special mode, the
BRMode, is available for obtaining branching rules rapidly but without further processing. Some
examples are given below:

DP> 

−>brm 
Branch Mode 

enter branching & rule numbers 

−>2,6 

U(6) to Sp(6) 

BRM> 
−>321

<321> + <31> + < 2
2

> + < 21
2

> + <2> + < 1
2

> (1)

BRM> 
−>stop enter branching & rule numbers 

−>27,4,6 

SO(10) to SO(4) ⋆ SO(6) 
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BRM> 
−>2111

[21 ]+[ 1
2

] +   [21]_[ 1
2

] +   [2][ 1
3

]+ +   [2][ 1
3

]_ +   [2][1]

+   [ 1
2

]+[21] +   [ 1
2

]+[ 1
3

]+ +   [ 1
2

]+[ 1
3

]_ +   [ 1
2

]+[1] +   [ 1
2

]_[21]

+   [ 1
2

]_[ 1
3

]+ +   [ 1
2

]_[ 1
3

]_ +   [ 1
2

]_[1] +   [1][ 21
2

]+ +   [1][ 21
2

]_

+   [1][2] +   3[1][ 1 2] +   [1][0] +   [0][21] +   [0][ 13 ]+

+   [0][ 1 3 ]_ +   [0][1]

(2)

BRM> 

−>stop 

−>35,4,6 

OSp(4/6) to O(4) ⋆ Sp(6) 

BRM> 

−>21

[21]<0> +   [2]<1> +   [ 1 2]<1> +   [1]<2> +   [1]< 1 2 >

+   [1]<0> +   [0]<21> +   [0]<1>
(3)

BRM>       

−>stop     

enter branching & rule numbers 

−>37,4     
Sp(4,R) to Sp(2,R) * O(2) 

BRM> 

−>1;11

<2;(12)>[10] +   <2;(12)>[6] +   <2;(12)>[2] +   <2;(10)>[8]

+   <2;(10)>4 +   <2;(10)>[0]# +   <2;(8)>[6] +   <2;(8)>[2]

+   <2;(6)>4 +   <2;(6)>[0]# +   <2;(4)>[2] +   <2;(2)>[0]#

(4)

In each of the above examples the output has been set by operating SCHUR to produce TeX output. Note
that in each example SCHUR has automatically encased each      partition in brackets appropriate to each
group and all necessary modification rules have been used to produce only standard irreducible
representations . Example (3) gives an example of a branching involving the orthosymplectic group
giving the complete decomposition whereas in example (4) the output has   been truncated by setting the

highest weight of the partitions computed. In example (4) a hash sign #  has been used where required to
distinguish members of associate pairs of representations of the group O(2).

An illustration of the successive branching through a chain of groups is given below 

DP> 

−>gr e8 
Group is E(8) 

DP> −>[21^7]       

         (21^7) 

DP> 
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−>dim last 
Dimension = 248 

DP> 

−>br50gr1last 

Group is SO(16)

[ 1 2]+[s;0 ]+ (5)

DP> 

−>br27,6,10gr1last 

Groups are   SO(6) ⋆ SO(10)

[ 1
2

][0]   [1 ][1 ]   [s;0 ]+[s;0 ]+ +   [s;0 ]−[s;0 ]−  [0 ][1 ] (6)

DP> 

−>br27,6,4gr2last 

Groups are   SO(6) ⋆ SO(6) ⋆ SO(4)

[ 1
2

][0][0] +  [1][1][0] +  [1][0][1] +  [s;0 ]+[s;0 ]+[s;0 ]+

+  [s;0 ]+[s;0 ]−[s;0 ]− +  [s;0 ]− [s;0 ]+[s;0 ]− +  [s;0 ]− [s;0 ]−[s;0 ]+ +  [0][ 1
2

][0]

+  [0][0][1] +  [0][0][ 1
2

]+ +  [0][0][ 1
2

]−

(7)

DP> 

−>contract1,2last 

Groups are   SO(6) ⋆ SO(4)

[2][0] +  [ 1
3

]+[s;0 ]+ +  [ 1
3

]− [s;0 ]+ +  2[ 1
2

][s;0 ]−

+  [3][ 1
2

][0] +  2[1][1] +  2[1][s;0 ]− +  [0][ 1
2

]+

+  [0][ 1
2

]− +  2[0][s;0 ]− +  [0][0]

(8)

 In the above examples we have first computed the dimension of the fundamental representation of the

exceptional group E(8) and then made the group−subgroup restriction for E(8) ⇒ SO(16) to give the

output (5). This output then forms the input to permit the restriction SO(16) ⇒ SO(6)×SO(10)

producing output (6). Note that both spin and tensor representations arise in the output. Next the

representations of the second group, SO(10), have been restricted to the subgroup SO(6)×SO(4) to
produce the output (7). Finally an instruction is issued to carry out the reduction

SO(6)×SO(6) ⇒  SO(6) to produce the output (8) and then the dimension of the output is computed

which is found to agree with that of the initial E(8) representation (21^7).

8 Setting of  functions in SCHUR

All of the commands in the above example could be combined into a function that can be written by any
suitable text editor, or even within SCHUR, and the function read in when desired. The function could
read
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gr e8
enter rv

dim[rv1]

supoutpt false 

br50gr1[rv1] 

br27,6,10gr1last 
br27,6,4gr2last 

contract1,2last 

dim last 

stop 

where rv1 is any representation, or list of resentations, of nd the function read in when desired. The

function could read E(8).

It is possible to construct very complex functions that can be useful in many problems in group theory.
In our final example we consider the very complex formula given by King [9] for the group−subgroup
reduction U(mn) ⇒ U(m)×U(n) for mixed tensor representations of the form {µ;  λ} 

{µ; λ} = ∑
ξ, ρ, η, τ, π

(  − 1 )
wξ{(µ/ξ   ◦ ρ)/ η; (λ /ξ  ◦  τ)/η)}×{ρ/π;  τ/π}

where ◦ indicates an inner Schur function multiplication, ξ indicates the conjugation of a Schur function.
The calculation involves several sums over Schur functions and the formation of skew products of Schur
functions.

A function that carries out the task for the U(15) ⇒  U(3)×U(5)  reduction is given below. The mixed

tensor {µ; λ } is entered in terms of two Schur functions, sv1 for µ and sv2 for λ.

gr u15 
enter sv1

enter sv2 

dim[conv_s mix sv1,sv2] 

setr1conv_s sv1 
setr2conv_s sv2 

gr5u3u3u3u5u5 

rule[rv1 ⋆rv2 ⋆0⋆0⋆0]sum sk1eq conj3 
rule last ch_p3 

cont2,3sk last 

std last 

rule last sum i1eq3 

rule last sum i2eq4 
rule last sum sk1 eq sk2 

cont1,2 mix last 

std last 

rule last sum sk2 eq sk3 
cont2,3 mix last 

supoutpt false 

std last 

dim last 
stop
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Reading in the function and then running it for the representation {2; 1 2} of U(15) we obtain the
output given below

DP> 

−>readfn1’unm.br’ 
=− 

DP> 

−>fn1 

Group is U(15) 

enter sv1 
−>2 

enter sv2 

−>11 

Dimension = 12376

Groups are   U(3) ⋆ U(3) ⋆ U(3) ⋆ U(5) ⋆ U(5) 

Groups are   U(3) ⋆ U(3) ⋆ U(5)  ⋆ U(5) 

Groups are   U(3) ⋆ U(5) ⋆ U(5) 

Groups are   U(3) ⋆ U(5) 

Dimension = 12376

{2;2}{2; 1
2

} +  {2;2}{1;1} +  { 1
2

;2}{ 1
2

; 1
2

} +  { 1
2

;2}{1;1}

+  { 12 ;2}{0} +  {2; 12 }{2;2} +   {2; 12 }{1;1} +  {2; 12 }{0}      

+  {1;1}{2;2} +  {1;1}{ 12 ;2} {1;1}{2; 12 } +  {1;1}{ 1 2 ; 1 2}

+  3{1;1}{1;1} +  {1;1}{0} {0}{ 1 2;2} +  {0}{2; 1 2 }

+  {0}{1;1}

(9)

The same function could be run for other U(15) representations while other U(mn)⇒ U(m)×U(n)

group−subgroups can be run with very minor changes. For larger representations the output can become
quite voluminous. Complete details of the construction of functions are given in the SCHUR Manual.
Some further applications of SCHUR are to be found in references [8], [21], [28].

9 Concluding remarks

In the above we have given some indication of a few of the possibilities of SCHUR. It covers many
problems not available in other known packages. No package is universal. While much effort has been put
into ease of input, clarity of output and trapping of user errors we recall 

No man is wise enough to think of all the ideas that can occur to a fool.

− (Rudolph Peierls Bird of Passage, Princeton 1985)

10 Availability and further information

The SCHUR package is available as a compiled C code for UNIX and DOS operating systems for IBM
PC compatibles and work stations such as SUN, Hewlett−Packard and Silicon Graphics. The
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distribution is through S. Christensen, PO Box 16175, Chapel Hill, NC 27516 USA. Email:
steve@smc.vnet.net. Additional details are available on the WEB at

http://smc.vnet.net/Christensen.html

and at the authors WEB site at

http://www.phys.torun.pl/  ~ bgw

which contains downloadable versions of some of the papers referenced below as well as further examples
of the use of SCHUR.
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