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...Not that I aspire to complete coherence. Our mistake
18 to confuse our limitations with the bounds of pos-
sibility and clap the universe into a rationalist hat or
some other. But I may find the indications of a pattern
that will include me, even if the outer edges tail off into
1gnorance.

— William Golding, Free Fall (1959)
Abstract

Many calculations in mathematical physics seem to be-
come a jumble of seemingly unrelated numbers. However, one
can often spot patterns that can lead to new conjectures and
thence to hitherto unrecognised new theorems. A number of
specific examples will be given.
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Balmer’s Remarkable Discovery

In 1884 the Swiss school teacher, J. Balmer, learnt of the exis-
tence of three lines of the spectrum of hydrogen, H,, Hg and
Hs and noted the ratios

656.2 27

Hy/Hy = —"2 =1.3499 ~ == = 1.35
486.1 20
656.2 8

Hy/Hs = ——= =1600~ - = 1.6
410.1 5
486.1 39

Ha/Hs = —— —1.1853 ~ -2 = 1.1852

g/ Hs 410.1 97

Balmer then conjectured that the wavelength of any member
of the series would be given by

n An

3 5270 2o = 656.2nm H,
1 Tt =3 = 486.1nm Hg
5 5222 Ao = 22X = 434.0nm H,
6 5222 Ao = 3o = 410.1nm Hj
o0 Ao = 346.6nm H.

His conjecture readily reproduced the observed ratios and cor-
rectly gave the H, line. Balmer’s result, having absolutely no
theoretical foundation, was later to play a key role in Bohr’s
quantum model of the H—atom and in the subsequent devel-
opment of Schrodinger’s equation.



Spinors and the Rotation Groups

The rotation groups SO(n) play an important role in
many areas of chemistry and physics. The full rotation group
O(n) possess a basic spin representation A of degree 2[51 which
is irreducible under O(n) — SO(n) if n is odd or reducible
into a pair of conjugate irreps A4. In 1935 Brauer and Weyl
gave a complete resolution of the Kronecker square of the basic
spinor irreps of SO(n) into their symmetric and antisymmet-
ric components. Further results were obtained by Littlewood
by exploiting known automorphisms and isomorphisms for the
n = 3...8 cases but he noted "The construction of the con-
comitants of degree higher than 2 in 10 or more variables would
appear to present a formidable problem”. Nevertheless, in 1981
a complete solution for the resolution of the third powers was
obtained by King, Luan Dehuai and Wybourne following upon
an observation by the author. For the even rotation groups
SO(2v) one uses difference characters such that

A=A, — A

The problem was then to resolve the Kronecker cube

of A”. One had the special cases for A" @ {21}

SO(4)  —A"([1]-1[o))

So(6) - A"([1°] - [1])

SO(8)  —A"([1°] - [1°] — [0])
SO(10) = A"([1*] = [1°] = [1] + [0])



From this limited data could one guess the general re-
sult? The first clue was my observation that the dimensions of
the terms enclosed in curved brackets was in each case 377!,
The second guess was to note the combinatorial identity

o) ()

T

(i) (3]

which is consistent with the general result

A”@{Ql} _ AIIZ(_[11/—1—6x]_|_[1y—2—6x]_|_[1y—4—6x]_[11/—5—630])

T

This result together with some similar results yielded the final
solution.



Reduced notation and the Symmetric Group

The symmetric group S(n) is of fundamental impor-
tance in quantum chemistry as well in nuclear models and sym-
plectic models of mesoscopic systems. One wishes to discuss
the properties of the symmetric group for general n and con-
centrate on stable results that are essentially n—independent.
Here the reduced notation proves to be very useful. The tensor
irreps {A} of S(n) are labelled by ordered partitions(A) of inte-
gers where A F n. In reduced notation the label {A1, Aa,..., A, }
for S(n) is replaced by (As,...,A,). Kronecker products can
then be fully developed in a n—independent manner and read-
ily programmed. Thus one finds, for example, the terms arising
in the reduced Kronecker product (21) x (22) are

< 51 > + <5 > + <43 > + <421 > +3<42 >
+3<412>4+5<41>4+3<4> + <3%1>+2<3%>>
4+ <322> 4+ <3212 >46<321 >+ 7<32> +3<31%>
+8<312>4+8<31>4+3<3> + <21> +2<2>
+3<2212 5 7<221>4+5<22> + <21 > +5<213 >
+8<212>4+6<21>4+2<2> + <1°> +3<1*>
+3<13> +2<12> 4+ <1>

Looking at the above list one is immediately struck by
the observation that the list is self-associated. That is every
partition (A) in the list either has a conjugate partner (5\) where
the rows and columns of the Young frame of the partition ()
have been interchanged or the partition () is self-conjugate.



Some Kronecker products are self-associated while oth-
ers are not. Is there a general theorem that would tell us imme-
diately which products are self-associated? We note that the
partition (21) is an example of a staircase partition (staircase
partitions have the general form (a,a — 1,a — 2,...,1)) while
the partition (22) is self-conjugate.

These observations led to the general theorem

Theorem For H defined by (\) x (v) = (H) to be self-

assoctated, it 1s necessary and sufficient that one of the

partitions be a staircase partition and the other be at
least self-conjugate.



One may also resolve symmetrised powers of irreps of
S(n) in reduced notaion. For example, one finds that the terms

n (21) @ {21} are

<71 > +2<7> + <621 > +5<62>
+5<612> +17<6l> +14<6> + <b4>
+2<531> +9<53> + <522> + 2 <5212 >
+20< 521> +45<52> + <51%> + 10 < 513 >
+47<512> 4+81<5l> +45<5> + < 4?1 >
+5< 4% > +3<432> +3<4312> + 25<431 >
+ 47 <43 > +3<42?21> +20< 422> +2< 4213 >
430 <4212 > + 118 <421 > + 149 <42 > + 10 < 41* >
+ 64 <41°> +163<41®2> +185<41l > +78<4>
+3<3%221> +16<3%22> + <3%1°>  +20<3%1% >
+73<3%21> +82<32> 4+ <322> + 2 < 32212 >
+ 25 <3221 > +73<322> 4 <321 > 4+ 20<321° >
+ 118 <3212 >+ 270 < 321 > + 235 < 32> +5<31° >
+ 47 < 31* > + 163 < 31% > 4 280 < 312 > + 240 < 31 >
+83<3> + <2'1> +5<2¢> +9< 21?2 >
+47< 21> +82<23 > +5<221t > 445 < 2%1° >
+ 149 < 2212 >4+ 235 < 2°1 > 4+ 162 <22 > + <21°>
+17<21°> 4+ 81 <21*> + 185 <213 > + 240 < 212 >
+173<21l> +£55<2> +2<17> 4+ 14<1%>
+45<1°> +78<1*> 4+83<1®> 4+55<1%>
+19<1> +2<0>

TheoremlIf (\) @ {u} = (H), where (A\) and (i) are

staircase partitions, then H 1is self-associated.



Kronecker Products for Two-Row Shapes in S(n)

The Pauli exclusion principle limits interest in quan-
tum chemistry to just those irreps of S(n) involving partitions
whose Young frames having at most two rows. Thus in forming
Kronecker products only irreps having at most two rows can
yield physical states. In the case of reduced Kronecker prod-
ucts interest is restricted to one-part partitions. Consider the
case of (5) * (4) whose one-part content is

<IO>+H<CE>F2CT>H2COH6>43<H>+42<4 >
+2<3>+<2>+<1>

The first thing one notices is that the multiplicity distribution
is unimodal. Is this a general feature? Indeed one finds that if

we write
(k) = (£) = Z ctimy V)

(m

then the coefficients ¢ k>>< ¢ are given by

m 1
c§k>><£> :§(€—k—l—m—|—2) for k>m

1
><£>:§(k—|—€—m—|—2) for m >k

and the coeflicients exhibit the symmetry

(m) _ (2k—m)
Cley(ey = Clr)(e)
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The above results give a complete description of the
symmetric group Kronecker products needed in quantum chem-
istry. Results for specific values of n are found from the reduced
results by simply prefixing the reduced labels (k), (£), (m) to
give {n — k,k}, {n — £,4} and {n — m,m} respectively and re-
membering that for an irrep {p, ¢} is non-standard if p < ¢ and
must be made standard by use of the modification rule

{pa} =—{g—-Lp+1} if g>p
Thus for S(18) we obtain for {13 ,5} « {14 ,4}

(171} + {16 2} + 2{15 3} + 2{14 4} + 3{13 5)
+ 2{12 6} + 2{11 7} + {10 8} + {9°}
whereas for S(12) we obtain for {7,5} * {8,4} just

{11 1} + {10 2} + 2{93} + {84} + 2{75}



n—NonlInteracting Particles in a Harmonic
Oscillator Potential

I would like to briefly consider some problems that
arise when one wishes to describe the states of n—noninteracting
spin % particles in an isotropic d—dimensional harmonic oscil-
lator potential, a common starting point in a variety of nuclear
and mesoscopic models. For a single particle there are two infi-
nite sets of states, those of even parity and those of odd parity.
These two sets of states span a single infinite dimensional ir-
rep A of the metapletic group Mp(2d) which is the covering
group of the non-compact symplectic group Sp(2d, R). Under
Mp(2n) — Sp(2d, R) one has

The group Sp(2d, R) has a maximal compact subgroup U(d)
such that under Sp(2d, R) — U(d) we have

EI
(1) =t M

where M, and M_ are effectively the even and odd terms in
the infinite S—function series

M= {m)
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A number of problems arise in studying the proper-
ties of infinite dimensional irreps of Sp(2d, R) in order to make
practical applications. These include evaluating Kronecker prod-
ucts and resolving symmetrised powers of the basic irreps <%(O)>
and <%(1)> The Kronecker products have been discussed else-
where. The resolution of the symmetrised powers of the basic
irreps is a particularly difficult problem and until now no gen-
eral results have been known. The symmetrised squares of the
basic irreps of Sp(2d, R) have recently been studied in some
detail for various values of d and up to terms of weight 20.
This led me to guess that in general

<L epr=3 <1044 >
<LO>epy =Y <ne+a) >
L@ =Y <nesa >

1 o0
<5 () > (Pt =<1 >+ <L(4+40)>
i=0
holds for all Sp(2d, R) with d > 2. For d = 1 the irrep
< 1;(1%) > in the last equation must be deleted. But this would
imply a hitherto unknown identity for symmetrised powers of
the infinite S—function series, namely,

My @ {1} = M_ @ {2}

which was readily proved.



The equality

< 550> 012} =< 53 (1) > of2)

has a surprising, and seemingly unnoticed, feature. The left-
hand-side describes the S = 1 states formed by placing two of
the fermions in even parity orbitals while the right-hand-side
describes the S = 0 states formed by placing two particles in
odd parity orbitals. This implies there is a one-to-one map-
ping between the orbital states for these two sets of states.
Indeed, if one enumerates the two-particle LS—states for an
isotropic three-dimensional isotropic harmonic oscillator poten-
tial formed by having one particle in the n = 0 s—orbital and
a second in the n = 2 s— or d—orbital one finds the spectro-
scopic terms %15 D while placing both particles in the n = 1

p—orbital yields the spectroscopic terms ®P and 'SD. Clearly
the map 3(SD) —! (SD) exists as predicted.
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The Quantum Hall Effect and the Dangers of Extrapolation

I end with a cautionary example from the quantum
Hall effect. Laughlin describes the fractional quantum Hall
effect in terms of a (unnormalized) wavefunction

N 1 N
Zlaughlin(zh R ZN) — H(Zl o Zj)2m+16xp(_§ Z |Zi|2)
1<g =1

where z = z + 1y and m is an integer corresponding to states of
a fractional filling 1/(2m + 1) of the lowest Landau level. The
Laughlin wavefunction may be expanded as a linear combina-
tion of Slater determinantal wavefunctions for states of a given
angular momentum

1
JLaughlin — (2777, + 1)§N(N — 1)

The Vandermonde alternating function in N variables
is defined as

V(z1,...,2N8) = H(Zl — 2j)
1<J
While V is an alternating function even powers of V, say V2™,
is necessarily a symmetric function and hence must be expand-

able in any suitable linear integral basis of symmetric functions,
such as the Schur functions

sx(zi —zj) ={A} ={ ) 1,.. ., A}

which are indexed by partitions of the integer

n=mN(N —1)



Dropping questions of normalization, we may write

\IjLaughlin 2 A
=V ="M}
V AbFn

The coefficients ¢*

are signed integers and are precisely the
same integers that arise in the expansion of the Laughlin wave-
function as a linear combination of Slater determinants. Of
particular interest is the determination of the expansion coef-
ficients as the number N increases. The problem is combina-

torially explosive.

The late Claude Itzykson and colleagues made a care-
ful study of the problem and calculated the coeflicients for up
to N = 5 where there are 59 distinct partitions involved which
they termed the number of admissible tableauxr and endeav-
oured to give a general result to predict the number of admis-
sible tableaux as a function of N. They presented a table of the
number of admissible tableaux for N = 2,...,29 based upon a
conjecture and remarked ” The above reasoning does not how-
ever insure that this is exactly the total number of terms, .....
as some coefficients might still vanish. However experience up
to N =5 seems to indicate that such accidents do not happen.”

I was developing, along with Thibon and Scharf, some
new algorithms for expanding powers of the Vandermonde de-
terminant and computed results for N = 6 and N = 7 with
complete agreement with the Itzykson conjecture - at N = 8
the conjecture failed!
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Concluding Remarks

I have tried in the preceding remarks to show that
sometimes guesses and hunches can sometimes lead to unex-
pected discoveries. Patterns can sometimes be discerned if we
exercise our human imagination. Of course ultimately we must
move to demonstrate the validity of our guesses and hunches.



