
1Lecture to be given 5-6th November 1996 at the Institute ofPhysics Higher Pedagogical School, Rzesz�ow, PolandRecognizing Patterns in Mathematical PhysicsBRIAN G.WYBOURNEInstytut Fizyki, Uniwersytet Miko laja Kopernika87-100 Toru�nPoland...Not that I aspire to complete coherence. Our mistakeis to confuse our limitations with the bounds of pos-sibility and clap the universe into a rationalist hat orsome other. But I may �nd the indications of a patternthat will include me, even if the outer edges tail o� intoignorance.| William Golding, Free Fall (1959)AbstractMany calculations in mathematical physics seem to be-come a jumble of seemingly unrelated numbers. However, onecan often spot patterns that can lead to new conjectures andthence to hitherto unrecognised new theorems. A number ofspeci�c examples will be given.
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3Balmer's Remarkable DiscoveryIn 1884 the Swiss school teacher, J. Balmer, learnt of the exis-tence of three lines of the spectrum of hydrogen, H�, H� andH� and noted the ratiosH�=H� = 656:2486:1 = 1:3499 � 2720 = 1:35H�=H� = 656:2410:1 = 1:600 � 85 = 1:6H�=H� = 486:1410:1 = 1:1853 � 3227 = 1:1852Balmer then conjectured that the wavelength of any memberof the series would be given by�n = n2n2 � 22�0 where n = 3; 4; 5 : : :with �0 = 364:56nm. Using Balmer's conjecture we �ndn �n3 99�4�0 = 95�0 = 656:2nm H�4 1616�4�0 = 43 = 486:1nm H�5 2525�4�0 = 2521�0 = 434:0nm H6 3636�4�0 = 98�0 = 410:1nm H�1 �0 = 346:6nm H1His conjecture readily reproduced the observed ratios and cor-rectly gave the H line. Balmer's result, having absolutely notheoretical foundation, was later to play a key role in Bohr'squantum model of the H�atom and in the subsequent devel-opment of Schr�odinger's equation.



4 Spinors and the Rotation GroupsThe rotation groups SO(n) play an important role inmany areas of chemistry and physics. The full rotation groupO(n) possess a basic spin representation � of degree 2[n2 ] whichis irreducible under O(n) ! SO(n) if n is odd or reducibleinto a pair of conjugate irreps ��. In 1935 Brauer and Weylgave a complete resolution of the Kronecker square of the basicspinor irreps of SO(n) into their symmetric and antisymmet-ric components. Further results were obtained by Littlewoodby exploiting known automorphisms and isomorphisms for then = 3 : : : 8 cases but he noted "The construction of the con-comitants of degree higher than 2 in 10 or more variables wouldappear to present a formidable problem". Nevertheless, in 1981a complete solution for the resolution of the third powers wasobtained by King, Luan Dehuai and Wybourne following uponan observation by the author. For the even rotation groupsSO(2�) one uses di�erence characters such that�00 = �+ ���The problem was then to resolve the Kronecker cubeof �00. One had the special cases for �00 
 f21gSO(4) ��00([1]� [0])SO(6) ��00([12]� [1])SO(8) ��00([13]� [12]� [0])SO(10) ��00([14]� [13]� [1] + [0])



5From this limited data could one guess the general re-sult? The �rst clue was my observation that the dimensions ofthe terms enclosed in curved brackets was in each case 3��1.The second guess was to note the combinatorial identity3��1 =Xx �� 2�� � 1� 6x�� � 2�� � 2� 6x�� � 2�� � 4� 6x�+ � 2�� � 5� 6x��which is consistent with the general result�00
f21g = �00Xx (�[1��1�6x]+[1��2�6x]+[1��4�6x]�[1��5�6x])This result together with some similar results yielded the �nalsolution.



6 Reduced notation and the Symmetric GroupThe symmetric group S(n) is of fundamental impor-tance in quantum chemistry as well in nuclear models and sym-plectic models of mesoscopic systems. One wishes to discussthe properties of the symmetric group for general n and con-centrate on stable results that are essentially n�independent.Here the reduced notation proves to be very useful. The tensorirreps f�g of S(n) are labelled by ordered partitions(�) of inte-gers where � ` n. In reduced notation the label f�1; �2; : : : ; �pgfor S(n) is replaced by h�2; : : : ; �pi. Kronecker products canthen be fully developed in a n�independent manner and read-ily programmed. Thus one �nds, for example, the terms arisingin the reduced Kronecker product h21i � h22i are< 51 > + < 5 > + < 43 > + < 421 > + 3 < 42 >+ 3 < 412 >+ 5 < 41 > + 3 < 4 > + < 321 > + 2 < 32 >+ < 322 > + < 3212 >+ 6 < 321 >+ 7 < 32 > + 3 < 313 >+ 8 < 312 >+ 8 < 31 > + 3 < 3 > + < 231 > + 2 < 23 >+ 3 < 2212 >+ 7 < 221 >+ 5 < 22 > + < 214 > + 5 < 213 >+ 8 < 212 >+ 6 < 21 > + 2 < 2 > + < 15 > + 3 < 14 >+ 3 < 13 > + 2 < 12 > + < 1 >Looking at the above list one is immediately struck bythe observation that the list is self-associated. That is everypartition (�) in the list either has a conjugate partner (~�) wherethe rows and columns of the Young frame of the partition (�)have been interchanged or the partition (�) is self-conjugate.



7Some Kronecker products are self-associated while oth-ers are not. Is there a general theorem that would tell us imme-diately which products are self-associated? We note that thepartition (21) is an example of a staircase partition (staircasepartitions have the general form (a; a � 1; a � 2; : : : ; 1)) whilethe partition (22) is self-conjugate.These observations led to the general theoremTheorem For H de�ned by h�i � h�i = hHi to be self-associated, it is necessary and su�cient that one of thepartitions be a staircase partition and the other be atleast self-conjugate.



8 One may also resolve symmetrised powers of irreps ofS(n) in reduced notaion. For example, one �nds that the termsin h21i 
 f21g are< 71 > + 2 < 7 > + < 621 > + 5 < 62 >+ 5 < 612 > + 17 < 61 > + 14 < 6 > + < 54 >+ 2 < 531 > + 9 < 53 > + < 522 > + 2 < 5212 >+ 20 < 521 > + 45 < 52 > + < 514 > + 10 < 513 >+ 47 < 512 > + 81 < 51 > + 45 < 5 > + < 421 >+ 5 < 42 > + 3 < 432 > + 3 < 4312 > + 25 < 431 >+ 47 < 43 > + 3 < 4221 > + 20 < 422 > + 2 < 4213 >+ 30 < 4212 > + 118 < 421 > + 149 < 42 > + 10 < 414 >+ 64 < 413 > + 163 < 412 > + 185 < 41 > + 78 < 4 >+ 3 < 3221 > + 16 < 322 > + < 3213 > + 20 < 3212 >+ 73 < 321 > + 82 < 32 > + < 323 > + 2 < 32212 >+ 25 < 3221 > + 73 < 322 > + < 3214 > + 20 < 3213 >+ 118 < 3212 >+ 270 < 321 > + 235 < 32 > + 5 < 315 >+ 47 < 314 > + 163 < 313 > + 280 < 312 > + 240 < 31 >+ 83 < 3 > + < 241 > + 5 < 24 > + 9 < 2312 >+ 47 < 231 > + 82 < 23 > + 5 < 2214 > + 45 < 2213 >+ 149 < 2212 >+ 235 < 221 > + 162 < 22 > + < 216 >+ 17 < 215 > + 81 < 214 > + 185 < 213 > + 240 < 212 >+ 173 < 21 > + 55 < 2 > + 2 < 17 > + 14 < 16 >+ 45 < 15 > + 78 < 14 > + 83 < 13 > + 55 < 12 >+ 19 < 1 > + 2 < 0 >TheoremIf h�i 
 f�g = hHi, where (�) and (�) arestaircase partitions, then H is self-associated.



9Kronecker Products for Two-Row Shapes in S(n)The Pauli exclusion principle limits interest in quan-tum chemistry to just those irreps of S(n) involving partitionswhose Young frames having at most two rows. Thus in formingKronecker products only irreps having at most two rows canyield physical states. In the case of reduced Kronecker prod-ucts interest is restricted to one-part partitions. Consider thecase of h5i � h4i whose one-part content is< 9 > + < 8 > +2 < 7 > +2 < 6 > +3 < 5 > +2 < 4 >+ 2 < 3 > + < 2 > + < 1 >The �rst thing one notices is that the multiplicity distributionis unimodal. Is this a general feature? Indeed one �nds that ifwe write hki � h`i =X� chmihkih`ih�ithen the coe�cients chmihkih`i are given bychmihkih`i = 12(`� k +m + 2) for k > mchmihkih`i = 12(k + `�m + 2) for m � kand the coe�cients exhibit the symmetrychmihkih`i = ch2k�mihkih`i



10 The above results give a complete description of thesymmetric group Kronecker products needed in quantum chem-istry. Results for speci�c values of n are found from the reducedresults by simply pre�xing the reduced labels hki, h`i, hmi togive fn� k; kg, fn� `; `g and fn�m;mg respectively and re-membering that for an irrep fp; qg is non-standard if p < q andmust be made standard by use of the modi�cation rulefp; qg � �fq � 1; p+ 1g if q > pThus for S(18) we obtain for f13 ; 5g � f14 ; 4gf17 1g+ f16 2g+ 2f15 3g+ 2f14 4g+ 3f13 5g+ 2f12 6g+ 2f11 7g+ f10 8g+ f92gwhereas for S(12) we obtain for f7; 5g � f8; 4g justf11 1g+ f10 2g+ 2f93g+ f84g+ 2f75g



11n�NonInteracting Particles in a HarmonicOscillator PotentialI would like to briey consider some problems thatarise when one wishes to describe the states of n�noninteractingspin 12 particles in an isotropic d�dimensional harmonic oscil-lator potential, a common starting point in a variety of nuclearand mesoscopic models. For a single particle there are two in�-nite sets of states, those of even parity and those of odd parity.These two sets of states span a single in�nite dimensional ir-rep � of the metapletic group Mp(2d) which is the coveringgroup of the non-compact symplectic group Sp(2d;R). UnderMp(2n) ! Sp(2d;R) one has� ! h12(0)i+ h12(1)iThe group Sp(2d;R) has a maximal compact subgroup U(d)such that under Sp(2d;R) ! U(d) we haveh12(0)i ! " 12 �M+h12(1)i ! " 12 �M�where M+ and M� are e�ectively the even and odd terms inthe in�nite S�function seriesM = 1Xm=0fmg



12 A number of problems arise in studying the proper-ties of in�nite dimensional irreps of Sp(2d;R) in order to makepractical applications. These include evaluating Kronecker prod-ucts and resolving symmetrised powers of the basic irreps h 12(0)iand h 12(1)i. The Kronecker products have been discussed else-where. The resolution of the symmetrised powers of the basicirreps is a particularly di�cult problem and until now no gen-eral results have been known. The symmetrised squares of thebasic irreps of Sp(2d;R) have recently been studied in somedetail for various values of d and up to terms of weight 20.This led me to guess that in general< 12 ; (0) > 
f2g = 1Xi=0 < 1; (0 + 4i) >< 12 ; (0) > 
f12g = 1Xi=0 < 1; (2 + 4i) >< 12 ; (1) > 
f2g = 1Xi=0 < 1; (2 + 4i) >< 12 ; (1) > 
f12g =< 1; (12) > + 1Xi=0 < 1; (4 + 4i) >holds for all Sp(2d;R) with d � 2. For d = 1 the irrep< 1; (12) > in the last equation must be deleted. But this wouldimply a hitherto unknown identity for symmetrised powers ofthe in�nite S�function series, namely,M+ 
 f12g = M� 
 f2gwhich was readily proved.



13The equality< 12; (0) > 
f12g �< 12 ; (1) > 
f2ghas a surprising, and seemingly unnoticed, feature. The left-hand-side describes the S = 1 states formed by placing two ofthe fermions in even parity orbitals while the right-hand-sidedescribes the S = 0 states formed by placing two particles inodd parity orbitals. This implies there is a one-to-one map-ping between the orbital states for these two sets of states.Indeed, if one enumerates the two-particle LS�states for anisotropic three-dimensional isotropic harmonic oscillator poten-tial formed by having one particle in the n = 0 s�orbital anda second in the n = 2 s� or d�orbital one �nds the spectro-scopic terms 3:1SD while placing both particles in the n = 1p�orbital yields the spectroscopic terms 3P and 1SD. Clearlythe map 3(SD) !1 (SD) exists as predicted.



14The Quantum Hall E�ect and the Dangers of ExtrapolationI end with a cautionary example from the quantumHall e�ect. Laughlin describes the fractional quantum Halle�ect in terms of a (unnormalized) wavefunction	mLaughlin(z1; : : : ; zN ) = NYi�j(zi � zj)2m+1exp(�12 NXi=1 jzij2)where z = x+ iy and m is an integer corresponding to states ofa fractional �lling 1=(2m + 1) of the lowest Landau level. TheLaughlin wavefunction may be expanded as a linear combina-tion of Slater determinantal wavefunctions for states of a givenangular momentumJLaughlin = (2m+ 1)12N(N � 1)The Vandermonde alternating function in N variablesis de�ned as V (z1; : : : ; zN ) = NYi<j(zi � zj)While V is an alternating function even powers of V , say V 2m,is necessarily a symmetric function and hence must be expand-able in any suitable linear integral basis of symmetric functions,such as the Schur functionss�(zi � zj) = f�g = f�1; : : : ; �pgwhich are indexed by partitions of the integern = mN(N � 1)



15Dropping questions of normalization, we may write	LaughlinV = V 2m =X�`n c�f�gThe coe�cients c� are signed integers and are precisely thesame integers that arise in the expansion of the Laughlin wave-function as a linear combination of Slater determinants. Ofparticular interest is the determination of the expansion coef-�cients as the number N increases. The problem is combina-torially explosive.The late Claude Itzykson and colleagues made a care-ful study of the problem and calculated the coe�cients for upto N = 5 where there are 59 distinct partitions involved whichthey termed the number of admissible tableaux and endeav-oured to give a general result to predict the number of admis-sible tableaux as a function of N . They presented a table of thenumber of admissible tableaux for N = 2; : : : ; 29 based upon aconjecture and remarked "The above reasoning does not how-ever insure that this is exactly the total number of terms, .....as some coe�cients might still vanish. However experience upto N = 5 seems to indicate that such accidents do not happen."I was developing, along with Thibon and Scharf, somenew algorithms for expanding powers of the Vandermonde de-terminant and computed results for N = 6 and N = 7 withcomplete agreement with the Itzykson conjecture - at N = 8the conjecture failed!



16 Concluding RemarksI have tried in the preceding remarks to show thatsometimes guesses and hunches can sometimes lead to unex-pected discoveries. Patterns can sometimes be discerned if weexercise our human imagination. Of course ultimately we mustmove to demonstrate the validity of our guesses and hunches.


