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Abstract

In order to improve the theoretical reproduction of the splitting of the energy

levels for S-state f electron ions, a model in which the relativistic effects are

included in an effective way is used. Although the effective operators act

within the spin-orbital space, and the radial integrals involve the large and

small components of the relativistic theory, all the required matrix elements are

evaluated within the intermediate coupling scheme. The approach is illustrated

by the results of numerical calculations performed for the representative ions:

Gd3+, Cm3+, and Bk4+. The results of the analysis support the expectation that

for such large systems the relativistic effects indeed play an important role. In

addition, it is concluded that the fitting procedure applied for the determination

of the crystal field parameters has to be performed within the parametrization

scheme that includes the relativistic weights for the various parameters.

1. Introduction

Magnetic resonance imaging of biological structure is the alternative technique to light-based

microscopy. The efficiency of this technique is not limited by the scattering of light by the layers

of cells on the surface, and in addition it does not produce toxic substances as do the methods

that use dyes and fluorochromes. This is an especially useful method to monitor cellular Ca2+

and its role in the physiology of a cell and internal biochemical processes. Recently, the

lanthanide ion Gd3+ has been used as a contrast agent. This ion is characterized by the half-

filled shell of equivalent 4f electrons, and it belongs to the group of so-called S-state ions (their

ground state is [8S]7/2). Gadolinium is a good contrast agent due to its high magnetic moment.

To avoid toxicity of the aqua ion, all but one of the coordination sites of Gd3+ are bound by

a chelate. The remaining side is left for the water molecule that produces the signal in all

imaging experiments. The authors of the pioneering research claim that [1] ‘the agent can be

conveniently micro-injected inside cells at an early developmental stage, and subsequent cell

movements and calcium fluctuations during development can be monitored over long periods

of time’.

The properties of LiGdF4:Eu, again due to the special properties of gadolinium ion, have

led to a technological revolution of a new generation of highly efficient fluorescent lights.
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This new phosphor replaces the conventional materials; it emits twice as many photons than it

absorbs. One uv photon from Xe (instead of toxic mercury in standard devices) is absorbed by

Gd3+ and then in two portions it is transferred to two doping Eu ions that act as luminescence

centres [2].

These two examples demonstrate the wide range of applications of the Gd ion in various

disciplines, and show the motivation for the theoretical research even if, at the first sight, there

is no direct connection between basic research and the practical use of its results. In fact, Gd3+

by itself is a very interesting system, similarly as all the other ions that represent the so-called

S-state elements, Eu2+, Gd3+, Cm3+, Bk4+. In particular, there is a search for an adequate

theoretical model that reproduces the observed splitting of their ground state [3–8].

In 1966 Wybourne [3] performed an extensive analysis of various mechanisms that

possibly contribute to the splitting of the ground state of Gd3+. In the class of effective

operators that represent the interactions within the 4f7 configuration the fourth-order terms,

associated with the crystal-field parameter B2
0 of the following form have been taken into

account:

〈8S|Vso|6P〉〈6P|Vso|6D〉〈6D|VCF|6P〉〈6P|Vso|8S〉
whereVso denotes the spin-orbit interaction operator, andVCF represents crystal-field potential.

In addition, other fourth-order terms were also discussed, namely

〈8S|Vso|6P〉〈6P|VCF|6L〉〈6L|VCF|6P〉〈6P|Vso|8S〉,
where L = D,G, I. The list of the perturbing operators considered in [3] was completed by

the spin–spin interaction operator, Vss, taken into account through the third-order term of the

form

〈8S|Vss|6D〉〈6D|VCF|6P〉〈6P|Vso|8S〉.
The perturbing influence of the excited configurations has been included via the second-

order terms

〈8S|VCF|Xx〉〈Xx|VE|8S〉,
where VE denotes the Coulomb interaction operator, X represents the excited configuration

4f55d2, and x stands for its various states. The effects of electrostatic interactions have been

taken into account at the third order by the terms that involve the spin-orbit interactions within

the 4f7 shell, and the inter-shell interactions via the crystal field potential

〈8S|Vso|6P〉〈6P|VCF|Xx〉〈Xx|VE|8S〉.
The fifth-order terms analysed in [3] represent the configuration interaction modified by

the interactions via spin-orbit operator and crystal-field potential, namely

〈8S|VE|Xx1〉〈Xx1|Vso|Xx2〉〈Xx2|VCF|Xx3〉〈Xx3|Vso|Xx4〉〈Xx4|VE|8S〉.
Unfortunately all these non-relativistic corrections did not improve the results of calculations,

and they did not reproduce the observed splitting of the ground state of gadolinium ethyl

sulphate. The problem was also not solved when the particular relativistic contributions were

taken into account. The energy corrections evaluated from the following effective term [9]:

B2
0 〈8S|Vso|6P〉〈6P|W (11)2|8S〉

led to the splitting of the ground terms of opposite sign than observed.

The aim of the present investigation is to verify the importance of the relativistic effects

that are taken into account within the approach in which the interactions via the crystal-field

potential result in the splitting of the ground state. The relativistic effects are included here in an

effective way, and the energy of Kramer’s components are evaluated as first-order corrections.
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2. Relativistic crystal-field potential

In the non-relativistic approach the energy of crystal-field splitting is evaluated as a matrix of

the following operator:

VCF =
∑

k,q

Akq

∑

i

rki C
(k)
q (θiφi), (1)

where Akq are the structural parameters. The crystal-field potential defined in equation (1) in

terms of unit tensor operators has the form

V eff
CF =

∑

k,q

Akq

∑

i

〈nℓ|rki |nℓ〉〈ℓ||C
(k)||ℓ〉u(k)i,q (ℓℓ), (2)

where the product Akq〈nℓ|rki |nℓ〉 is usually denoted by Bkq , and it defines the so-called crystal-

field parameters.

Following the idea of Wybourne from 1965 [9], and applying the method of Sandars and

Beck [10] (see also Smentek and Wybourne [11,12]), it is rather straightforward, using standard

tensor operator techniques [13], to evaluate the crystal-field splitting within the relativistic

model, and at the same time avoid the troublesome calculations of the matrix elements within

the j–j coupling scheme. Thus, in the relativistic approach, instead of the effective operator

of equation (2), the following operator is taken into consideration:

V RCF =
∑

k,q

Akq

∑

κt

bk(κt)
∑

i

w
(κt)k
i,q (ℓℓ), (3)

where w
(κt)k
i,q (ℓℓ) denotes the unit double tensor operator, and

∑

i w
(κt)k
i,q (ℓℓ) = W (κt)k

q . The

coefficient bk(κt) from equation (3) contains the main information about the transformation

from the non-relativistic to the relativistic approach [9], and it has the form

bk(κt) = (−1)κ+k+t
∑

j±,j
′
±

(−1)j
′
±+1/2[k]−1/2[κ, t]1/2[j±, j

′
±]

×
(

j ′
± k j±

− 1
2

0 1
2

)







ℓ ℓ t
1
2

1
2

κ

j ′
± j± k







Rkj±,j ′
±
. (4)

The radial integrals contain the large and small components and are defined as follows:

Rk(j±, j
′
±) = 〈P j± |rk|P j ′

±〉 + 〈Qj± |rk|Qj ′
±〉, (5)

where j± = ℓ± 1
2

and j ′
± = ℓ± 1

2
.

It is seen from equation (3) that κ denotes the rank of part of a double tensor operator

that acts within the spin space, and therefore κ = 0, 1. For the case of κ = 0, t = k; for

κ = 1 when the rank of crystal field potential k = 2: t = 1, 3, for k = 4: t = 3, 5, and

finally, for k = 6: t = 5. Thus, the energy correction due to the perturbing operator defined

in equation (3) is determined by the matrix elements of at most eight effective operators.

In order to simplify the comparison of the results of the present analysis with the values

obtained from the non-relativistic approach it is convenient to define the following terms:

H k
MJMJ ′ =

∑

q

Akq〈nℓ|r
k|nℓ〉〈ℓ||C(k)||ℓ〉〈U (k)q 〉$$ ′ , (6)

where$ is an appropriate wavefunction defined within the intermediate coupling scheme, and

〈U (k)q 〉$$ ′ denotes a matrix element of the unit tensor operator. In addition, for the purpose

of the numerical analysis the product of radial integral and the reduced matrix element in

equation (6) is denoted in the discussion by N-RCF since it represents the non-relativistic

contribution.
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As a counterpart for the H k
MJMJ ′ terms in equation (6), the following matrix elements of

the relativistic approach are taken into account:

H
k
MJMJ ′ =

1
√

2

∑

q

Akqbk(0k)〈U
(k)
q 〉$$ ′

+
∑

q

Akq

∑

κ 
=0

ǫ(κ + t + k)
∑

t

bk(κt)X
(κt)k
q ($,$ ′)〈U (k)q 〉$$ ′ . (7)

The first part of the expression in equation (7) represents the terms subtracted from

equation (3) for κ = 0, and the factor 1/
√

2 originates from the reduction of the double tensor

operatorW (0k)k to the unit tensor operatorU (k). This part of the relativistic contributions to the

crystal-field corrections, denoted by RCF in the further discussion, can be compared directly to

the non-relativistic terms, N-RCF, from equation (6); indeed, N-RCF and RCF are associated

with the same unit tensor operators. It is important to note that the structural parameters Akq
are common for both terms. Thus, it is possible at this point to extract from the analysis the

uncertainty of crystal-field parameters, and also disregard the matrix elements of U operators.

This means that the contributions that are evaluated exactly serve as a basis for the conclusions

on the relative importance of both types of N-RCF and RCF; this part of the numerical analysis

is ab initio in nature.

The tensorial structure of equation (3) for κ 
= 0 is different from the terms previously

analysed since it is associated with double tensor operators. In order to simplify the analysis,

a new symbolX(κt)kq ($,$ ′) is introduced in equation (7), and it denotes the following ratio of

matrix elements:

X(κt)kq ($,$ ′) = 〈ℓN [αSL]JMJ |W (κt)k
q |ℓN [α′S ′L′]J ′MJ ′〉/〈ℓN [αSL]JMJ |U (k)q |ℓN

×[α′S ′L′]J ′MJ ′〉. (8)

This technical step makes it possible to directly compare the part of the relativistic contribution

that originates from the crystal-field interactions within the spin-orbital space, S-OCF, to the

values of the non-relativistic, N-RCF, and the other relativistic, RCF, terms.

It is seen from equation (7), followed by a definition in equation (8), that the contributions

S-OCF are state dependent through X, and they have to be evaluated for every energy level

separately. It should be mentioned at the same time that this part of the numerical analysis

has lost the features of ab initio calculations. Actually, the matrix elements involve the

wavefunctions defined within the intermediate coupling scheme, and the coefficients of the

linear combinations are determined through the semi-empirical procedure. However, it is still

possible to continue the crystal-structure independent analysis leaving aside the crystal-field

parameters, and comparing terms for the same value of k.

3. Numerical results

In order to verify the importance of relativistic contributions to the crystal-field energy splitting,

the radial one electron basis sets have been generated separately for the non-relativistic and

relativistic models. The free ion, non-relativistic calculations were performed for the average

energy of the configuration at the level of the Hartree–Fock method using Froese Fischer’s

MCHF program [14]. The relativistic radial integrals were evaluated within the Dirac–Hartree–

Fock method using the GRASP2 package [15]. The orbitals were generated from the average-

energy formalism with all the relativistic configuration state functions arising from the f7

open-shell configurations included in the optimization procedure. There were 42 and 50

configuration state functions involved for the states with J = 5/2 and 7/2.
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Table 1. Radial integrals from non-relativistic and relativistic free ion calculations for Gd3+ (4f7)

and Bk4+ (5f7).

Gd3+ (4f7) Bk4+ (5f7)

k 〈4f|rk |4f〉 (++) (+−) (−−) η (%)a 〈5f|rk |5f〉 (++) (+−) (−−) η (%)a

2 0.7921 0.8722 0.8659 0.8546 8 1.2363 1.4718 1.4366 1.4043 14

4 1.4647 1.8734 1.8164 1.7626 19 2.7065 4.0017 3.8037 3.6217 30

6 5.4459 8.2046 7.8112 7.4426 30 9.8579 18.6240 17.2133 15.9399 43

a η = [〈 7
2
|rk | 7

2
〉Av − 〈nf |rk |nf 〉]/〈 7

2
|rk | 7

2
〉Av × 100%,where 〈 7

2
|rk | 7

2
〉Av = 1

3
(R++ + R+− + R−−) .

Table 2. Results of non-relativistic and relativistic free ion calculations for Gd3+ and Bk4+ (EAvHF =
−10 818.8469, EAvHF = −29 096.6479, EAvDHF(

7
2
) = −13 309.521, EAvDHF(

7
2
) = −37 833.4864).

Gd3+ (4f7) Bk4+ (5f7)

nl −εHF −εDHF 〈r〉HF
nl 〈r〉DHF

nl nl −εHF −εDHF 〈r〉HF
nl 〈r〉DHF

nl

5s 2.90 3.15 1.4274 1.3456 6s 3.24 4.00 1.5257 1.3150

5p− 2.09 2.26 1.5790 1.4857 6p− 2.47 3.02 1.6703 1.4323

5p+ 2.09 2.08 1.5790 1.5665 6p+ 2.47 2.47 1.6703 1.6374

4f− 1.82 1.65 0.7943 0.8211 5f− 2.40 2.06 1.0260 1.0889

4f+ 1.82 1.61 0.7943 0.8317 5f+ 2.40 1.98 1.0260 1.1155

The quality of the numerical calculations performed at this initial step is illustrated in

tables 1 and 2 where certain radial integrals along with the values of energies for Gd3+ and

Bk4+ are collected. The Hartree–Fock radial functions have been applied to evaluate the radial

integrals of N-RCF defined in equation (6), while the Dirac–Hartree–Fock small and large

components have been used for evaluation of the radial integrals of relativistic contributions

represented by bk(κt) in equation (3) (and defined by equation (4)); all these radial integrals

are presented in table 1.

In addition to the values of radial integrals the deviation of non-relativistic values in relation

to the average of the relativistic ones is also presented in terms of η. It is seen from the table

that in all cases the relativistic values are greater by a non-negligible amount; this conclusion

is important for further analysis since the radial integrals are the messengers of the individual

properties of each ion. The remaining parts of the energy corrections that are defined within

both approaches, as angular factors, are common for all systems of equivalent electrons (see

equation (4) for example). It is also interesting to compare the values of energies and the

expectation values of r in various one electron states; these are presented in table 2. In the case

of the lanthanide ion illustrated in the first part of the table, Gd3+, so-called spatial shrinkage

of the 4f function is observed, and this property is demonstrated by the non-relativistic values

of the average of r . The lanthanide contraction results from a particular structure of effective

potential for 4f electrons [15–17] that is characterized by two rival potential wells. It is

interesting to mention that the 4f and 5f orbitals for Xe are almost identical to the hydrogenic

functions. At the same time, for La, for example, the 4f orbital exhibits the collapse, while 5f

still has the hydrogenic features that show the domination of the well of Coulombic nature [15].

For increasing atomic numbers the situation is changed, and at the beginning of the actinide

series the spatial shrinkage of 5f is again observed; this property is well illustrated in table 2 for

the Bk4+ ion. At the same time it should be noted that 5s and 5p in the case of the lanthanide

trivalent ion, and 6s and 6p of the four-valent actinide ion are closed shells, and they actually

screen the optically active electrons of the f shell from the direct influence of the environment.

It is known from the literature [15–17] that the relativistic effects cause the radial



1518 L Smentek et al

Table 3. Non-relativistic crystal-field contributions and their relativistic counterparts (bk for κ = 0)

for Gd3+(4f7) and Bk4+(5f7) ions.

Ion k N-REL RCFa ηb

Gd3+ 2 −1.0822 −0.5303 2.0

4 1.6525 0.6864 2.4

6 −6.9528 −2.7869 2.5

Bk4+ 2 −1.6892 −0.8815 1.9

4 3.0535 1.4423 2.1

6 −12.5856 −6.1685 2.0

a RCF = (1/
√

2)bk(0k).
b η = (N − REL)/(RCF).

Table 4. Relativistic contributions for κ = 0, RCF, and the values of the terms originating from

the crystal field within the spin-orbital space, S-OCF, for the Bk4+ ion.

k RCFa t bk(1t) X(1t)k S-OCFb η (%)c

2 −0.8815 1 −0.0180 28.2599 −0.5087

3 0.0201 0.4074 0.0082

.t −0.5005 57

4 1.4423 3 0.0570 22.0242 1.2554

5 −0.0515 0.0427 −0.0022

.t 1.2532 87

6 −6.1695 5 −0.2473 22.7213 −5.6190 91

a RCF = (1/
√

2)bk(0k).
b S-OCF =

∑

t bk(1t)X
(1t)k .

c η = (S-OCF)/(RCF)× 100%.

contraction and stabilization of the energies of the inner orbitals of s and p symmetry. This

means that the screening of the nucleus is stronger in the relativistic description, and as a

consequence, the orbitals of the outer electrons are more expanded. These general trends are

indeed reflected by the values presented in table 2.

In table 3 the values of the non-relativistic contributions to the energy splitting N-REL

defined by equation (6) are compared to the relativistic counterparts RCF associated with

bk(0k) (equation (7)). These results are obtained from ab initio calculations, and therefore

they are free of any uncertainties. It is seen from this table that the signs of the appropriate

contributions are preserved, while their magnitude (the absolute values), for both ions analysed,

is reduced by approximately a factor of 2 when the relativistic effects are taken into account

(see the values of η).

The second part of relativistic contributions in equation (7), S-OCF, originates from

the interactions within the spin-orbital space. In table 4 their values for the Bk4+ ion are

presented together with the former RCF terms. In the fourth and fifth columns the values

of the contributing factors bk(1t) and X(1t)k (see equation (7)) are displayed for certain t ; η

represents the relative importance of both relativistic contributions. The values presented in

table 4 contain the semi-empirical admixture via the coefficients of the intermediate coupling

scheme of wavefunctions used for evaluation of the matrix elements in X(1t)k [18].

It is seen from table 4 that both relativistic contributions to the energy, RCF and S-OCF,

have the same signs and comparable magnitude; this means that they both have to be included in

any calculation. Inspection of table 4 at the same time shows that not all partial contributions

to S-OCF are of the same importance. The most dominant terms are for t = 1, and this
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Table 5. Values of coefficients bk(κt) of double tensor operators (equation (3)).

k κ t Gd3+ Bk4+

2 1 1 −0.0063 −0.0180

1 3 0.0070 0.0201

0 2 −0.7501 −1.2467

4 1 3 0.0165 0.0570

1 5 −0.0151 −0.0515

0 4 0.9707 2.0398

6 1 5 −0.0690 −0.2473

0 6 −3.9413 −8.7254

disproportion is not accidental but rather symptomatic as observed among other terms and for

both ions, Gd3+ and Bk4+. Indeed, in table 5 the values of the coefficients bk are presented

for various ranks of double tensor operators; among terms for κ = 1 (these are the ones

involved into S-OCF) there is no differentiation between the magnitude of contributions for

various t . The values of terms for κ = 0 which are much larger (contributions to RCF)

are collected in this table only for the completeness of analysis. Thus, it is seen that the

values of bk are not the source of various magnitudes of contributions that is noticed in

table 4.

In table 6 the reduced matrix elements of unit tensor operators U (k) and double tensor

operatorsW (1t)k , together with their ratioX(1t)k , evaluated for the ground state [8S]7/2 of Gd3+,

Cm3+ and Bk4+, are collected [19]. It is apparent that the largest values of the matrix elements

of double tensor operators are for the smallest value of rank t , for given k and κ = 1 (this is

the first value of t allowed by the triangular condition). In the case of the Gd3+ ion the ratio

between the terms for t = k − 1 and k exceeds the factor of 10, while for Cm3+ and Bk4+ this

ratio is around 4. Note, that the second largest values of W , for t = k, do not contribute to

the terms that determine the energy splitting, since for k even and κ = 1, t must be odd to

preserve the Hermiticity of the effective operator (see the second part of equation (7)).

In summary, the disproportion between various contributions to S-OCF in table 4 is

explained by the magnitude of values of various matrix elements of unit tensor operators.

The general conclusion derived from this part of numerical analysis states that both types of

relativistic contributions, RCF and S-OCF, have to be included in the numerical calculations.

However, as demonstrated above, it is justified to simplify the expression for the relativistic

contributions to the more practical form (instead of equation (7))

H
k
MJMJ ′ =

∑

q

Akq

{

1
√

2
bk(0k) + bk(1k − 1)X(1k−1)k

q ([8S]7/2)

}

〈U (k)q 〉MJM
′
J
, (9)

where only the most dominant terms of S-OCF, those for t = k−1, are included. It is interesting

to mention that this simplification is correct only in the case of the energy correction for the

ground state [8S]7/2. Indeed, inspection of table 7 shows that, for example, in the case of

[6P]5/2 the values of ratioX(1t)k for t = odd are comparable (except for one element for Gd+3,

with k = 4 and t = 3). A similar situation is observed in the case of state [6D]7/2 for which

the values of reduced matrix elements of U for all ranks are comparable with the values of

matrix elements ofW , and therefore their mutual ratio is small.

In table 5 the values of factors bk are collected; it is seen from this table that for almost

all cases of various ranks, the values for κ = 0 are two orders of magnitude larger than

the remaining ones (for κ = 1), and there is no dominant contribution among S-OCF to be

compared to RCF. Thus, in the light of table 7, the second part of equation (9) for energy states
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Table 6. Reduced matrix elements of unit tensor operators U and double tensor operatorsW (with

κ = 1) for the ground states [8S]7/2 of Gd3+, Cm3+ and Bk4+ ions (multiplied by 102).

Ion k U (k) t W (1t)k X(1t)k =
W

U

Gd3+ 2 0.2230 1 58.9091 264.1664

2 6.0281 27.0318

3 0.1006 0.4511

4 0.0074 3 1.4893 201.2568

4 0.1339 18.0946

5 0.0014 0.1899

6 0.0004 5 0.0644 161.0000

6 0.0061 15.2500

Cm3+ 2 4.7438 1 150.6054 31.7478

2 41.8315 8.8181

3 1.8265 0.3218

4 1.1291 3 28.9054 25.6004

4 6.8174 6.0379

5 0.0779 0.0689

6 0.3439 5 8.8378 25.6988

6 2.0869 6.0683

Bk4+ 2 5.6695 1 160.2195 28.2599

2 45.5919 8.0416

3 2.3099 0.4074

4 0.0074 3 34.4043 22.0242

4 8.6774 5.5550

5 0.0667 0.0427

6 0.0004 5 11.9446 22.7213

6 2.9559 5.6228

Table 7. Values of X(1t)k evaluated for [6P]5/2 of Gd3+, Cm3+ and Bk4+.

k t X(1t)k :Gd3+ X(1t)k :Cm3+ X(1t)k :Bk4+

2 1 0.73 1.37 1.69

2 0.28 0.52 0.61

3 0.30 1.43 1.24

4 3 −11.92a −0.46a −0.28a

4 −2.20a −1.08a −1.09a

5 0.58 0.49 0.52

a The value of W
(1t)k is negative.

other than [8S]7/2 is negligible in relation to the first term. Consequently, the expression for

the energy correction in such cases is further simplified to the term-independent part

H
k
MJMJ ′ =

1
√

2

∑

q

Akqbk(0k)〈U
(k)
q 〉MJM

′
J
.

Summarizing, the number of effective operators that determine crystal-field splitting

within the relativistic approach is reduced from 8 for the general case (see discussion below

equation (5)) to 6 in the case of the ground state [8S]7/2. The ranks of operators in equation (9)

are: for κ = 0 (first part of equation (9)), k = t = 2, 4, 6; for κ = 1 (the second part of

equation (9)), the equality t = k − 1 must be satisfied, and therefore there are three pairs of

permissible values of k and t , namely (2, 1), (4, 3) and (6, 5). At the same time for the other
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energy states, for example for [6P]5/2, the number of operators is reduced to 3 since only the

terms for κ = 0 contribute effectively to the energy.

4. Relativistic parametrization scheme

It is seen from equation (9) that in order to evaluate the energy splitting in addition to the values

of various relativistic contributions, also the values of the structural parameters Akq for certain

system have to be known. As a reliable source of this information the results of the fitting

procedure performed for the Bk4+ ion presented in [8] have been chosen. The crystal-field

parameters reported there divided by the values of non-relativistic radial integrals give the

required structural parameters. Unfortunately these crystal field factors applied to equation (7)

(rather than to (9) in order not to introduce additional errors at this point of analysis) led to a

result at the limit of nonsense. While the order of sublevels of [8S]7/2 were predicted properly,

the crystal-field splitting reached 2500 cm−1 in comparison to 58 cm−1 from experiment. In fact

this poor result demonstrates that the crystal-field parameters obtained from the non-relativistic

procedure presented in [8] are not appropriate to be used in the present relativistic analysis.

In order to verify this conclusion the expression for the crystal-field energy corrections used

in [8] has been reconstructed with the relativistic effects taken into consideration. Thus, the

following linear combination of the crystal-field parameters and appropriate factors should be

used for the fitting procedure if the relativistic effects are taken into account:

HMJMJ ′ (Bk4+:[8S]7/2) = 1.0{A(4M2
J − 21)A2

0 + B(SMJMJ ′ )A
2
2}

+2.4{C(tMJMJ ′ )A
4
0 +D(uMJMJ ′ )A

4
2 + E(vMJMJ ′ )A

4
4}

+9.2{F(wMJMJ ′ )A
6
0 +G(xMJMJ ′ )A

6
2 +H(yMJMJ ′ )A

6
4 + I (zMJMJ ′ )A

6
6}, (10)

where the factors of crystal-field parameters Akq contain the matrix elements of unit tensor

operators between the wavefunction of the ground state of Bk4+: [8S]7/2, and the angular

terms originating from, for example Wigner–Eckart theorem; the values of these factors are

presented in table 2 of [8]. The most important part of this expression, the numerical factors 1.0,

2.4 and 9.2 represents the relativistic effects. These numbers demonstrate to what extent the

non-relativistic relation between various crystal-field parameters that contribute to the energy

splitting is changed when the relativistic effects are taken into account. A similar result is

obtained for the other S-state ion analysed here, namely

HMJMJ ′ (Gd3+:[8S]7/2) = 1.6{A′(4M2
J − 21)A2

0 + B ′(SMJMJ ′ )A
2
2}

+3.5{C ′(tMJMJ ′ )A
4
0 +D′(uMJMJ ′ )A

4
2 + E′(vMJMJ ′ )A

4
4}

+10.9{F ′(wMJMJ ′ )A
6
0 +G′(xMJMJ ′ )A

6
2 +H ′(yMJMJ ′ )A

6
4 + I ′(zMJMJ ′ )A

6
6}

(11)

with the same interpretation of all coefficients of crystal field parameters as before but evaluated

for the Gd3+ ion.

These two modified expressions for the crystal-field splittings of the ground states of

Gd3+ and Bk4+ demonstrate the strength and importance of relativistic effects. The numerical

factors presented in both equations play the role of the weights with which each crystal-field

parameter enters the expression for the energy. These factors are large enough to expect a

new set of adjusted crystal-field parameters that are different from those obtained from the

non-relativistic scheme.
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5. Conclusions

Is the recommendation from the literature [20–22] that relativistic effects are important for

such large systems as fN ions fact or fiction? In particular, there is the question whether

crystal-field energy splitting requires a relativistic model for better theoretical reproduction.

The results of numerical calculations performed for two representative S-state ions, Gd3+ and

Bk4+, demonstrate clearly that the electronic structure of these systems has to be described

in the language of the relativistic approach. This conclusion is very well illustrated by the

final results of the calculations with the inclusion of RCF and S-OCF; the relativistic effects

are large enough to change the weights of crystal-field parameters that are determined in a

standard non-relativistic way.

At the same time it should be pointed out that in the present approach relativistic effects

are included, and matrix elements are evaluated within the intermediate coupling scheme

(instead of j–j coupling for which the number of required matrix elements would explode);

the only price one has to pay for the inclusion of relativity is the inconvenience that part of

its contribution depends on the particular electronic state. At the same time, however, this

dependence on a particular state might be treated as an additional possibility for including

particular features of a distinct state that in turn gives better adjustment of the parameters.
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