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Relativistic f ↔ f transitions in crystal fields

Lidia Smentek†‡ and Brian G Wybourne†

† Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudzia̧dzka 5/7, 87-100 Toruń, Poland
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Abstract. A relativistic model of f ↔ f transitions based on the transformation of all intershell

tensor operators to effective relativistic double tensor operators is developed. The transition

amplitude is expressed in terms of effective operators acting within the fN shell due to a partial

closure performed upon the relativistic intershell operators. The final expression is discussed in

the light of its reduction to the non-relativistic case that describes f ↔ f transitions in the language

of the standard Judd–Ofelt theory.

1. Introduction

The first successful theoretical treatment of the transition probabilities of the f ↔ f transitions

so characteristic of the lanthanides and actinides in solid and liquid environments was

developed, independently, almost 40 years ago by Judd [1] and Ofelt [2], forming what has

been commonly known as the Judd–Ofelt theory of intensities. For general details see [3]

and references therein. The Judd–Ofelt theory, and its various extensions, is couched in the

language of the LS-coupling basis, in which the various radial integrals are independent of the

one-electron total angular momentum quantum number j , characteristic of the jj -coupling

basis. The LS-basis is natural in the non-relativistic Schrodinger equation whereas the jj -

basis is natural for the relativistic Dirac equation. In the latter basis the radial integrals depend

explicitly on the large and small components arising from solutions of the Dirac equation and

are dependent not only on the one-electron orbital quantum number ℓ but also on j .

The Judd–Ofelt theory can also be viewed as an effective operator theory [4, 5]. In this

paper we formulate a relativistic effective operator theory of f ↔ f transitions based upon

extensions of the original proposal of Sandars and Beck [6] for calculating relativistic effects

in many-electron hyperfine structure through the introduction of the concept of an LS-coupled

relativistic state. By a means of an effective Hamiltonian acting on these states the relativistic

problem was turned into a non-relativistic one that could be solved more easily. It was found

that the adaption of their approach to crystal field theory led to a relativistic mechanism of

particular significance for half-filled shell ions [7, 8]. Here the problem is complicated by the

need to consider matrix elements coupling different electron configurations. In some respects

it is like producing a relativistic form of configuration interaction in a crystal field [9] except

that one of the operators is the electric dipole operator.

While the existence of relativistic effects is beyond dispute the assessment of their

relevance to actual spectra requires quantitative evaluation and to date there has been no

such determination. This assessment involves two distinct problems: firstly, the determination
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of the form of the relativistic effective operators expressed in terms of tensor operators and

relativistic radial integrals in an appropriate perturbative structure, and secondly, quantitative

evaluation of the radial integrals and tensor operator matrix elements for specific systems. In

this paper we present a solution to the first problem with the hope that it will eventually lead

to the solution of the second problem. The key result, equation (12), should form the basis

for that solution. Already one can see from that result that relativistic effects introduce new

effective operators that go beyond those normally associated with the Judd–Ofelt model of

f ↔ f transitions in crystal fields.

Angular momentum theory plays a key role in much of this paper and, in general, the

notation developed by Judd [10] and Edmonds [11] is adopted.

2. Relativistic effective operators

Following the proposal of Sandars and Beck [6] for finding effective relativistic tensor

operators, each of the spherical tensors expressed in terms of unit tensor operators, together

with a certain radial integral, is replaced by the double tensor operator in the following way:

〈nℓ|rx |n′ℓ′〉〈ℓ‖C(x)‖ℓ′〉u(x)
̺ (ℓ, ℓ′)

⇒
∑

κ1k1

2
∑

i1,i2

βxℓ′ℓ
κ1k1

(ji1j
′
i2
)Rx(ji1j

′
i2
)〈ji1‖C(x)‖j ′

i2
〉w(κ1k1)x

̺ (sℓ, sℓ′), (1)

where j± ≡ ℓ ± 1/2 is numbered by i1 = 1, 2 and, in the general case, j ′
± ≡ ℓ′ ± 1/2

is numbered independently by i2 = 1, 2; the ranks κ1 and k1 are limited by the triangular

conditions for the non-vanishing 9-j symbol of the angular factor

βxℓ′ℓ
κ1k1

(ji1j
′
i2
) = (−1)κ1+k1+x[ji1 , j

′
i2

]1/2

{

ℓ′ ℓ k1

s s κ1

j ′
i2

ji1 x

}

. (2)

The radial integrals contain the large and small components [12], and they are defined as

follows:

Rx(ji1 , j
′
i2
) = 〈P ji1 |rx |P j ′

i2 〉 + 〈Qji1 |rx |Qj ′
i2 〉. (3)

The reduced matrix element of the spherical tensor in equation (1) is the generalization of the

intrashell case presented in [7], namely

〈ji1‖C(x)‖j ′
i2
〉 = (−1)ji1 +1/2[ji1 , j

′
i2

]1/2ε(ℓ + x + ℓ′)

(

ji1 x j ′
i2

1
2

0 − 1
2

)

. (4)

The parity requirement ε(ℓ + x + ℓ′), that is equal 1 when ℓ + x + ℓ′ is even and 0 otherwise,

represents the triangular condition for the non-vanishing 3-j symbol in the reduced matrix

element on the left-hand side of equation (1).

The double intershell operator w(κ1k1)x
̺ (sℓ, sℓ′) is a unit tensor operator, and it is defined

by its reduced matrix element

〈sℓ′′‖w(κ1k1)(sℓ, sℓ′)‖sℓ′′′〉 = δ(ℓ′′, ℓ)δ(ℓ′, ℓ′′′). (5)

In table 1 the possible ranks of the relativistic effective double tensor operators are

presented. In general, there are two separate cases for each of the two possible ranks κ1 = 0, 1.

Namely, for κ1 = 1, the parity of κ1 + k1 + x is distinguished since the even parity of this sum

of operator ranks guarantees the Hermiticity of the operator (see [6]).
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Table 1. Tensor operator ranks.

x κ1 + k1 + x = even κ1 + k1 + x = odd

1 (01)1 (10)1 (12)1 (11)1

2 (02)2 (11)2 (13)2 (12)2

3 (03)3 (12)3 (14)3 (13)3

4 (04)4 (13)4 (15)4 (14)4

5 (05)5 (14)5 (16)5 (15)5

6 (06)6 (15)6 (17)6 (16)6

7 (07)7 (16)7 (18)7 (17)7

3. Coupling of intershell double tensor operators

Double tensor operators act within the spin and orbital spaces simultaneously, and in the case

of intershell objects the rule of their coupling has the form

w(κ1k1)x
ρ (sℓ, sℓ′)w(κ2k2)y

η (sℓ′, sℓ)

=
∑

zζ

∑

κ3k3

(−1)x−y−ζ+κ3+k3+2s[z, x, y]1/2[κ3, k3]

(

x y z

̺ η −ζ

)

×
{

κ2 κ3 κ1
1
2

1
2

1
2

} {

k2 k3 k1

ℓ ℓ′ ℓ

}

{

κ1 k1 x

κ2 k2 y

κ3 k3 z

}

w
(κ3k3)z
ζ (ℓℓ). (6)

It is seen that the rule of coupling of two double intershell tensor operators in equation (6)

is the generalization of the well known commutator presented in [10] for the intrashell objects.

Indeed, only the expression in equation (6) remains from the whole commutator since, for the

product of two operators with reversed order, the resultant tensor operator, w
(κ3k3)z
ζ (ℓ′ℓ′), has

vanishing matrix element among the states of fN configuration. This is clearly seen when all

tensor operators are translated into the language of second quantization.

The tensor operator on the right-hand side of equation (6), acting within the fN shell,

is the effective operator. This means that equation (6) is very useful for performing the

so-called partial closure in the derivation of the transition amplitude. The ranks of the

final effective operator w
(κ3k3)
ζ (ℓℓ) are determined from the triangular conditions for the non-

vanishing coupling coefficients in equation (6).

4. Relativistic amplitude of f ↔ f transitions

The intensity of f ↔ f transitions in rare earth doped materials is described in the standard

way by the model that is based on the perturbation expansion performed for the Hamiltonian

H = H0 + λVCF (7)

where H0 represents the zeroth-order Hamiltonian, and VCF is the crystal field potential that

perturbs the free-system approximation. The perturbing operator in equation (7) is defined

in such a way that it mixes into the states of fN configurations new components of opposite

parity, namely

VCF ≡ PVCFQ + QVCFP (8)

where Q projects onto the orthogonal complement of P .

Due to the parity requirements the first-order contributions to the transition amplitude of

electric dipole transition vanish. The first non-zero terms are of second order, and they have
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the form of products of the matrix elements,

Ŵ2
λ =

∑

Xx

{〈'0
f |D(k)

q |Xx〉〈Xx|QVCFP |'0
i 〉/(E

0
i − E0

Xx)

+〈'0
f |PVCFQ|Xx〉〈Xx|D(k)

q |'0
i 〉/(E

0
f − E0

Xx)} (9)

where Xx represent the states of intermediate excited configuration X that has the opposite

parity to the parity of fN . In terms of the unit tensor operators the electric dipole radiation

operator has the form

PD(k)
q Q =

∑

i

〈ℓ|rki |ℓ
′〉〈ℓ‖C(k)

i ‖ℓ′〉u(k)
q,i(ℓ, ℓ

′) (k = 1) (10)

with the crystal field potential

QVCFP =
all

∑

t,p

B t
p

N
∑

i

〈ℓ′|r ti |ℓ〉〈ℓ
′‖C(t)

i ‖ℓ〉u(t)
p,i(ℓ

′, ℓ) (11)

where B t
p are the so-called crystal field parameters.

In order to formulate the relativistic model of f ↔ f transitions the procedure presented in

equation (1) has to be used, and the coupling of double tensor operators has to be performed in

accordance with equation (6). Taking into account the two terms that determine the transition

amplitude at the second order (equation (9)), the relativistic effective operators have the form

{DV + VD}R =
√

3
∑

tp

B t
p[t]1/2

∑

κ1=0,1

κ1+1
∑

k1�|κ1−1|

∑

κ2=0,1

κ2+t
∑

k2�|κ2−t |

∑

ℓ′

ε(ℓ + 1 + ℓ′)

×ε(ℓ + t + ℓ′)Aκ1κ2

k1k2
(tℓ′)

×
∑

κ3=0,1

t+1
∑

k3�|t−1|
a

κ3+k3
∑

k�|κ3−k3|
[k]1/2

∑

q

(−1)κ3+k3+t−q[κ3, k3]

×
(

1 t k

̺ p −q

) {

κ2 κ3 κ1
1
2

1
2

1
2

}

×
{

k2 k3 k1

ℓ ℓ′ ℓ

}

{

κ1 k1 1

κ2 k2 t

κ3 k3 k

}

W (κ3k3)k
q (ℓℓ) (12)

where A
κ1κ2

k1k2
(tℓ′) is defined by the angular and radial terms in the following way:

A
κ1κ2

k1k2
(tℓ′) =

2
∑

i1,i2

β1ℓ′ℓ
κ1k1

(ji1j
′
i2
)β tℓℓ′

κ2k2
(j ′

i2
ji1)R

1(ji1j
′
i2
)Rt (j ′

i2
ji1)

×〈ji1‖C(1)‖j ′
i2
〉〈j ′

i2
‖C(t)‖ji1〉 (13)

and i1 and i2 number j± and j ′
±; the angular factors and the radial integrals are defined by

equations (2) and (3). In addition, the factor a in equation (12) is equal to 2 when the parity

of appropriate ranks of operators is the same; otherwise it vanishes, namely,

a =

{

2 if p(κ1 + k1 + 1 + κ2 + k2 + t) = p(κ3 + k3)

0 otherwise.
(14)

The expression in equation (12) determines the amplitude of the f ↔ f transition defined

at the second order of perturbation expansion with the inclusion of the relativistic effects. The

tensor operators W (κ3k3)k
q (ℓℓ), as double tensor operators, act within the spin and orbital spaces;

they include in an effective way the relativistic effects and, as objects acting within the 4fN

shell, they are effective operators. Summarizing, the operators that determine the transition

amplitude are doubly effective double tensor operators.
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5. Discussion

The effective operators defined in equation (12) generalize the standard Judd–Ofelt effective

operators, and the reduction to the non-relativistic case is easily seen when all the ranks of

operators acting within the spin space are equal to zero. Indeed, setting κ1 = κ2 = κ3 = 0

results in k1 = 1, k2 = t and k3 = k. In such a situation, the rank of the effective unit tensor

operator is even, the spin-dependent 6-j symbol in equation (12) is a number, 9-j is reduced

to a number and the remaining 6-j has the form
{

t k 1

ℓ ℓ′ ℓ

}

(15)

which, together with the 3-j symbol, gives exactly the angular part of standard Judd–Ofelt

effective operators. The contributions that are represented by the terms with κ1, κ2, κ3 = 1

describe the effects that are new in the spectroscopy of rare earth ions in crystals. The model of

f ↔ f transitions introduced here gives for the first time the opportunity to establish, already

at the second order, the importance of relativistic effects in relation to the standard Judd–

Ofelt terms. Indeed, even purely crystal field effects are described here in the language of the

relativistic approach.

There is no a priori information on the relative magnitude of various terms contributing

to the transition amplitude, and therefore to establish the hierarchy of important terms an

extensive numerical analysis is required; work along this line is in progress.
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