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The analogy between the finite-dimensional spin representatiohSO(2n) and

the infinite-dimensional representatianof Sp(2n,R) is made precise. It is then
shown that this analogy can be extended so as to provide a precise link between
each finite dimensional unitary irreducible representation of $p@hd a corre-
sponding infinite-dimensional unitary irreducible representation of 8{2 The
analogy shows itself at the level of the corresponding characters and difference
characters, and involves the use of Schur function methods to express both char-
acters and difference characters of S@(2and Sp(2,R) in terms of characters of
irreducible representations of their common subgroup)U(The analogy is ex-
tended still further to cover the explicit decomposition of not only tensor products
of A and A with other unitary irreducible representations of S®)2and

Sp(2,R), respectively, but also arbitrary tensor powersAdoandA. © 2000
American Institute of Physics. [S0022-2488)0)00307-§

[. INTRODUCTION

The symplectic group Sp(B) is well known as the dynamical group of the isotropic three-
dimensional harmonic oscillatdr=or a single particle the even-parity states span a single infinite-

dimensional irreducible representation commonly derfoteds (3 (0)) (or A ) while the odd-
parity states span the irreducible representatipfi)) (or A_). Collectively they span a single

irreducible representatio of the metaplectic group M), thecovering group of Sp(&). In
general the group Sp(2R) is of relevance to symplectic models of nuéland certain mesos-
copic systems such as quantum dit# central problem in making applications is the resolution
of tensor powers of the irreducible representattonThe tensor powers of the basic irreducible
representatiord of Sp(2n,R) have some properties closely analogous to those of the basic spin
representations of the special orthogonal group 3Q(Zhe objective of this paper is to demon-
strate and exploit a variety of close analogies between irreducible representations of) $0¢2
Sp(2n,R).

The study of spin representations of the orthogonal groups in a space of arbitrary dimension
was initiated by Brauer and Weyl. In their seminal pdpan this topic they showed that in the
case of the orthogonal group QfR the spin representation of dimensiofA @ith characterA
decomposes on restriction to the proper orthogonal group ®O{&o a direct sum of two
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irreducible representations each of dimensidh 2with charactersA, and A_ . Murnaghafi
introduced the notion of a difference spin charactér The characters of the spin representations
A and A. , together with that ofA”, were given by Littlewood. The relevant formulas for
SO(2n) take the form:

n

A=A++A_=i1:[l (xM24 %712, (1.1a
n

A”=A+—A,=i]:[l (xM2—x1?2), (1.1b

wherex; andxi’l fori=1,2,..,n are the eigenvalues of an arbitrary group element of DAt
the identity element we havex;=1 fori=1,2,..,n so that dimA =2" while dimA”=0.

Just as the spin representations of S@)(2re double-valued and are true representations of
the covering group Spin(®, so the symplectic group Spf2R) possesses certain metaplectic
representations which are double-valued and are true representations of the covering group
Mp(2n). These metaplectic representations are encountered in the study of the one-dimensional
harmonic oscillator and its generalizations and are variously known as harmonic represehtations,
oscillator representatiortS, and Segal-Shale—Weil representatibhsThey are the infinite-
dimensional lowest weight representations associated with even and odd parity states of the har-
monic oscillator. Their characters are denoted herelbyand A _, respectively, and in what
follows it will be shown that formal expressions for the sum and difference of these characters of
infinite-dimensional irreducible representations of Sp(® are given by

n

Z=Z++Z,:i1:[l (x Y2—x}2)=1, (1.29
n

Z”zL—Z_:il:[l (x~ V24 x2) -1, (1.2b

where nowx; and xi’1 for i=1,2,..,n are the eigenvalues of an arbitrary group element of
Sp(2n,R).

Some progress has been made on the calculation of various plethysms, that is to say symme-
trized powers, of not only\, A, , andA”, but alsoA, A ., andA”. In particular the symmetric
and antisymmetric squares afandA” are given by*3

A@{2p=[1"] +[1") 4+ 2, (A" R[4 ), (1.39
A®{12}=2 ([ln7174>(]+2[1n7274x:|+[1n7374>(]), (le)

x=0
A'©{2}=[1"],+ 2, (-1, (1.39

0

A//®{12}:[1n]_+20 (_1)1+X[1n—1—X]’ (130)



5004 J. Math. Phys., Vol. 41, No. 7, July 2000 R. C. King and B. G. Wybourne

where[1X] are the characters of theh fold antisymmetrized power of the defining irreducible
representatiofl] of SO(2n). These representations are irreducibleKerl,2...n—1, while for
k=n we have[ 1"]=[1"] +[1"]_.

Similarly, the symmetric squares a&f andA” are given by*~1¢

[’

Z®{2}=<1(0)>+X20 (1(1+x)), (1.4

Ae{1%1=(1(0))* +X§0 (1(1+x)), (1.4b

o0

Z”®{2}=<1(0)>+<1(0)>* +x§=:0 (—(1(1+4x))—(1(3+4x))+2(1(4+4x))), (1.40

A"®{1% = 2_‘,0 (—(L(1+4x))+2(1(2+4x)) — (1(3+4x))), (1.40

where(1(m)) are characters of certain harmonic series infinite-dimensional irreducible represen-
tations of Sp(®,R) and an asterisk¥() signifies the associdfeof an irreducible representation of
Sp(2n,R).

Comparison 0f1.1) and(1.2) gives a formal connection between the characteedA” of
SO(2n) and the characters andA” of Sp(2n,R). The formal connection is brought home rather
forcibly in (1.3) and(1.4) through an analogy between the symmetrized squardsasfdA”, and
those ofA andA”. To be more precise, the analogies are betweandA” and betweer\” and
A. Furthermore the right-hand sides(af3) and(1.4) signify additional analogies betwegh"]
and(1(0)), betweer[1"]_ and(1(0))*, and, finally, betweef1" '] and(1(t)) for t>0.

These are but the tip of an iceberg. The full set of analogies between the finite-dimensional
irreducible representations of SG(Rand the infinite-dimensional irreducible representations of
Sp(2n,R) which we wish to expose here take the form

[MYN'] = (m(\) if Nj=m, (1.59
[MYN' T4 (oyn e (MN)) if - Aj<m, (1.5b
[MYA'T- e (MY if - Aj<m, (1.59

[A;mYN ] e (Bym(h)) if Nj<m, (1.50
[A;MYN' ]y (BymN))Y*if - Nj<m, (1.50

where the notation used here to specify the characters of the various irreducible representations of
SO(2n) and Sp(a,R) will be explained fully in later sections.

The analogieg1.5 are made precise by evaluating the relevant characters of bothn$O(2
and Sp(2,R) at the level of their maximal compact subgroupn))( The characters of irreducible
representations of W) are themselveS-functions{\}, and in the context of1.5) a crucial role
is played by various infinite series &functions*®*7~1°

The first step in this direction is made in Sec. Il by expressing each of the charAcikfs
A, andA” in terms ofS-function series. The second step is that of generalizing these results to the
case of all the characters appearing on both side€l&. As a means to this end, relevant
notational devices, both algebraic and diagrammatic, are introduced in Sec. lll. These are then
used in Sec. IV in reformulating the known branching rules for the decomposition of irreducible
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representations of both SOt and Sp(2,R) on restriction to Uf). By virtue of some quite
subtle S-function identitie$® and modification ruléd precise analogies of the forifl.5) are
arrived at.

It then comes as no surprise that the analogy at the level of characters between the finite-
dimensional irreducible representations of S@Y2nd the infinite-dimensional irreducible repre-
sentations of Sp(2,R) can be built upon to establish analogies between the decompositions for
each of these groups of tensor products, tensor powers, and symmetrized tensor powers, known as
plethysms. This development is initiated in Sec. V where we content ourselves with establishing
results for certain tensor products and powers involdng\”, A, andA”. The extension to the
case of plethysms, generalizifi$.3 and(1.4), is to be the subject of a separate paper.

II. BASIC SPIN DIFFERENCE CHARACTERS AND HARMONIC CHARACTERS

In the case of both SO{® and Sp(2,R) the characters of their irreducible representations
may conveniently be obtained by expressing them in terms of characters of irreducible represen-
tations of their maximal reductive subgrouprl)( The covariant tensor irreducible representations
of U(n) are specified by partitions=(\1,\5,...,A,) iNto no more tham nonvanishing parts.

Their characterg\}, are just the Schur functiors (x1,%,,...,X,) of the eigenvalues; of the
relevant group elemeri of U(n). The contravariant tensor irreducible representations af) U(

are just the contragredients of the covariant irreducible representations. They have ch@ﬁcters
given bys, (x; 1,x, %,... X, 1). The particular one-dimensional irreducible representation af) U(
in which each group elemer is mapped to (ded)" for some fixed rational number has
charactere” wheree={1"}=s;n(X1,X2,...Xy) =X1Xo" X, -
With this notation, the characters of the two basic spin irreducible representations afilSO(2
are given by
Ay =e V{1 {1 {4, (2.1a
A_=e M{1" G H{1" {1 B+, (2.1

Similarly, the characters of the two basic harmonic irreducible representations of,8)(are
given by

K, =eVH{0}+{2}+{4}+---), (2.29
A_=eY{1}+{3}+{5}+- ). (2.2b
SettingA=A, +A_ andA”=A, —A_ we have

A= e VH{OM+ {1} + {12} +---+{1), (2.39
A"=(—1)"e Y30} — {1} + {12} +---+(—1)"{1"}). (2.30

In the same way, setting=A_,+A_ andA”=A,—A_ we have
R= {0+ {1}+{2}+-), (243
Rr= {0} —{1}+{2} ). &9

The use of the generating functidns

Q=m2:0 {1m}=xljl(1+xi). (2.53
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L=m§0 <—1>m{1m}=x[[l (1-x), (2.5b
|v|=m220{m}=xf=[l (1-x)71, (2.50
P=m220<—1>m{m}lejl<1+xi>—1, (2.50

in (2.3 and (2.4), together with the fact thae*?=TI"_, x"*/2, then leads to the character
formulas

n
A= 6—1/2Q:Hl (Xi1/2+ Xi—l/2)' (2.6a
=
n
Arrz(_l)ne_*I/ZL:i];[l (Xi]-/Z_Xi*llz), (26b)
and
n
Z: El/ZM — I]:];L (Xi—l/Z_ Xil/Z)—l, (273
n
= El/zp:iﬂl (Xi_1/2+xi1/2)_1’ (2.7b

where in each case the final expressions are the ones quotédlirand (1.2). Formally, the
passage fron{2.4) to (1.2) as in(2.7) depends on the convergence Mfand P. This requires
|x;|<1 for alli=1,2,..,n. Thus(1.29 and(1.2b are to be viewed as formal expressions which
when expanded in positive powersxffor all i=1,2,..,n define the sum and difference of the
basic harmonic characters of Sp(R).

It should perhaps be pointed out thiat andA _ are the characters of the irreducible repre-
sentations of SO(2) corresponding to fundamental finite-dimensional highest weight irreducible
representations of the underlying simple Lie algdbra Their highest weights in the fundamental
weight basis, thes-basis, and the Euclidean orthonormal basis, stasis, are given By

A+: wn—lz[%!%r"-!%ni]! (283
At wp=[3,3..5,7 3l (2.8D

On the other hand\ , andA _ are the characters of irreducible representations of B
corresponding to nonfundamental lowest weight irreducible representations of the underlying
simple Lie algebraC,,. Their lowest weights are given in the ande bases b}

Art Fwn=(3,7....3,3) (2.99

At —opat 3on=(3.5..03.3). (2.9
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The fact that the components of the lowest weights indgHgasis are not integers is an indication
of the fact that the corresponding irreducible representations are infinite-dimensional.

Of course there also exist highest weight irreducible representations with chalzigtarsd

A _ that are contragredient to those irreducible representations having chafactersiA _ . The
highest weights of these contragredient irreducible representations are given by

Ay —Fon=(—3,~ % 3,7 2, (2.108
A o= Fon=(=3,=3,...m5,-3), (2.108
and their characters take the following form:

X, = Y40} +{2) +{4}+--), (2113

K=& Y31} +{3}+{5} +). (2.11h

As usual, settingT=Z_++Z_, andl_”:Z_+—Z_, we then have

K= {01+ {1} +{2}+- ), (2123

K= Y20}~ {1} +{2}+--). (2.12h

Replacingx; by x; ! in the generating function®.5¢ and(2.5d to give M andP, respectively,
and using these if2.12) then yields formulas almost identical to those(df2), namely

n

32671/2,\7:1‘[ (Xi1/2_ Xfllz -1 (2.133
i=1

o n

Z”:€71/2P:H (Xil/2_|_xi71/2)71_ (213b
i=1

Formally, once again, the passage fr(@rl2 to (2.13 depends on the convergencehdfandP.

This requireé,xi’l|<1 foralli=1,2,..,n. Thus the final formulas df2.133 and(2.13b are to be
viewed as formal expressions which when expanded in negative powers &ir all i
=1,2,..,n define the sum and difference of the contragredients of the basic harmonic characters

of Sp(,R).

lll. PARTITIONS, YOUNG DIAGRAMS, AND S-FUNCTIONS

Before attempting to establish the existence of analogies of the type analadiest is
necessary to develop a number of notational niceties. These are based on the use of partitions to
specify a variety of Young diagrams, both standard and nonstandard, as well as corresponding
S-functions and series @-functions?

Each partitionh =(\1,\,,...,\ ) of weight|\| specifies a Young diagraf" consisting of
IN| boxes arranged ip=1(\) left-adjusted rows of lengths; fori=1,2,..,p. The Iengthsxj’ for
j=1,2,..,q of the g=Db(\) top-adjusted columns df* serve to define the conjugate partition
N'=(N{,A\5,..\g). The number of boxes=r(\) on the principal diagonal df is known as
the Frobenius rank of the partition In Frobenius notation

al a2 e ar
A= b, b, - b,
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wherea; andb; fori=1,2,..,r are the arm and leg lengths, respectivelyFdfwith respect to its
main diagonal of length. Typically, for A = (5443)=(54?3), with p=/(\)=4 andgq=b()\)
=5, we have\’ =(44431)=(4331) and in Frobenius notation

4 2 1
Mlz 21
with r=r(\)=3 and|\|=16. This is illustrated diagrammatically by

| | 1PaPaaAs = ]
= prassad bl 22
b2{ la (3.1

= =
ba

oo

I— >
e oo ho =

As has already been seen in Sec. Il partitionshave a useful role to play in specifying the
characters{\}, of corresponding irreducible representations of}J(where these characters are
S-functions. In what follows, in addition to tH&-function serieQ, L, M, andP, defined in(2.5),
we encounter several othet$>17-19

A= 2 (-1}, B=2 {8}, C=2 (-2}, D=2 {6, (3.2a
ae A BeB yel SeD

E= Eg (—1)lel*reN2rer - g= Eg (—1)Uel=reN2y (3.2b
V=2 (-D&{g, X=2 {&, (3.29
teX fe X

where, in the notation exemplified (8.1, «, B, ¥, 6, &, and¢ are characterized by the conditions
by=a,+1 for k=1,2,..,r(a), Bj even forj=1,2,..,b(B), ay=by+1 for k=1,2,...r(y),
even fori=1,2,..,/(6), a,=by for k=1,2,..,r(e), and|&| even, withb(¢£)<2.

The S-function series satisfy the following conjugacy conditions:

A'=C, B'=D, E'=E, G'=G, M'=Q, L'=P, (3.3
and the identities:
AB=CD=EG=LM=PQ=1, AX=C', AV=C, AQ=G, AL=E=G", (B4

where the superscript on any S-function seriesS indicates thatS" is obtained fromS by
mutiplying each tern{c} in S by (—1)"(?), wherer (o) is the Frobenius rank of af-

Now let u be a partition into no more thgm parts with its largest part no greater thgynand
let » be any other partition. Then defilé*»” to be the diagram formed by placikg immedi-
ately below thepth row of F#, and defineF#la” to be the diagram formed by placing”
immediately to the right of thgth column ofF#. In the first case all the rows are left-adjusted to
the same vertical line, and in the second case the columns are top-adjusted to the same horizontal
line. The corresponding-functions are denoted bjy,,»} and{u;qv}. However the diagrams
Fp? and F#la” may not be standard and in such cases it will be necessary to reorder their rows
and columns, respectively, in accordance with the repeated use of the following modification

rules®??

{)\ll"'l)\i1)\i+ll"'}:_{)\11"'1)\i+l_11)\i+11"'} fOI’ i:1,2,..., (353

NN N == N IN + 1,3 for j=1,2,... (35D
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These modification rules owe their existence to the following determinantal expansions:

=Y =[N+ =[N

where as many trailing zeros as one may wish may be added to the parenaf\’.

(3.6

In the present context, the repeated us€3ddg is illustrated in the casp=(41), p=3, and

v=(531%) by

{41,3531%} = —{432°1%} .

—
—

[ ]eofeo]~

[y o e

[ fcoeom]~

3.7

where the labeling of boxes has been used to emphasize the fact that the modification rules may be
realized by wrapping the various rowsef aroundF# in the form of continuous strips. Each strip
contributes a sign factor{1)*, wherex is the increase in the number of rows the strip occupies

as a result of the wrapping process. If the wrapping process leads to a nonstandard diagram then

the result is null, that igu,,v}=0.

Similarly if w=(2%1), q=3, andv=(4321) then the use of3.5b leads to

3

4]

3

{2%1;3432%1} = — {764} :

PRI

|b—li—‘l—l>—lH

4]

[y
[
[

(3.9

where now it is the columns d#” that are wrapped arourfei in the form of continuous strips.

Each strip contributes a sign factor (L)Y, wherey is the increase in the number of columns the
strip occupies as a result of the wrapping process. As a second example of this type it is instructive
to consider as beforg=(221) but nowq=2 andv=(5421):

2134

5]

2(314

{2%1;, 5421} = — {764} :

2

[,_.,_.,_.,._.

5]

—
[ &}
W

L S

(3.9

The significance of this example is that it is possible to view the passag@.& from
{221;,4321) to —{764 as one from{221;,4321} first to {221;,5421 and then, as ir(3.9),
from {221;,5421 to — {764 . The first step just involves sliding the portionff below the main

diagonal one step in a northwesterly direction:

3[4]

{2%1;3432%1} = {2%1;, 5421} :

|._.._.,_..,....,_A
N NN

[ 348 g

lp—d»—u—An-a

(3.10

The identity {221;343221}={221;,5421 illustrated in (3.10 involves the partition (432)
e A, and its conjugate (542¥)C, where the setgl andC are those associated with tBeunction
seriesA andC, respectively, defined if8.29. The result(3.10 can be generalized immediately

to the case of allxe A, or equivalently allyeC, giving the identity
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{wignt=(=D"Npiq1a} with a=y'eA, (3.11)

which will be used in Sec. IV.
It is also necessary to recall that each pair of partitiarend » specifies a composite Young
diagramF#¥ which may be variously drawn as shown:

1
H3 1)
12 V3
F#;V — J J — (241 m or
V2 M3
V3 12
H

(3.12
where the last form involves a total of preciselyows within the context, as here, of characters
of U(n). In fact for anyq= w4, the corresponding charactgs; v} of U(n) is given bye™ 9{\},
whereF?* is formed fromF#¥ by taking the complement of the porti¢it in annx q rectangle
and placing it the left oF* to give F(@"#iq”. Typically, in U(8) and choosing=6, we have

[ 1] 11
[ |

{422,532} = ¢ ®{11,986%42%} : =e®

H m (3.13

More generally, our notation for characters offl)(is such that for anyj=u, we have

{wivi=e % Q" u);qvh (3.14

where it may be necessary to invoke a modification of the type illustrat¢8.8n in order to
standardize the final result.

IV. BRANCHING RULES FOR SO(2n)—U(n) AND SP(2N,R)—U(N)

The branching rules for the restrictions from S@Jj2o U(n) and from Sp(&,R) to U(n)
appear at first sight to have little in common. For example, in the case of the restriction
SO(2n)—U(n) it is known that if\ is a partition into fewer tham parts, thel’

[A]aEz {&NBE, (4.1)

where the summation is over all partitiofior which \/{ is nonzero, where the slagh signifies

a quotient of Schur functions, and quite generdfly, v} signifies the character of an irreducible
mixed tensor irreducible representation ofn))( On the other hand, for the restriction from
Sp(2n,R)—U(n) we havé

(zk(N))— €2 {\J*D, 4.2

where{\ ¥ is a signed sequence of Schur functiohéu! such thafu] is equivalent to+[\]
under the modification rules of ®). Here each Schur functiofu} is the character of an irre-
ducible covariant tensor irreducible representation afi)uU(

The complete set of inequivalent unitary finite-dimensional irreducible representations of
SO(2n) have characters which may conveniently be specified by
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[A] for Aj<n, [A]. for Aj=n, [A;N]. for Ajsn. 4.3

The relevant branching rules for the restriction from S@)(#o U(n) which serve to define these
characters take the forfh

[)\]=E§{E)\/§B} for Aj<n, (4.43
[D;M]=§§:51{E(M/§B)'X} for pi=n, (4.4b

[D;M]"=(—1)”Eg e YE(ulEB)- V) for ul<n, (4.49

[A;>\]=2g e V& (NEB)-Q for Nj=n, (4.40)

[A;x]”=(—1)”2§ e VAE(N¢B)-LY for N|<n, (4.4

where

(Ne=[0;p]e=3([0;x]=[0;u]") for Nj=n, (4.5
[AN]=3([A;N]=£[A;N]") for Njsn, (4.5b)

and in the case ;=n it has been convenient to wrife.]=[1";,x]=[0;x] with x1<n.

In order to rewrite the formulagt.4) in a form more suited to the exposure of the analogies
we are seeking it is necessary to invoke the following:

Lemma 4.1: Let \ be an arbitrary partition and S an arbitrary S-function series, then with B
asin (3.29,

2§ {£(\1¢B)S}={\;AS} B, (4.6)

where A=B~ 1.

Proof: The crucial observation is that, as shown elsewhefer all partitions  we have
D/¢=({/D)D. Either the use of an entirely analogous argument Witreplaced byB, or by the
simpler expedient of taking conjugates, one deducesBhat (£/B)B. Using this together with
the fact thatBA=1 allows us to deriveé4.6) as follows:

Eg {E(A/§8)5}=2§ {Fg;(g/B)BAS}=E£ {W;(B/g)AS}zzg {NASHB,  (4.7)
where the last step depends on the linear extension &dmB of the product rule
{m; v}~{a}=2g (- (alO)}. (4.9

Applying Lemma 4.1 td4.4), and using the identitie€3.4), gives

[N]={\;AL-B for \j<n, (4.93
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[O;ul=€ Hu,C'}-B for wis<n, (4.9p
[O;u]"=(-1)"e Y{u;C}-B for wi=n, (4.99
[A;N]=€e YY\;G}-B for A\]=n, (4.99
[AN]"=(—1)"e YA\;G}-B for \j=<n. (4.90

Introducingm with m=\,, we can then use the notation (.14 to arrive at the formulas:

[\]=€e ™(m"\);nA}-B for Aj<n, (4.103
[N]=e ™(m"\);A}-B for Aj=n, (4.10b
N]"=(—1)"e ™{(m"\);,A}-B for \j=n, (4.100
[AN]=e ™" YA (m"/\);,G}-B for \j<n, (4.109
[AN]"=(—1)"e ™ Y2A(m"/\);,G'}-B for A\j=<n. (4.108

In the case of the passage fram9b) and (4.99 to (4.10h and(4.109, respectively, it has also
been necessary to note that, as a consequen@1dj, for all yeC we have

{wiyh=e ™ {m=D)Yw)im-17t= (=D @e ™ H(m=1)" u); ma}
=(=D e ™ (M1 p)imat=(—1)" e ™ {(m\;pat, (41D

with a € A.
It follows from (4.10 and (4.5) that

[N]=e ™ (m"\);WAL-B for Aj<n, (4.12a9
[Ny =e ™(mY\); A%M}.B  for \j=n, (4.12h
[N]_=e ™ (mY\); A%M}.B  for \j=n, (4.120
[AN] =€ ™ Y2A(m"\);,G*M}.B for \j=<n, (4.129
[AN]_=e ™ Y2A(m"\);,G*M}.B for \j<n, (4.12¢

or equivalently
[m'N']=€e ™\ ;,A}-B for Aj=m, (4.13a9
[MYN ] =€ ™\ A®RML.B  for Aj<m, (4.13h
[MYN]_=e M\ AL B for Aj<m, (4.139
[A;mYN ] =e ™ Y2\ GML.B for \j<m, (4.139
[A;mYN']_=e ™ Y2\ GOM1.B for \j<m, (4.139

where A has been replaced by"/\’ and use has been made of the fact thaf/(m"/\"))
=\'. For all Schur function serieS we have introduce®®™ and S°®(" such that



J. Math. Phys., Vol. 41, No. 7, July 2000 Analogies between irreps of SO(2n) and Sp(2n,R) 5013

S® if n is even
geo(n) —
S if n is odd;
and
coeln) S® if n is even it
~|S® if nis odd, 4.19

whereS® andS° are the terms of even and odd Frobenius rank, respectively, in the Schur function
seriesS.

The remarkable analogy beween these character formulas fom$@(@l those of Sp(2 R)
is exposed by recalling that the signed sequefisgs in (4.2) can be expressed rather succinctly
in terms of our series of Schur functions. This has its origin in Newell's formul#iorof the
modification rules of OK). One has to distinguish both between even and odd valuesasfd for
evenk between those partitions having fewer thark/2 or preciselyk/2 parts. The relevant
expressions have been given by Rostel.? When used in4.2) they imply

(m(A\))y=€m {\,nC}-D for Nj=m, (4.159
(m\))=€M {\,,C%-D for Aj<m, (4.15bh
(M) =€™ {\,,C%-D for Aj<m, (4.159
(A;m(\))y=€em"2 {\,,G®-D for Aj=<m, (4.159
(A;m(\))*=€e™ Y2 I\, G%-D for Aj=<m, (4.158

where as befor€€ andCP° are the even and odd Frobenius rank term& jiwhile G® andG° are
the even and odd Frobenius rank term&inin (4.150d and(4.159 it has also been convenient in

the casek=2m+1 to denote(k/2(\)) by (A;m(\)) in order to emphasize the analogies with
(4.139 and(4.13e.

The analogy(1.5) that we were seeking between the finite-dimensional irreducible represen-
tations of SO(2) and the infinite-dimensional irreducible representations of 8d{p has thus
been made explicit through the analogous expressiérisy) and (4.15 for the corresponding
characters. To summarize, the analogy involves replacing the paititigrthe complement of its
conjugate with respect tar(") on the left-hand sides, replacirg by e P and taking conjugates
on the right-hand sides, noting the conjugacy relatioh5=C, B'=D and (u;y,v)’
=(u',mv'), and taking care to distinguish between the cases for whisheven and odd.

V. TENSOR PRODUCTS

An earlier study® of the decomposition of tensor or Kronecker products of irreducible repre-
sentations of SO(2) has revealed that

AXIN]=[ANQ], +[ANQ]. for Aj<n, (5.13
AX[N],=[ANQ], for Aj=n, (5.1
AX[N]_=[A;NQ]_ for \j=n, (5.19

AX[ANL =[(N/Q](4y for Aj=n, (5.10

AX[AN]-=[(O;M)/Q](—y for \i=n, (5.1e
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A"X[IN]=[ANL], —[ANL]. for Aj<n, (5.1f)
A"X[N]y=[A;N/L], for Nj=n, (5.19
A"X[N]_=—[A;NL]. for Nj=n, (5.1h
A"X[AN] =[(O;N)/L] 4y for Nj=n, (5.1i)
A"X[AN]-=—=[(O;N)/L]—y for Nj=<n, (5.1)

where

[u] if wi<n

[u]=)= (ul. if ul=n. (5.2

In the case of Sp(&,R) the analogous formulas take the form
Ax(m\))={(A;m(\-M)p)+(A;m(N- M)y for  Aj=m, (5.39
AX(m(\))y=(A;m(\-M)y) for \j<m, (5.3b
Ax(m\))*=(A;m(\-M))* for Aj<m, (5.39
Ax(A;m\)=(m+1(A-M)pi gy for Aj=<m, (5.30
Ax(A;m\))*=(Mm+1(A-M)pe)®) for Aj<m, (5.30
A" (m(\)=(A;m(\-P) ) —(A;m(N-P))*  for Aj=m, (5.3f)
A (m(N)=(A;m(\-P)y) for Nj<m, (5.39
A (m\))* = —(R;m(\-P))*  for Aj<m, (5.30
A7X(B;m(\))=(Mm+1(\-P)piq) for Aj<m, (5.3i)
A"X(A;m(\))*=—(m+1(A-P)py)*) for Nj=<m, (5.3)

where - S), signifies that the produat- Sis to be evaluated in ) so that quite generally any
term (u),=0 if w1>p. In addition,

(p(p))* if wi<p

(*)=
Pl (p(w)) i wi=p.

(5.9

In the case of(5.1) all the characters on the left-hand side are well defined and standard
provided thain=X\; . Moreover, on the right every expression involves merely a quotient@ith
or L leading to a finite number of terms, all of which are necessarily standard inr§O{The
same cannot be said ¢5.2). First of all, even ifn=\; the associate characters signified by
(m(\))* and(A;m(\))* may not be standard. In fact they will be nullrif<k—\] wherek
=2m or 2m+1, as appropriate. Moreover, all the expressions on the right involve an infinite
number of terms by virtue of their dependence on products Mitbr P. In addition the associate
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characters on the right may be null for certain valuesdbr which the left-hand side is well
defined. This is the case, in particular, for m=\; for which all terms(---)* on the right-hand
side of(5.39 and(5.3f) are null, and may be omitted.

In order to derive the result®.3) it should be recalletithat

<%k<x>>><<%j<m>=2y RV 3 (k+]) (1)), (5.5)

where the coeﬁicientﬁeﬁ“ are the branching rule coefficients for the restriction fronk ®{) to
O(k) xO(j):

O(k+j)—0(k) X O(j): [V]HAE RMNIX[ ] (5.6)
Y23

In the special case of interest here we reqiirel with w equal to(0) or (1) for which[ «] is [0]
or [1]=[0]*, respectively. The corresponding branching rule takes the form:

O(k+1)—0O(k) X O(1): [y]_>mE:0 [v/m]x[0]*)", (5.7

Where[O](*)m=[0] or [0]* according to whethem is even or odd, respectively. It then follows
from (5.5 and(5.6) that

<%k<x>>X<%<0>>=m§V€n<%<k+1><x-m>>, (5.89
<%k<x>>x<%<0>>*=m%d<%<k+1><x-m>>. (5.8b

Recalling thatA =(2(0))+(%(0))* andA”=(2(0))—(%(0))*, and taking care over the lengths
of the various partitions appearing @ M andX\ - P and the distinction between a character and
its associate, one arrives @ 33—(5.3)) for k=2m and 2n+1 as appropriate.

If further evidence is needed of the close parallel between finite-dimensional irreducible
representations of SO} and infinite-dimensional irreducible representations of pR2 it is
provided by the following rather striking branching rule formulas.

First, it has been shown by Morff&®>that A andA” decompose as follows under the appro-
priate restriction:

SO(4mn)—SQ(2n) X O(2m):
A= D ([MYN T X [N]+H[MYN T X[N]*) + [m"/N'TX[\],
NIV <m NIV =m
(5.93
SQ(4mn)—SQ(2n) X O(2m):
A" |E> (—D)MIMYN X N]+H[MYN T X[NT)
NIV <m
+ > (—1)MmYN XN, (5.9b

NI(N)=m
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SQ(4mn+2n)—SQ(2n) X O(2m+1):

A— D ([A;MYN' T X[N]+[A:mYN T X[N]Y), (5.99

Nl=sm

SO(4mn+2n)—SQ(2n) X O(2m+1):

A" .E (—D)MEA;MYN T XN =[A;mYN ] X[N]*). (5.99
NIN)=m

Second, the defining property af which encapsulates the fact that Sp(R) and Ok) are a
complementary pair of mutually centralizing subgroups of $i(®) takes the form

Sp2nk,R)—Sp2n,R)x O(k):  A— >, (3k(N)}X[\]. (5.10
N

Settingk=2m and 2n+1 in turn, and consideration &, then yields, in direct analogy 5.1),
the following results:

Spl4mn,R)—Sp(2n,R) X O(2m):
B2 (mOVIX[A]

= ((M(N)) XN+ (m(N))* X[N]*) + (m(\))x[A],  (5.11a
NIV <m NI(N)=m

Sp(4mn,R)—Sp(2n,R) X O(2m):
A" (= 1)Mm(n))x[N]
A

N (= D)Mm)YXIA T+ (MY X[AT*)

t L (—1)Mmn))Y XA, (5.11h
N =m

Sp(4mn+2n,R)—Sp(2n,R) X O(2m+1):
A= (BimO)X[A]
= ((A;mO))X[NT+(A;m(N))* X[N]*), (5.119
Sp(4mn+2n,R)—Sp(2n,R) X O(2m+1):

K"Hg (—D)PMER; MmN XN ]

= 2, CONEEmMOD)XIN = (AimO0)* X[AT"). (5.11d
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These results offer us the opportunity of decomposing arbitkdhyfold, tensor powers oA,

A", A, andA”. This is exemplified in the case df andk=2m through a consideration of the
group—subgroup chains:

S 2n)XSQ(2n) xX---X SQO(2
om0 oy S0z (519

for which we have the branching rules

AXAX---XA
AL S [mynx a2 8) M= 2 dimpr N[0 ], (5.13
N

To derive the identity on the right-hand side one merely proceeds from then@®)(¢haracterd
to its SO(2h) content by both upper and lower routes. From the definiflbtig of A one can
introduce a set of @&n parameters;, fori=1,2,..,n anda=1,2,..,2m to give

n 2m
A=i1;[ 1;[ (xM2+x, 12, (5.14

The upper route involves setting,=x; for all i anda to give

m n 2m
A_>a];[1 (1—[ (Xl/2+X 1/2)) (H (X1/2+X 1/2) :(A)Zm, (515)

while the lower route depends first on the use of the branching(5u8a in which context it is
convenient to set;,= Xx;y, for all i anda, wherex; andy, denote eigenvalues of groups elements
of SO(2n) and O(2m), respectively, and then allowing all, to take the value 1. This corre-
sponds to restricting O(8) to its identity element. Using this if6.99 then gives the factor
dim, [\ ] appearing in(5.13).

Proceeding in an exactly similar way, but this time from the definitib@a of A, we obtain
by consideration of the group—subgroup chains

Sp(2n)XSp(2n)X---XSp(2
qunkK " n)SFign)ll)O(Zm) " n)>8p(2n), (.18

the branching rule identity

AX---XA

AX
A movyxpag B =20 dimgn A Km(n)). (5.17
A

Generalizing to the cade=2m-+ 1, and extending these results to bathandA” we obtain
the following complete set of formulas for the decomposition of tensor powets af, A, and
A"

(A)*2M=">" dimy [N ][M"/\'], (5.183
N

(A”)sz:; (—1)Mdimy [ N[N, (5.18H
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(A)X<2m+1>=; dimys ([N J[A; MY\, (5.189
(A M= 3 (= 1) Mdimgg o [AJ[A;mYN], (5.18d
and
(B)72m=2) dimpr[ A J(m(N)), (5.193
(A7) *2n=23 (= 1)Mdimgn[ X(mOV))", (5.199
(B)Em D=, dimgm [N J(A;m(V)), (5.199
(Z">X<2m+1>=§ (= 1)Mdimyp [N (A;m(N))" (5.190

Of these results(5.183 and (5.189 were first given by Baue?® and (5.193 and (5.19h were
given by Kashiwara and Vergrté but the others are new. The results themselves and their mode
of derivation all serve to confirm the depth and significance of the analogies spelled (&ui)in

One can go still further and decompose @tin-fold powers into their various symmetrized
powers known as plethysms whose symmetry is specified by partitook k. This task is
deferred to part Il of the present work.
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