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The analogy between the finite-dimensional spin representationD of SO(2n) and
the infinite-dimensional representationD̃ of Sp(2n,R) is made precise. It is then
shown that this analogy can be extended so as to provide a precise link between
each finite dimensional unitary irreducible representation of SO(2n) and a corre-
sponding infinite-dimensional unitary irreducible representation of Sp(2n,R). The
analogy shows itself at the level of the corresponding characters and difference
characters, and involves the use of Schur function methods to express both char-
acters and difference characters of SO(2n) and Sp(2n,R) in terms of characters of
irreducible representations of their common subgroup U(n). The analogy is ex-
tended still further to cover the explicit decomposition of not only tensor products
of D and D̃ with other unitary irreducible representations of SO(2n) and
Sp(2n,R), respectively, but also arbitrary tensor powers ofD and D̃. © 2000
American Institute of Physics. @S0022-2488~00!00307-8#

I. INTRODUCTION

The symplectic group Sp(6,R) is well known as the dynamical group of the isotropic three-
dimensional harmonic oscillator.1 For a single particle the even-parity states span a single infinite-

dimensional irreducible representation commonly denoted2,3 as ^ 1
2 (0)& ~or D̃1! while the odd-

parity states span the irreducible representation^ 1
2 (1)& ~or D̃2!. Collectively they span a single

irreducible representationD̃ of the metaplectic group Mp(6), thecovering group of Sp(6,R). In
general the group Sp(2n,R) is of relevance to symplectic models of nuclei4 and certain mesos-
copic systems such as quantum dots.5,6 A central problem in making applications is the resolution
of tensor powers of the irreducible representationD̃. The tensor powers of the basic irreducible
representationD̃ of Sp(2n,R) have some properties closely analogous to those of the basic spin
representations of the special orthogonal group SO(2n). The objective of this paper is to demon-
strate and exploit a variety of close analogies between irreducible representations of SO(2n) and
Sp(2n,R).

The study of spin representations of the orthogonal groups in a space of arbitrary dimension
was initiated by Brauer and Weyl. In their seminal paper7 on this topic they showed that in the
case of the orthogonal group O(2n) the spin representation of dimension 2n with characterD
decomposes on restriction to the proper orthogonal group SO(2n) into a direct sum of two
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irreducible representations each of dimension 2n21 with charactersD1 and D2 . Murnaghan8

introduced the notion of a difference spin characterD9. The characters of the spin representations
D and D6 , together with that ofD9, were given by Littlewood.9 The relevant formulas for
SO(2n) take the form:

D5D11D25)
i51

n

~x i
1/2

1x i
21/2!, ~1.1a!

D95D12D25)
i51

n

~x i
1/2

2x i
21/2!, ~1.1b!

wherex i andx i
21 for i51,2,...,n are the eigenvalues of an arbitrary group element of SO(2n). At

the identity elementI we havex i51 for i51,2,...,n so that dimD52n while dimD950.
Just as the spin representations of SO(2n) are double-valued and are true representations of

the covering group Spin(2n), so the symplectic group Sp(2n,R) possesses certain metaplectic
representations which are double-valued and are true representations of the covering group
Mp(2n). These metaplectic representations are encountered in the study of the one-dimensional
harmonic oscillator and its generalizations and are variously known as harmonic representations,3

oscillator representations,10 and Segal–Shale–Weil representations.11 They are the infinite-
dimensional lowest weight representations associated with even and odd parity states of the har-
monic oscillator. Their characters are denoted here byD̃1 and D̃2 , respectively, and in what
follows it will be shown that formal expressions for the sum and difference of these characters of
infinite-dimensional irreducible representations of Sp(2n,R) are given by

D̃5D̃11D̃25)
i51

n

~x i
21/2

2x i
1/2!21, ~1.2a!

D̃95D̃12D̃25)
i51

n

~x i
21/2

1x i
1/2!21, ~1.2b!

where nowx i and x i
21 for i51,2,...,n are the eigenvalues of an arbitrary group element of

Sp(2n,R).
Some progress has been made on the calculation of various plethysms, that is to say symme-

trized powers, of not onlyD, D6 , andD9, but alsoD̃, D̃6 , andD̃9. In particular the symmetric
and antisymmetric squares ofD andD9 are given by12,13

D ^ $2%5@1n#11@1n#21 (
x50

`

~@1n2124x#1@1n2324x#12@1n2424x# !, ~1.3a!

D ^ $12%5 (
x50

`

~@1n2124x#12@1n2224x#1@1n2324x# !, ~1.3b!

D9^ $2%5@1n#11 (
x50

`

~21!11x@1n212x#, ~1.3c!

D9^ $12%5@1n#21 (
x50

`

~21!11x@1n212x#, ~1.3d!
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where@1k# are the characters of thekth fold antisymmetrized power of the defining irreducible
representation@1# of SO(2n). These representations are irreducible fork51,2...,n21, while for
k5n we have@1n#5@1n#11@1n#2 .

Similarly, the symmetric squares ofD̃ and D̃9 are given by14–16

D̃ ^ $2%5^1~0!&1 (
x50

`

^1~11x !&, ~1.4a!

D̃ ^ $12%5^1~0!&* 1 (
x50

`

^1~11x !&, ~1.4b!

D̃9^ $2%5^1~0!&1^1~0!&* 1 (
x50

`

~2^1~114x !&2^1~314x !&12^1~414x !& !, ~1.4c!

D̃9^ $12%5 (
x50

`

~2^1~114x !&12^1~214x !&2^1~314x !& !, ~1.4d!

where^1(m)& are characters of certain harmonic series infinite-dimensional irreducible represen-
tations of Sp(2n,R) and an asterisk (* ) signifies the associate16 of an irreducible representation of
Sp(2n,R).

Comparison of~1.1! and~1.2! gives a formal connection between the charactersD andD9 of
SO(2n) and the charactersD̃ andD̃9 of Sp(2n,R). The formal connection is brought home rather
forcibly in ~1.3! and~1.4! through an analogy between the symmetrized squares ofD andD9, and
those ofD̃ andD̃9. To be more precise, the analogies are betweenD andD̃9 and betweenD9 and
D̃. Furthermore the right-hand sides of~1.3! and~1.4! signify additional analogies between@1n#1

and ^1(0)&, between@1n#2 and ^1(0)&* , and, finally, between@1n2t# and ^1(t)& for t.0.
These are but the tip of an iceberg. The full set of analogies between the finite-dimensional

irreducible representations of SO(2n) and the infinite-dimensional irreducible representations of
Sp(2n,R) which we wish to expose here take the form

@mn/l8# ↔ ^m~l !& if l185m, ~1.5a!

@mn/l8#1(2)n ↔ ^m~l !& if l18,m, ~1.5b!

@mn/l8#2(2)n ↔ ^m~l !&* if l18,m, ~1.5c!

@D;mn/l8#1(2)n ↔ ^D̃;m~l !& if l18<m, ~1.5d!

@D;mn/l8#2(2)n ↔ ^D̃;m~l !&* if l18<m, ~1.5e!

where the notation used here to specify the characters of the various irreducible representations of
SO(2n) and Sp(2n,R) will be explained fully in later sections.

The analogies~1.5! are made precise by evaluating the relevant characters of both SO(2n)
and Sp(2n,R) at the level of their maximal compact subgroup U(n). The characters of irreducible
representations of U(n) are themselvesS-functions$l%, and in the context of~1.5! a crucial role
is played by various infinite series ofS-functions.13,17–19

The first step in this direction is made in Sec. II by expressing each of the charactersD, D9,
D̃, andD̃9 in terms ofS-function series. The second step is that of generalizing these results to the
case of all the characters appearing on both sides of~1.5!. As a means to this end, relevant
notational devices, both algebraic and diagrammatic, are introduced in Sec. III. These are then
used in Sec. IV in reformulating the known branching rules for the decomposition of irreducible
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representations of both SO(2n) and Sp(2n,R) on restriction to U(n). By virtue of some quite
subtle S-function identities19 and modification rules20 precise analogies of the form~1.5! are
arrived at.

It then comes as no surprise that the analogy at the level of characters between the finite-
dimensional irreducible representations of SO(2n) and the infinite-dimensional irreducible repre-
sentations of Sp(2n,R) can be built upon to establish analogies between the decompositions for
each of these groups of tensor products, tensor powers, and symmetrized tensor powers, known as
plethysms. This development is initiated in Sec. V where we content ourselves with establishing
results for certain tensor products and powers involvingD, D9, D̃, andD̃9. The extension to the
case of plethysms, generalizing~1.3! and ~1.4!, is to be the subject of a separate paper.

II. BASIC SPIN DIFFERENCE CHARACTERS AND HARMONIC CHARACTERS

In the case of both SO(2n) and Sp(2n,R) the characters of their irreducible representations
may conveniently be obtained by expressing them in terms of characters of irreducible represen-
tations of their maximal reductive subgroup U(n). The covariant tensor irreducible representations
of U(n) are specified by partitionsl5(l1 ,l2 ,...,ln) into no more thann nonvanishing parts.
Their characters$l%, are just the Schur functionssl(x1 ,x2 ,...,xn) of the eigenvaluesx i of the
relevant group elementA of U(n). The contravariant tensor irreducible representations of U(n)
are just the contragredients of the covariant irreducible representations. They have characters$l̄%
given bysl(x1

21 ,x2
21 ,...,xn

21). The particular one-dimensional irreducible representation of U(n)
in which each group elementA is mapped to (detA)r for some fixed rational numberr has
characterer wheree5$1n%5s1n(x1 ,x2 ,...xn)5x1x2¯xn .

With this notation, the characters of the two basic spin irreducible representations of SO(2n)
are given by

D15e21/2~$1n%1$1n22%1$1n24%1¯ !, ~2.1a!

D25e21/2~$1n21%1$1n22%1$1n24%1¯ !. ~2.1b!

Similarly, the characters of the two basic harmonic irreducible representations of Sp(2n,R) are
given by

D̃15e1/2~$0%1$2%1$4%1¯ !, ~2.2a!

D̃25e1/2~$1%1$3%1$5%1¯ !. ~2.2b!

SettingD5D11D2 andD95D12D2 we have

D5e21/2~$0%1$1%1$12%1¯1$1n%!, ~2.3a!

D95~21!ne21/2~$0%2$1%1$12%1¯1~21!n$1n%!. ~2.3b!

In the same way, settingD̃5D̃11D̃2 and D̃95D̃12D̃2 we have

D̃5e1/2~$0%1$1%1$2%1¯ !, ~2.4a!

D̃95e1/2~$0%2$1%1$2%2¯ !. ~2.4b!

The use of the generating functions9

Q5 (
m50

n

$1m%5)
x51

n

~11x i!, ~2.5a!
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L5 (
m50

n

~21!m$1m%5)
x51

n

~12x i!, ~2.5b!

M5 (
m50

`

$m%5)
x51

n

~12x i!
21, ~2.5c!

P5 (
m50

`

~21!m$m%5)
x51

n

~11x i!
21, ~2.5d!

in ~2.3! and ~2.4!, together with the fact thate61/2
5) i51

n x i
61/2, then leads to the character

formulas

D5e21/2Q5)
i51

n

~x i
1/2

1x i
21/2!, ~2.6a!

D95~21!ne21/2L5)
i51

n

~x i
1/2

2x i
21/2!, ~2.6b!

and

D̃5e1/2M5)
i51

n

~x i
21/2

2x i
1/2!21, ~2.7a!

D̃95e1/2P5)
i51

n

~x i
21/2

1x i
1/2!21, ~2.7b!

where in each case the final expressions are the ones quoted in~1.1! and ~1.2!. Formally, the
passage from~2.4! to ~1.2! as in ~2.7! depends on the convergence ofM and P. This requires
ux iu,1 for all i51,2,...,n. Thus~1.2a! and ~1.2b! are to be viewed as formal expressions which
when expanded in positive powers ofx i for all i51,2,...,n define the sum and difference of the
basic harmonic characters of Sp(2n,R).

It should perhaps be pointed out thatD1 andD2 are the characters of the irreducible repre-
sentations of SO(2n) corresponding to fundamental finite-dimensional highest weight irreducible
representations of the underlying simple Lie algebraDn . Their highest weights in the fundamental
weight basis, thev-basis, and the Euclidean orthonormal basis, the«-basis, are given by21

D1 : vn215@ 1
2 , 1

2 ,..., 1
2 , 1

2#, ~2.8a!

D2 : vn5@ 1
2 , 1

2 ,..., 1
2 ,2 1

2#. ~2.8b!

On the other hand,D̃1 andD̃2 are the characters of irreducible representations of Sp(2n,R)
corresponding to nonfundamental lowest weight irreducible representations of the underlying
simple Lie algebraCn . Their lowest weights are given in thev and« bases by10

D̃1 : 1
2 vn5^ 1

2 , 1
2 ,..., 1

2 , 1
2&, ~2.9a!

D̃2 : 2vn211
3
2 vn5^ 1

2 , 1
2 ,..., 1

2 , 3
2&. ~2.9b!
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The fact that the components of the lowest weights in thev-basis are not integers is an indication
of the fact that the corresponding irreducible representations are infinite-dimensional.

Of course there also exist highest weight irreducible representations with charactersD̄̃1 and

D̄̃2 that are contragredient to those irreducible representations having charactersD̃1 andD̃2 . The
highest weights of these contragredient irreducible representations are given by

D̄̃1 : 2
1
2 vn5^2

1
2 ,2 1

2 ,...,2 1
2 ,2 1

2&, ~2.10a!

D̄̃2 : vn212
3
2 vn5^2

1
2 ,2 1

2 ,...,2 1
2,2

3
2&, ~2.10b!

and their characters take the following form:

D̄̃15e21/2~$0̄%1$2̄%1$4̄%1¯ !, ~2.11a!

D̄̃25e21/2~$1̄%1$3̄%1$5̄%1¯ !. ~2.11b!

As usual, settingD̄̃5 D̄̃11 D̄̃2 and D̄̃95 D̄̃12 D̄̃2 we then have

D̄̃5e21/2~$0̄%1$1̄%1$2̄%1¯ !, ~2.12a!

D̄̃95e21/2~$0̄%2$1̄%1$2̄%1¯ !. ~2.12b!

Replacingx i by x i
21 in the generating functions~2.5c! and~2.5d! to give M̄ and P̄, respectively,

and using these in~2.12! then yields formulas almost identical to those of~1.2!, namely

D̄̃5e21/2M̄5)
i51

n

~x i
1/2

2x i
21/2!21, ~2.13a!

D̄̃95e21/2P̄5)
i51

n

~x i
1/2

1x i
21/2!21. ~2.13b!

Formally, once again, the passage from~2.12! to ~2.13! depends on the convergence ofM̄ andP̄.
This requiresux i

21u,1 for all i51,2,...,n. Thus the final formulas of~2.13a! and~2.13b! are to be
viewed as formal expressions which when expanded in negative powers ofx i for all i
51,2,...,n define the sum and difference of the contragredients of the basic harmonic characters
of Sp(2n,R).

III. PARTITIONS, YOUNG DIAGRAMS, AND S-FUNCTIONS

Before attempting to establish the existence of analogies of the type analogies~1.5! it is
necessary to develop a number of notational niceties. These are based on the use of partitions to
specify a variety of Young diagrams, both standard and nonstandard, as well as corresponding
S-functions and series ofS-functions.9

Each partitionl5(l1 ,l2 ,...,lp) of weight ulu specifies a Young diagramFl consisting of
ulu boxes arranged inp5l(l) left-adjusted rows of lengthsl i for i51,2,...,p. The lengthsl j8 for
j51,2,...,q of the q5b(l) top-adjusted columns ofFl serve to define the conjugate partition
l85(l18 ,l28 ,...,lq8). The number of boxesr5r(l) on the principal diagonal ofFl is known as
the Frobenius rank of the partitionl. In Frobenius notation

l5S a1 a2 ¯ ar

b1 b2 ¯ br
D ,
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wherea i andb i for i51,2,...,r are the arm and leg lengths, respectively, ofFl with respect to its
main diagonal of lengthr. Typically, for l5(5443)5(5423), with p5l (l)54 andq5b(l)
55, we havel85(44431)5(4331) and in Frobenius notation

l5S 4 2 1

3 2 1D
with r5r(l)53 andulu516. This is illustrated diagrammatically by

~3.1!

As has already been seen in Sec. II partitions,l, have a useful role to play in specifying the
characters,$l%, of corresponding irreducible representations of U(n), where these characters are
S-functions. In what follows, in addition to theS-function seriesQ, L, M , andP, defined in~2.5!,
we encounter several others:9,13,17–19

A5 (
aPA

~21! uau/2$a%, B5 (
bPB

$b%, C5 (
gPC

~21! ugu/2$g%, D5 (
dPD

$d%, ~3.2a!

E5 (
«PE

~21!(u«u1r(«))/2$«%, G5 (
«PE

~21!(u«u2r(«))/2$«%, ~3.2b!

V5 (
jPX

~21!j28$j%, X5 (
jPX

$j%, ~3.2c!

where, in the notation exemplified in~3.1!, a, b, g, d, «, andj are characterized by the conditions
bk5ak11 for k51,2,...,r(a), b j8 even for j51,2,...,b(b), ak5bk11 for k51,2,...,r(g), d i

even fori51,2,...,l (d), ak5bk for k51,2,...,r(«), anduju even, withb(j)<2.
The S-function series satisfy the following conjugacy conditions:

A85C, B85D, E85E, G85G, M 85Q, L85P, ~3.3!

and the identities:

AB5CD5EG5LM5PQ51, AX5Cr, AV5C, AQ5G, AL5E5Gr, ~3.4!

where the superscriptr on any S-function seriesS indicates thatSr is obtained fromS by
mutiplying each term$s% in S by (21)r(s), wherer(s) is the Frobenius rank of ofs.

Now let m be a partition into no more thanp parts with its largest part no greater thanq, and
let n be any other partition. Then defineFm,pn to be the diagram formed by placingFn immedi-
ately below thepth row of Fm, and defineFmuqn to be the diagram formed by placingFn

immediately to the right of theqth column ofFm. In the first case all the rows are left-adjusted to
the same vertical line, and in the second case the columns are top-adjusted to the same horizontal
line. The correspondingS-functions are denoted by$m,pn% and $m;qn%. However the diagrams
Fm,pn andFmuqn may not be standard and in such cases it will be necessary to reorder their rows
and columns, respectively, in accordance with the repeated use of the following modification
rules:9,22

$l1 ,...,l i ,l i11 ,...%52$l1 ,...,l i1121,l i11,...% for i51,2,..., ~3.5a!

$l18 ,...,l j8 ,l j118 ,...%852$l18 ,...,l j118 21,l j811,...%8 for j51,2,... . ~3.5b!
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These modification rules owe their existence to the following determinantal expansions:

$l%5$l8%85u$l i2i1 j%u5u$1l j82 j1i%u, ~3.6!

where as many trailing zeros as one may wish may be added to the parts ofl andl8.
In the present context, the repeated use of~3.5a! is illustrated in the casem5(41), p53, and

n5(5312) by

~3.7!

where the labeling of boxes has been used to emphasize the fact that the modification rules may be
realized by wrapping the various rows ofFn aroundFm in the form of continuous strips. Each strip
contributes a sign factor (21)x, wherex is the increase in the number of rows the strip occupies
as a result of the wrapping process. If the wrapping process leads to a nonstandard diagram then
the result is null, that is$m,pn%50.

Similarly if m5(221), q53, andn5(43221) then the use of~3.5b! leads to

~3.8!

where now it is the columns ofFn that are wrapped aroundFm in the form of continuous strips.
Each strip contributes a sign factor (21)y, wherey is the increase in the number of columns the
strip occupies as a result of the wrapping process. As a second example of this type it is instructive
to consider as beforem5(221) but nowq52 andn5(5421):

~3.9!

The significance of this example is that it is possible to view the passage in~3.8! from
$221;243221% to 2$764% as one from$221;243221% first to $221;25421% and then, as in~3.9!,
from $221;25421% to 2$764%. The first step just involves sliding the portion ofFn below the main
diagonal one step in a northwesterly direction:

~3.10!

The identity $221;343221%5$221;25421% illustrated in ~3.10! involves the partition (43221)
PA, and its conjugate (5421)PC, where the setsA andC are those associated with theS-function
seriesA andC, respectively, defined in~3.2a!. The result~3.10! can be generalized immediately
to the case of allaPA, or equivalently allgPC, giving the identity
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$m;qg%5~21!r(a)$m;q11a% with a5g8PA, ~3.11!

which will be used in Sec. IV.
It is also necessary to recall that each pair of partitionsm andn specifies a composite Young

diagramF m̄;n which may be variously drawn as shown:

~3.12!

where the last form involves a total of preciselyn rows within the context, as here, of characters
of U(n). In fact for anyq>m1 , the corresponding character$m̄;n% of U(n) is given bye2q$l%,
whereFl is formed fromF m̄;n by taking the complement of the portionF m̄ in an n3q rectangle
and placing it the left ofFn to give F (qn/m);qn. Typically, in U(8) and choosingq56, we have

~3.13!

More generally, our notation for characters of U(n) is such that for anyq>m1 we have

$m̄;n%5e2q$~qn/m !;qn%, ~3.14!

where it may be necessary to invoke a modification of the type illustrated in~3.8! in order to
standardize the final result.

IV. BRANCHING RULES FOR SO„2n…\U„n… AND SP„2N,R…\U„N…

The branching rules for the restrictions from SO(2n) to U(n) and from Sp(2n,R) to U(n)
appear at first sight to have little in common. For example, in the case of the restriction
SO(2n)→U(n) it is known that ifl is a partition into fewer thann parts, then17

@l#→(
z

$ z̄;l/Bz%, ~4.1!

where the summation is over all partitionsz for which l/z is nonzero, where the slash~/! signifies
a quotient of Schur functions, and quite generally$m̄;n% signifies the character of an irreducible
mixed tensor irreducible representation of U(n). On the other hand, for the restriction from
Sp(2n,R)→U(n) we have3

^ 1
2 k~l !&→ek/2•$ls%

k•D, ~4.2!

where$ls%
k is a signed sequence of Schur functions6$m% such that@m# is equivalent to6@l#

under the modification rules of O(k). Here each Schur function$m% is the character of an irre-
ducible covariant tensor irreducible representation of U(n).

The complete set of inequivalent unitary finite-dimensional irreducible representations of
SO(2n) have characters which may conveniently be specified by
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@l# for l18,n, @l#6 for l185n, @D;l#6 for l18<n. ~4.3!

The relevant branching rules for the restriction from SO(2n) to U(n) which serve to define these
characters take the form18

@l#5(
j

$ j̄;l/jB% for l18,n, ~4.4a!

@h;m#5(
j

e21$ j̄;~m/jB !•X% for m18<n, ~4.4b!

@h;m#95~21!n(
j

e21$ j̄;~m/jB !•V% for m18<n, ~4.4c!

@D;l#5(
j

e21/2$ j̄;~l/jB !•Q% for l18<n, ~4.4d!

@D;l#95~21!n(
j

e21/2$ j̄;~l/jB !•L% for l18<n, ~4.4e!

where

@l#65@h;m#65
1
2 ~@h;m#6@h;m#9! for l185n, ~4.5a!

@D;l#65
1
2 ~@D;l#6@D;l#9! for l18<n, ~4.5b!

and in the casel185n it has been convenient to write@l#5@1n;1m#5@h;m# with m18<n.
In order to rewrite the formulas~4.4! in a form more suited to the exposure of the analogies

we are seeking it is necessary to invoke the following:
Lemma 4.1: Let l be an arbitrary partition and S an arbitrary S-function series, then with B

as in ~3.2a!,

(
j

$ j̄;~l/jB !S%5$l̄;AS%•B, ~4.6!

where A5B21.
Proof: The crucial observation is that, as shown elsewhere,19 for all partitions z we have

D/z5(z/D)D. Either the use of an entirely analogous argument withD replaced byB, or by the
simpler expedient of taking conjugates, one deduces thatB/z5(z/B)B. Using this together with
the fact thatBA51 allows us to derive~4.6! as follows:

(
j

$ j̄;~l/jB !S%5(
z

$l/z;~z/B !BAS%5(
z

$l/z;~B/z !AS%5(
z

$l̄;AS%•B, ~4.7!

where the last step depends on the linear extension froms to B of the product rule

$m̄;n%•$s%5(
z

$m/z;n•~s/z !%. ~4.8!

Applying Lemma 4.1 to~4.4!, and using the identities~3.4!, gives

@l#5$l̄;A%•B for l18,n, ~4.9a!
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@h;m#5e21$m̄;Cr%•B for m18<n, ~4.9b!

@h;m#95~21!ne21$m̄;C%•B for m18<n, ~4.9c!

@D;l#5e21/2$l̄;G%•B for l18<n, ~4.9d!

@D;l#95~21!ne21/2$l̄;Gr%•B for l18<n. ~4.9e!

Introducingm with m>l1 , we can then use the notation of~3.14! to arrive at the formulas:

@l#5e2m$~mn/l !;mA%•B for l18,n, ~4.10a!

@l#5e2m$~mn/l !;mA%•B for l185n, ~4.10b!

@l#95~21!ne2m$~mn/l !;mAr%•B for l185n, ~4.10c!

@D;l#5e2m21/2$~mn/l !;mG%•B for l18<n, ~4.10d!

@D;l#95~21!ne2m21/2$~mn/l !;mGr%•B for l18<n. ~4.10e!

In the case of the passage from~4.9b! and ~4.9c! to ~4.10b! and ~4.10c!, respectively, it has also
been necessary to note that, as a consequence of~3.11!, for all gPC we have

$m̄;g%5e2m11 $~~m21!n/m !;m21g%5~21!r(a)e2m11$~~m21!n/m !;ma%

5~21!r(a)e2m11 $~mn/~1n•m !;ma%5~21!r(a)e2m11 $~mn/l;ma%, ~4.11!

with aPA.
It follows from ~4.10! and ~4.5! that

@l#5e2m$~mn/l !;mA%•B for l18,n, ~4.12a!

@l#15e2m$~mn/l !;mAeo(n)%•B for l185n, ~4.12b!

@l#25e2m$~mn/l !;mAoe(n)%•B for l185n, ~4.12c!

@D;l#15e2m21/2$~mn/l !;mGeo(n)%•B for l18<n, ~4.12d!

@D;l#25e2m21/2$~mn/l !;mGoe(n)%•B for l18<n, ~4.12e!

or equivalently

@mn/l8#5e2m$l8;mA%•B for l185m, ~4.13a!

@mn/l8#15e2m$l8;mAeo(n)%•B for l18,m, ~4.13b!

@mn/l8#25e2m$l8;mAoe(n)%•B for l18,m, ~4.13c!

@D;mn/l8#15e2m21/2$l8;mGeo(n)%•B for l18<m, ~4.13d!

@D;mn/l8#25e2m21/2$l8;mGoe(n)%•B for l18<m, ~4.13e!

where l has been replaced bymn/l8 and use has been made of the fact that (mn/(mn/l8))
5l8. For all Schur function seriesS we have introducedSeo(n) andSoe(n) such that
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Seo(n)
5H Se if n is even

So if n is odd;

and

Soe(n)
5H So if n is even

Se if n is odd,
~4.14!

whereSe andSo are the terms of even and odd Frobenius rank, respectively, in the Schur function
seriesS.

The remarkable analogy beween these character formulas for SO(2n) and those of Sp(2n,R)
is exposed by recalling that the signed sequences$ls%

k in ~4.2! can be expressed rather succinctly
in terms of our series of Schur functions. This has its origin in Newell’s formulation20,23 of the
modification rules of O(k). One has to distinguish both between even and odd values ofk, and for
even k between those partitionsl having fewer thank/2 or preciselyk/2 parts. The relevant
expressions have been given by Roweet al.2 When used in~4.2! they imply

^m~l !&5em $l,mC%•D for l185m, ~4.15a!

^m~l !&5em $l,mCe%•D for l18,m, ~4.15b!

^m~l !&* 5em $l,mCo%•D for l18,m, ~4.15c!

^D̃;m~l !&5em11/2 $l,mGe%•D for l18<m, ~4.15d!

^D̃;m~l !&* 5em11/2 $l,mGo%•D for l18<m, ~4.15e!

where as beforeCe andCo are the even and odd Frobenius rank terms inC, while Ge andGo are
the even and odd Frobenius rank terms inG. In ~4.15d! and~4.15e! it has also been convenient in
the casek52m11 to denotê k/2 (l)& by ^D̃;m(l)& in order to emphasize the analogies with
~4.13d! and ~4.13e!.

The analogy~1.5! that we were seeking between the finite-dimensional irreducible represen-
tations of SO(2n) and the infinite-dimensional irreducible representations of Sp(2n,R) has thus
been made explicit through the analogous expressions~4.13! and ~4.15! for the corresponding
characters. To summarize, the analogy involves replacing the partitionl by the complement of its
conjugate with respect to (mn) on the left-hand sides, replacingep by e2p and taking conjugates
on the right-hand sides, noting the conjugacy relationsA85C, B85D and (m;mn)8
5(m8,mn8), and taking care to distinguish between the cases for whichn is even and odd.

V. TENSOR PRODUCTS

An earlier study13 of the decomposition of tensor or Kronecker products of irreducible repre-
sentations of SO(2n) has revealed that

D3@l#5@D;l/Q#11@D;l/Q#2 for l18,n, ~5.1a!

D3@l#15@D;l/Q#1 for l185n, ~5.1b!

D3@l#25@D;l/Q#2 for l185n, ~5.1c!

D3@D;l#15@~h;l !/Q# (1) for l18<n, ~5.1d!

D3@D;l#25@~h;l !/Q# (2) for l18<n, ~5.1e!
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D93@l#5@D;l/L#12@D;l/L#2 for l18,n, ~5.1f!

D93@l#15@D;l/L#1 for l185n, ~5.1g!

D93@l#252@D;l/L#2 for l185n, ~5.1h!

D93@D;l#15@~h;l !/L# (1) for l18<n, ~5.1i!

D93@D;l#252@~h;l !/L# (2) for l18<n, ~5.1j!

where

@m# (6)5H @m# if m18,n

@m#6 if m185n.
~5.2!

In the case of Sp(2n,R) the analogous formulas take the form

D̃3^m~l !&5^D̃;m~l•M !m&1^D̃;m~l•M !m&* for l185m, ~5.3a!

D̃3^m~l !&5^D̃;m~l•M !m& for l18,m, ~5.3b!

D̃3^m~l !&* 5^D̃;m~l•M !m&* for l18,m, ~5.3c!

D̃3^D̃;m~l !&5^m11~l•M !m11& for l18<m, ~5.3d!

D̃3^D̃;m~l !&* 5^m11~l•M !m11&
(* ) for l18<m, ~5.3e!

D̃93^m~l !&5^D̃;m~l•P !m&2^D̃;m~l•P !m&* for l185m, ~5.3f!

D̃93^m~l !&5^D̃;m~l•P !m& for l18,m, ~5.3g!

D̃93^m~l !&* 52^D̃;m~l•P !m&* for l18,m, ~5.3h!

D̃93^D̃;m~l !&5^m11~l•P !m11& for l18<m, ~5.3i!

D̃93^D̃;m~l !&* 52^m11~l•P !m11&
(* ) for l18<m, ~5.3j!

where (l•S)p signifies that the productl•S is to be evaluated in U(p) so that quite generally any
term (m)p50 if m18.p. In addition,

^p~m !& (* )
5H ^p~m !&* if m18,p

^p~m !& if m185p.
~5.4!

In the case of~5.1! all the characters on the left-hand side are well defined and standard
provided thatn>l18 . Moreover, on the right every expression involves merely a quotient withQ
or L leading to a finite number of terms, all of which are necessarily standard in SO(2n). The
same cannot be said of~5.2!. First of all, even ifn>l18 the associate characters signified by

^m(l)&* and ^D̃;m(l)&* may not be standard. In fact they will be null ifn,k2l18 wherek
52m or 2m11, as appropriate. Moreover, all the expressions on the right involve an infinite
number of terms by virtue of their dependence on products withM or P. In addition the associate
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characters on the right may be null for certain values ofn for which the left-hand side is well
defined. This is the case, in particular, forn5m5l18 for which all termŝ ¯&* on the right-hand
side of ~5.3a! and ~5.3f! are null, and may be omitted.

In order to derive the results~5.3! it should be recalled3 that

^ 1
2 k~l !&3^ 1

2 j~m !&5(
n

Rn
lm^ 1

2 ~k1 j !~n !&, ~5.5!

where the coefficientsRn
lm are the branching rule coefficients for the restriction from O(k1 j) to

O(k)3O( j):

O~k1 j !→O~k !3O~ j !: @n#→(
lm

Rn
lm@l#3@m#. ~5.6!

In the special case of interest here we requirej51 with m equal to~0! or ~1! for which @m# is @0#
or @1#5@0#* , respectively. The corresponding branching rule takes the form:

O~k11!→O~k !3O~1!: @n#→ (
m50

`

@n/m#3@0# (* )m
, ~5.7!

where@0# (* )m
5@0# or @0#* according to whetherm is even or odd, respectively. It then follows

from ~5.5! and ~5.6! that

^ 1
2 k~l !&3^ 1

2 ~0!&5 (
m:even

^ 1
2 ~k11!~l•m !&, ~5.8a!

^ 1
2 k~l !&3^ 1

2 ~0!&* 5 (
m:odd

^ 1
2 ~k11!~l•m !&. ~5.8b!

Recalling thatD̃5^ 1
2 (0)&1^ 1

2 (0)&* andD̃95^ 1
2 (0)&2^ 1

2 (0)&* , and taking care over the lengths
of the various partitions appearing inl•M andl•P and the distinction between a character and
its associate, one arrives at~5.3a!–~5.3j! for k52m and 2m11 as appropriate.

If further evidence is needed of the close parallel between finite-dimensional irreducible
representations of SO(2n) and infinite-dimensional irreducible representations of Sp(2n,R) it is
provided by the following rather striking branching rule formulas.

First, it has been shown by Morris24,25 thatD andD9 decompose as follows under the appro-
priate restriction:

SO~4mn !→SO~2n !3O~2m !:

D→ (
l:l~l !,m

~@mn/l8#13@l#1@mn/l8#23@l#* !1 (
l:l~l !5m

@mn/l8#3@l#,

~5.9a!

SO~4mn !→SO~2n !3O~2m !:

D9→ (
l:l~l !,m

~21! ulu~@mn/l8#13@l#1@mn/l8#23@l#* !

1 (
l:l~l !5m

~21! ulu@mn/l8#3@l#, ~5.9b!
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SO~4mn12n !→SO~2n !3O~2m11!:

D→ (
l:l<m

~@D;mn/l8#13@l#1@D;mn/l8#23@l#* !, ~5.9c!

SO~4mn12n !→SO~2n !3O~2m11!:

D9→ (
l:l~l !<m

~21! ulu~@D;mn/l8#13@l#2@D;mn/l8#23@l#* !. ~5.9d!

Second, the defining property ofD̃ which encapsulates the fact that Sp(2n,R) and O(k) are a
complementary pair of mutually centralizing subgroups of Sp(2nk,R) takes the form3

Sp~2nk,R!→Sp~2n,R!3O~k !: D̃→(
l

^ 1
2 k~l !&3@l#. ~5.10!

Settingk52m and 2m11 in turn, and consideration ofD̃9, then yields, in direct analogy to~5.1!,
the following results:

Sp~4mn,R!→Sp~2n,R!3O~2m !:

D̃→(
l

^m~l !&3@l#

5 (
l:l~l !,m

~^m~l !&3@l#1^m~l !&* 3@l#* !1 (
l:l~l !5m

^m~l !&3@l#, ~5.11a!

Sp~4mn,R!→Sp~2n,R!3O~2m !:

D̄9→(
l

~21! ulu^m~l !&3@l#

5 (
l:l~l !,m

~21! ulu~^m~l !&3@l#1^m~l !&* 3@l#* !

1 (
l:l~l !5m

~21! ulu^m~l !&3@l#, ~5.11b!

Sp~4mn12n,R!→Sp~2n,R!3O~2m11!:

D̄→(
l

^D̃;m~l !&3@l#

5 (
l:l~l !<m

~^D̄;m~l !&3@l#1^D̃;m~l !&* 3@l#* !, ~5.11c!

Sp~4mn12n,R!→Sp~2n,R!3O~2m11!:

D̄9→(
l

~21! ulu^D̃;m~l !&3@l#

5 (
l:l~l !<m

~21! ulu~^D̃;m~l !&3@l#2^D̄;m~l !&* 3@l#* !. ~5.11d!
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These results offer us the opportunity of decomposing arbitrary,kth-fold, tensor powers ofD,
D9, D̃, and D̃9. This is exemplified in the case ofD and k52m through a consideration of the
group–subgroup chains:

SO~4mn !ց
ր

SO~2n !3SO~2n !3¯3SO~2n !

SO~2n !3O~2m ! ր
ցSO~2n ! ~5.12!

for which we have the branching rules

Dց
ր

D3D3¯3D

(
l

@mn/l8#3@l#ր
ց~D !32m

5(
l

dim2m@l#@mn/l8#. ~5.13!

To derive the identity on the right-hand side one merely proceeds from the SO(4mn) characterD
to its SO(2n) content by both upper and lower routes. From the definition~1.1a! of D one can
introduce a set of 2mn parametersx ia for i51,2,...,n anda51,2,...,2m to give

D5)
i51

n

)
a51

2m

~x ia
1/2

1x ia
2 1/2!. ~5.14!

The upper route involves settingx ia5x i for all i anda to give

D→)
a51

2m S )
i51

n

~x ia
1/2

1x ia
2 1/2!D→S )

i51

n

~x i
1/2

1x i
2 1/2!D 2m

5~D !2m, ~5.15!

while the lower route depends first on the use of the branching rule~5.9a! in which context it is
convenient to setx ia5x iya for all i anda, wherex i andya denote eigenvalues of groups elements
of SO(2n) and O(2m), respectively, and then allowing allya to take the value 1. This corre-
sponds to restricting O(2m) to its identity element. Using this in~5.9a! then gives the factor
dim2m@l# appearing in~5.13!.

Proceeding in an exactly similar way, but this time from the definition~1.2a! of D̃, we obtain
by consideration of the group–subgroup chains

Sp~2nk !ց
ր

Sp~2n !3Sp~2n !3¯3Sp~2n !

Sp~2n !3O~2m ! ր
ցSp~2n !, ~5.16!

the branching rule identity

D̃ց
ր

D̃3D̃3¯3D̃

(
l

^m~l !&3@l#ր
ց~D̃ !32m

5(
l

dim2m@l#^m~l !&. ~5.17!

Generalizing to the casek52m11, and extending these results to bothD9 andD̃9 we obtain
the following complete set of formulas for the decomposition of tensor powers ofD, D9, D̃, and
D̃9:

~D !32m
5(

l
dim2m@l#@mn/l8#, ~5.18a!

~D9!32m
5(

l
~21! uludim2m@l#@mn/l8#8, ~5.18b!
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~D !3(2m11)
5(

l
dim2m11@l#@D;mn/l8#, ~5.18c!

~D9!3(2m11)
5(

l
~21! uludim2m11@l#@D;mn/l8#, ~5.18d!

and

~D̃ !32m
5(

l
dim2m@l#^m~l !&, ~5.19a!

~D̃9!32m
5(

l
~21! uludim2m@l#^m~l !&9, ~5.19b!

~D̃ !3(2m11)
5(

l
dim2m11@l#^D̃;m~l !&, ~5.19c!

~D̃9!3(2m11)
5(

l
~21! uludim2m11@l#^D̃;m~l !&9. ~5.19d!

Of these results,~5.18a! and ~5.18c! were first given by Bauer,26 and ~5.19a! and ~5.19b! were
given by Kashiwara and Vergne,11 but the others are new. The results themselves and their mode
of derivation all serve to confirm the depth and significance of the analogies spelled out in~1.5!.

One can go still further and decompose ourkth-fold powers into their various symmetrized
powers known as plethysms whose symmetry is specified by partitionsk of k. This task is
deferred to part II of the present work.
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