Symmetry selection rules and Hyperfine structure

Brian G. Wybourne

Instytut Fizyki, Uniwersytet Mikotaja Kopernika
ul. Grudziadzka 5/7
87-100 Torun
Poland

bgw@phys.uni.torun.pl

February 10, 1996

Abstract

Nuclear hyperfine interaction in crystal fields can lead to a breakdown in the usual selection
rules for transitions among Stark levels in crystals containing Ho®t. The existence of such a possibility
was given by the author over three decades ago. Recently very high-resolution spectroscopic studies in
Moscow have supplied a rich source of experimental information. The analysis of these spectra gives
an interesting display of the interplay of point groups and their double groups and of crystal field and
nuclear hyperfine interactions.

What never! Well hardly ever!

— Gilbert and Sullivan

1. Introduction

The lanthanides, or 4f—elements, have long provided many opportunities for the
effective use of symmetry considerations in the description of their spectroscopic proper-
ties!2. Racah in his remarkable 1949 paper® showed how chains of Lie groups could be used
both in the classification of the many-electron states and in simplifying the calculation of
the relevant matrix elements. One of the powerful features of symmetry considerations
is their exploitation in the development of selection rules, as for example, in the Laporte
electric dipole selection rules. A selection rule will tell us which matrix elements are

necessarily null. It does not necessarily follow that matrix elements which satisfy the



selection rules are necessarily non-zero.

In some cases situations arise where a matrix element is expected, by the stated
selection rules, to be null and is found to be non-zero and the selection rule is said to
be violated. This is the normal situation with so-called forbidden transitions. Thus one
finds the strong angular momentum selection rule for dipole transitions 0 < / = 0 is
found to be violated in transitions observed in certain gaseous nebulae!. In these cases
the violation maybe directly associated with the interaction between the nucleus and the

electrons of an atom?®

. In deriving the original selection rule the angular momentum of
the nucleus I was ignored. The total angular momentum of the atom F is then F =1+J
and if the nuclear angular momentum is a half-odd integer and the number of electrons is

even then there is no possibility of forming a state of total angular momentum zero and

the 0 < / = 0 selection rule is weakly broken.

Forbidden transitions were observed in paramagnetic resonance studies of holmium
salts® and a complicated mechanism based on the Jahn-Teller effect invoked. The al-
ternative possibility of interaction between different crystal field levels via the nuclear
magnetic moment was suggested by the author”. Hyperfine structure was observed in the
optical spectra of salts containing Pr3t and Ho®t in the early sixties®~1° but at relatively
low resolution. Subsequent technological developments culimnating in the Fast Fourier
Transform spectrometers in the mid-eighties led to resolutions of 0.0lem=! permitting for
the first time detailed observation of complete fully resolved patterns together with ac-
curate intensities!!~1% were made for single crystals of LiY Fy: Ho®>t. Similar studies have
recently been made on the system CaFy : Ho®>t 1617, In this paper I outline some of the
problems and objectives associated with the interpretation of hyperfine structure of Ho3t+

doped single crystals.
2. Data and Type I and Type 11 HFS Patterns

Holmium occurs in nature as a single stable isotope with nuclear angular momen-

tum I = 7 and being a deformed nucleus has both a nuclear magnetic dipole moment



and an electric quadrupole moment. The dominant hyperfine structure comes from the
interaction of the nuclear magnetic moment with the electron spin and orbital magnetic
moments. In the particular case of LiYF; : Ho>t the Ho*t ion substitutes into a site
whose point group symmetry is Sy (not to be confused with the symmetric group which
is also designated as S;). The ordinary irreducible representations of S; comprise two
one-dimensional I'y, I'y representations and a two-dimensional complex conjugate pair

designated as I's4.

Two distinct types of hyperfine patterns are observed. In each case the sublevels
are two-fold degenerate. In one type (I) eight approximately equally spaced sublevels are
observed while in the second type (I7) four irregularly spaced sublevels are observed. The
widths of type I are usually greater than those of type IT and normally fully resolved. The
type I patterns are associated with I'sy crystal field levels whereas the type IT patterns are
associated with I'y or I'y levels. In some cases a type I pattern may be severely distorted
from the usual equal spacing pattern. This is usually indicative of mutual perturbation

between the I's4 and either a nearby (say < 2em=1) I'y or I'y level.

The groundstate of the Ho®>t free ion is 4f19(515) and in the crystal host the lowest
crystal field level is a I's4 level. The next highest crystal field level is a 'y level at 6.85em=1!.
Very detailed experimental data is available for transitions to all the crystal field levels
involving the higher members of the I multiplet''=15. The type I patterns show very
regular changes in the intensity in going from one sublevel to the next whereas the type

IT patterns display highly irregular intensities.
3. Objectives of Pattern Analysis

An understanding of the observed HFS patterns should allow the identification of
the type I and type IT patterns making predictions of their widths and intensity distri-
bution. Furthermore the distortions sometimes produced in type I patterns needs to be

explained. The existence of forbidden transitions’ needs to be understood.

4. Magnetic Dipole Hyperfine Interaction in Crystals



In the crystalline environment the electric field splittings are very much greater
than the hyperfine splittings. The appropriate basis involves the quantum numbers J.J.I1..

Let us define
ag = pg(me/Mp)gr(r=?) (1)

where up is the Bohr magneton, g; the nuclear g factor and (r=3) the average inverse-cube

radius of the electron orbital ¢. Further, let

= a1 - VIOX{")] (2)
with
HEY =5 Hy (i) (3)
=1

where the sum is over a group of equivalent electrons in the configuration ¢*. The inter-
action of a nuclear magnetic moment with orbital and spin moments of n electrons can

be written in tensor operator notation as
Hen = a(HD . TO) (4)

Let us enlarge our state description to |aSLJJ.II.) where we allow for matrix elements
non-diagonal in «SL but for the moment ignore the possibility of J—mixing by the crystal

field. Let us define the magnetic hyperfine structure constant as
A=alL+ 8] (5)

where
(aSLI||ILMa’S L' T)
VI +1)(27 + 1)

where ¢ 1s the usual Landé g—factor for the electronic state and

[, — — 6oz,oz’6S,S’6L,L’(2 — g) (6)

s s 1

L I 23 (aShvi|e’sry  (7)

S:(—l)f+1(21z+1)(£ ! 2) 30(27 +1)

J J 1



where the last matrix element involves the double tensor V(12 that acts in the spin and

orbital spaces and whose one-electron reduced matrix elements satisfy

i =1/ (8)

In the JJ.I1.scheme the diagonal matrix elements of the magnetic hyperfine interaction
are given by?%7

(aSLIT I Hy|o'S' L TIIL) = J.1, A 9)

whereas the off-diagonal matrix elements are given by

(@SLJ I Hp|a'S'L' T, £ 111 F1) = ; A(JF L)L+ )T xL)(ITFL+1)]7 (10)

5. Intermediate Coupling Effects

The effect of spin-orbit interaction is to mix states of different S and L leading to
a breakdown in the usual AS =0 and AL = 0,41 selection rules. This breakdown may
be further exacerbated by crystal field mixings. For the "free ion” Ho3t we find for the
ground multiplet

Table 1 Energy levels and eigenvectors for the > multiplet in LiY Fy : Ho®t.

J Eeqie Eeapt Eigenvector

8 0 0 0.9665/° Is) + 0.1189](20)3 Kg) — 0.2221](30)? Ks)
7 5007 5152 0.9853517) — 0.1462|(30)3 K-)
6 8672 8671 0.9772[°s) + 0.1352|(30)% He)

5 11281 11242 0.9549/515) — 0.1377|(21)3 H5) + 0.1944|(30)3 H5) — 0.1067](11)3 H5)
4 13350 13188 0.9495]%L,) — 0.1620](21)3 Hy) + 0.2247|(30)3 Hy) — 0.1186](11)3 Hy)

where we have used Racah’s G5 group labels to separate multiple occuring LS states.

Using the eigenvectors for J = 8 and J = 7 states given in Table 1 leads to the
intermediate coupling results for the spin part § for the lowest two members of the °

multiplet as

1

! -
60 420

S(1s) = 505700, SCr) = 3.2369) (11)



where the first part of the result is given as a fraction and the second part is the interme-
diate coupling correction factor. The latter factor would be unity for pure LS—coupling.
Notice that the intermediate coupling corrections for the spin part of the interaction can
be quite large even for relatively small departures from LS—coupling. However, in general

the spin part is very much smaller than the orbital part.

Again, using the eigenvectors for the J =8 and J = 7 states given in Table 1 leads to the
intermediate coupling results for the orbital part £ for the two lowest members of the 51

multiplet as

[1.0082], £(°1;) = 23[0.9964] (12)

5 —
£Cr) = 28

] o

The corrections for small departures from LS—coupling make for quite small corrections

compared with those for the spin part of the magnetic hyperfine interaction.

The total intermediate coupling correction for the magnetic-dipole hyperfine structure
comes from combining Eqs. (6) and (7) to to form total magnetic hyperfine interaction
matrices and then transforming them to diagonal form with the appropriate intermediate

coupling eigenvectors to yield

[+ 8)(1) = 200.9735],  [£+8](°1) = 5o [0.9591] (13)

Here we see again that the total effect is quite small and comes primarily from the factor
(2—g). The dominance of that term means that in most cases the spin part of the hyperfine
interaction can be ignored if results to within 10% are desired. Intermediate coupling
correction for the orbital part is accomplished by simply replacing g by its intermediate

coupling value.



5. Crystal Field States

In a crystal field of finite symmetry neither J nor J, survive as "good” quantum
numbers. In many cases J. is strongly broken while J survives to a "good” quatum number
to a good approximation and J—mixing may be ignored. In that case a given crystal field

level may be characterised by

| T3) =" agn| T M) (14)
M

In the case of Sy point group symmetry the expansions involve the states

laTy)  [JOY, |J£4),|TF8),... (15a)
la gy |J2),|J = 2),|J6), ] —6).... (150)

The crystal field potential for S; point symmetry acting on f—electrons can be written as
si:v = B0 + BICE) + Bl + BLL L) (16)

where
BY, = BF +iAl (17)
and both BY and A% are real. In practice we can perform a rotation of the = and y axes

about the r—axis to eliminate the imaginary part of either B}, or Bf,. Most workers

choose B}, to be real.

It is useful to introduce, for the I'y and I'; states, the symmetric and antisymmetric

linear combinations

1
JMyy = —(|JM)x|J—-M 18
[T M)+ \/5(| )£ | ) (18)
We then have that
(JMV|IM" 44 = (JM|V|JM')__ real (19a)
(JMIV|JM')y_ = (JM|V|JM")L ,  imaginary (199)

Explicit calculation involves construction of the crystal field energy matrices followed by

their diagonalisation to yield energy eigenvalues and their associated eigenvectors to give



the relevant a ;M expansion coefficients. Thus we find, for example, for the lowest °Ig level

of the groundstate of LiY Fy: Ho3t

Eigenvalue
81)

8- 3)

85)

8-1T)

Eigenvalues and eigenvectors for J = 8 for I'y states

Eigenvalue 45.9 218.6 290.1 51.6 274.6
180) 17575 87070 —.45932 0 0
|84) 4+ 73385 19446 64932 —-.032543  .030424
|88) + 65532 —45164 —-.60543 —-.00140 —.00151
|84)_ —.03273; —.00868; —.02897; —.72989; .68215i
|88)— —.001356: .00093:  .00125; —.68280: —.73056:

Eigenvalues and eigenvectors for J =8 for I'y states.

Figenvalue
82) 4+
186)+
182)_

136)_

Eigenvalues and eigenvectors for J =8 for I's4 states

2715
81810 4 .00046¢
—.20867 4 .06104:
—.49134 — 010214

19423 — 0652534

320.7 280.7
34454 —.062284
—.52791 06899
06672i 18857i
—.05992: —.60792:

303.4
26792 — .000114
72162 — 21129

—. 13187 — .00262:
—.55716 + .18742¢

26.3 7.0
052961  —.048188
834164  —.08921
04192:  .61000:
09559:  .78589:

76.5
50101 + .073714
015696 — .00222;
84838 +.14242i
057251 —.0103214

Notice that the components of the eigenvectors are complex.

6. Quenching of Angular Momentum and Hyperfine Patterns

0

—.05078 —.00008:
59736 — . 17382i
—.034439 — .00076:
4017 — 247594

The advantage of choosing the symmetric and antisymmetric linear combinations

is apparent - the angular momentum for the I'y and I'y states is completely quenched.

Meaning, of course, that the matrix elements of J, vanish within and between the I'y

and I'y states. This leads us immediately to the conclusion that there can be no first-




order magnetic hyperfine splittings for those states. Thus only the I'sy states can show
a first-order splitting which readily explains why I'sy levels are associated with type I
hyperfine patterns and I'y and I'y states with type IT hyperfine patterns. A distorted
type I pattern implies magnetic hyperfine coupling of a I'sy state with nearby I'y and I’y
states. Conversely, the appearance of a type IT pattern implies interaction of a I'y (or I'z)
state with a nearby I'sy. These perturbations are usually greater than the normal electric
quadrupole contributions and indeed act as a pseudo-electric quadrupole interaction. The
appearance of a type IT pattern signals a breakdown of the usual crystal field selection
rules since the states no longer correspond to pure representations of the ordinary point

group but rather involve spin representations of the so-called double group.
7. Calculations of Magnetic Hyperfine Structure

The magnetic hyperfine structure constant A was defined in Eq. (5) as
A=alL+ 8] (5)
In a crystal the average spacing, in first-order, between successive hyperfine levels, Ej, ¢,
will be
Epps = (YA ~ (J)(2 = g1¢) (20)

The total width, W}y, of a hyperfine pattern of type I will be
Whts = (21 + 1) Epys (21)

The first part of a practical calculation is to diagonalise the crystal field matrices

to produce eigenvalues and eigenvectors of the form (in the absence of J—mixing)

ol L) =Y " ayr, g, la I, 1) (22)
J.

where the a;r 5, are complex eigenvector components which are independent of the nuclear
spin projection I, and the nuclear spin I is assumed to be fixed. The first-order magnetic

hyperfine matrix elements are then

(@I Ty L Himaglad Uy 1y = 60 r,, A(J) (23)
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The magnetic hyperfine constant A for the groundstate is ~ 2.79 x 10~2em~! which is a
typical value for Ho and thus the splittings are ~ 0.15em=1. When the crystal field levels
are very close we can anticipate that the second-order magnetic hyperfine interaction will

couple the I'34 states to those of I'1, I'y. To calculate these effects we need to compute

matrix elements that are non-diagonal in J, and I, such that J, + I, = J. + I, to give

(@I Uy L Mimaglad Up I F1) = " af 5 par 511510 ) I L Hpagla' J T, £ LIL 1) (24)

J.

As an example we consider five I'sy type I patterns studied by the Moscow group and

listed in Table 2 below

J Ee Ec Ehfse Ehfsc <Jz>e <JZ>C <g2’e>€ <ch
8 0 0 -0.147 - -9.2 -5.09 13.01 12.6

7 3.4 6.0 0.082 0.071 2.75 2.47 6.49] 5.8
324 32 -0.131 -0.140 -4.39 -4.87 10.36] 11.5

75.5 82 -0.08 -0.081 -2.74 -2.81 6.48] 6.6

140.6 145 - 0.035 - 1.22 - 2.9

Table 2. Comparison of Experimental and Calculated I'34 Levels

The experimental quantities are subscripted by an e and calculated quanties by a c. Ej 4

is the mean spacing of the hyperfine levels in em=1.

1

(g-) 1s the magnetic splitting factor.

The energy levels for the J = T states are relative to that of the lowest ®I; state.

We can estimate A[?Is] from the experimentally determined values of £, ;s and (J.)

to give

APIg)e = 0.0271 x 10-2em~! (25)
Then using Eq.(13) we can deduce a value of

AP T = 0.0287 x 10-2em~! (26)

The entries it the fifth column of Table 2. then follow by multiplication of A[*I7]. by the
appropriate value of (J,).. The results are in relatively close agreement with the exper-
imental values, probably to within experimental accuracy. We note that the calculated

mean spacing for the last level is quite small (0.035 x 10=2¢m~1) which is at the limit of

resolution and explains the paucity of experimental data for this level.



8. Selection Rules and ’Forbidden Transitions’

Electric dipole transitions involve the matrix elements of 2 for polarisation par-
allel to the z—axis (7-polarisation) and for polarisation perpendicular to the z—axis (o-
polarisation) matrix elements of = +iy. For Sy z transforms as the I'y representation and

r +iy as ['34 leading to the electric dipole selection rules

Ed v Ty I's I'4

|- = o o
Iyl = - o o (20)
I's | o o - =«
'y \e o = -

For magnetic dipole transitions we need the matrix elements of J. for ¢—polarisation and
Jy +iJy for m—polarisation. For S J, transforms as I'y and J,+iJ, as I's, I’y leading to the

magnetic dipole selection rules

Md 17 Iy I's I'4

I' c - T 7
Iy - o T 7 (21)
I's L S
Iy T T - 0

The experimental study of the polarisation of transitions gives a further tool for deter-
mining the symmetry of the observed levels. Note that the electric dipole transitions are
forced electric dipole transitions as they nominally occur between states of the same par-
ity. The crystal field potential expansion possesses odd rank terms that can mix states of
opposite parity. Furthermore, the crystal field can mix states of different J and L lifting
the AJ, AL =0, £1 of the free ion while spin-orbit interaction can lead to a breakdown
of the spin selection rule AS = 0. Magnetic dipole transitions are allowed between states
of the same parity. In the free ion in pure LS—coupling we have the magnetic dipole
selection rules

AS, AL=0, AJ=0, +1 (22)

11
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Again these selection rules can be broken by spin-orbit interaction and crystal field selec-
tion rules. Nevertheless, the selection rules of Eq. (20) and (21) are, in the absence of
other interactions, rigorous. An interaction which can break those selection rules is the

nuclear hyperfine interaction that can weakly mix close-by crystal field levels.

The nuclear spin of Ho is half-integer while the electronic angular momentum is
integer leading to a net angular momentum in the free ion that is necessarily halt-integer.
As a result the crystal field levels, in the presence of the hyperfine interaction, will involve
states belonging to the double group of S;. The additional irreducible representations I';
i =5,...,8 are one-dimensional but occur as complex pairs. For electric-dipole transitions
the o—polarisation transitions involve the matrix elements of z which transforms as the
I’y irreducible representation while for 7—polarisation transitions z 4 iy transform as the
I's, 'y irreducible representations of 54 leading to the electric-dipole selection rules for

the relevant irreducible representations as

Ed 15 Ts I'z I

I's | - o =« o
I'e | ¢ - o =« (23)
'l o - o
I's \ e = o -

Likewise, for magnetic-dipole transitions we have

Md 15 Ts I'v Is

I's c T - 7
I's T o T - (24)
I'; - 7 o 7
I's T - T 0

Taking into account the degeneracy of the pairs I'sg, I'75 we see that some of the transitions



will occur in pure 7— or o— polarisation with the rest as sr—polarisation as shown below

E.d F56 F78
F56 o ey (25)
F78 om a

and
M.d F56 F78

F56 ey ™ (26)
F78 m om

which gives a way of sometimes distinguishing the different symmetries by polarisation
measurements. Within the ground °I multiplet we expect the transitions within and
between the sublevels for 7 = 7,8 to exhibit both magnetic dipole and forced electric
dipole transitions whereas for transitions from sublevels of J = 8 to levels with AJ > 2

should exhibit only electric dipole transitions.
9. Concluding Remarks

We have attempted to give a simple explanation of the origin of 'forbidden tran-
sitions’ in crystals containing ions possessing nuclear magnetic moments and show how
quite simple calculations can lead to an understanding of the broad features of the hy-
perfine patterns in crystals. Calculations showing the effects of J—mixing and hyperfine
mixing have been done but not presented in this paper!®. It is hoped that these notes will
be of assistance to those undertaking the task of analysing much of the new data, taken at
very high resolution, that is becoming available. The Moscow group has presented inter-
esting data on the effect of different isotopes of Li on the hyperfine structure!®. It would
be very interesting, and possibly allow simpler interpretation, to substitute for some of
the F~ ions H~ ,D~ and T~ isotopes of hydrogen. Extensive studies of such substitutions
have been made by the University of Canterbury group under Dr. G. D. Jones but as yet
not applied to magnetic hyperfine studies. There would seem to be a rich future for such

studies.
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