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Abstract

The problems of computing properties of the non-compact groups Sp(2n, R) and Mp(2n) are
considered. The implementation of algorithms for calculating branching rules applicable to quantum
dots are illustrated by a number of examples. The question of the elimination of spurious states is

considered.
1. Introduction

A knowledge of the properties of compact Lie groups, and their associated Lie al-
gebras, is essential in many areas of physics. Witness the application of SU(3) in quantum
chromodynamics and in the nuclear shell-model, SO(4) as the degeneracy group of the
H-atom, SO(10) and E(8) in string theory etc. The unitary irreducible representations
of the compact Lie groups are all of finite dimension and hence it is possible to compute
complete results even though at times the dimensions may be very large. Much less is
known of the non-compact Lie groups and yet they too find applications in physics. The
non-compact symplectic Lie group Sp(2n, R), and its metaplectic covering group, Mp(2n),
occur in the theory of three-dimensional harmonic oscillator (n = 3) and more generally

in symplectic models of nuclei, quantum dots and quantum optics. A fundamental dif-



ference between the non-compact and compact Lie groups is that the non-trivial unitary
irreducible representations of the former are all of infinite dimension. Thus in most cases
it is only possible to compute such things as tensor products and branching rules up to

some prescribed cutoff.

The program scHUR™ was initially designed to compute properties such as the
dimensions of irreducible representations , Kronecker products and branching rules for
compact Lie groups. In this paper we outline extensions to scHUR that permit the calcu-
lation of Kronecker products and branching rules involving irreducible representations of
the non-compact symplectic group Sp(2n, R) and important subgroups thereof. We shall
first review the labelling of representations of the classical Lie groups and then consider
the labelling of the representations of Sp(2n, R) in terms of the partition labels used for
its maximal compact subgroup, U(n). We then briefly outline some of the features of
SCHUR in computing properties of the classical Lie groups and then consider the prob-
lems, and their solutions, in extending SCHUR to Sp(2n, R). Specific attention is next given
to the implementation of the branching rules and Kronecker products that arise in the
classification of the states of a many-electron quantum dot, a problem closely related to
the corresponding many-nucleon symplectic model of the nucleus. We give a number of
examples of specific calculations done with the new version of scHur.

2. Labelling Irreducible representations of the Classical Lie Groups

The irreducible representations of the classical Lie groups, SU(n), SO(2k+1), Sp(2k)
and SO(2k) may be unequivocally labelled by ordered partitions of integers, or in the case
of spin representations half-odd-integers, subject to certain constraints'. The irreducible
representations of the full orthogonal groups, O(2k+1) and O(2k), may likewise be labelled

by integers and half-odd-integers. In those cases we extend the labels by an additional

* SCHUR is an interactive program for calculating the properties of Lie groups and
symmetric functions distributed by S. Christensen, PO Box 16175, Chapel Hill, NC 27516

USA. E-mail stevec@wri.com



'#’ to distinguish associated pairs of irreducible representations. The standard partition

labels are summarised in Table 1 and their relationship to the Dynkin labels in Table 2.

Table 1 Standard labels for representations of the classical Lie groups of rank k.

Group Label Constraints
Un {m; At O+l <k=n
SU, {A} HL<k=n-1
O2k41 [A], [A)# O <k

SOgp41 AL, [A; 4] 0 <k
Sp2k <A> 0 <k
Ok (AL, [A]# 0 <k
[A] H=k
[A; )] 0 <k
SOz [A] 0 <k
[A]+ 0=k
[A; A+ 6, <k

In specific calculations non-standard partitions may arise and these must be converted into
either standard partition labels appropriate to the group being considered or become null
objects. For the classical Lie groups these modification rules normally involve drawing
the Young frame of the non-standard partition A and removing a continuous strip of
boxes of length h, starting at the foot of the first column and working up along the right
edge. This strip removal is symbolised as A — h. A phase factor also occurs which is
dependent upon the column ¢ in which the removal ends. If the resulting Young diagram
corresponds to an ordered partition then A — X — h, otherwise A is discarded. In practice
the procedure is repeated until either a standard label results or a null result is obtained.
The modification rules appropriate to the classical Lie groups are summarised in Table 3.

These modification rules are automatically implemented in scHUR as well as the possibility



Table 2 Relationship between standard scHur labels and the corresponding Dynkin labels

for the classical Lie groups.

Group Dynkin label Standard Label
SUk-H a1211—12 11:a1—|-a2—|-...—|—ak_1—|—ak
a2212—13 12: ag—l—...—l—ak_l—l—ak
a1 = lp_1— I lh_1 = ap_y + ay
ar — lk lk = ay,
SOgk41 ap = I — Iy 11:a1+a2+...—|—ak_1—|—“7k
ay = lo— I3 Iy = a2—|-...—|—ak_1—|—a7k
ag_1 = lp_1— I lp_1 = a1+ %
ap = 2 lk lk — 112_k
Spay ap = I — Iy L=a+‘as+...+Fap_q1+a
ay = lo— I3 Iy = as+...+tap_1+ag
a1 = lp_1— I lh_1 = ap_y + ay
A = lk lk = ag
SOx ap = li— llzal—l—ag—l—...—l—ak_2—|——“k2—l—|-“7k
ag = la— I3 ly = az+ ...t aj_o+ B+ %
-2 = o =l k2 = ap-z + U5+ Y
ap_1 = lk—l — lk lk—l = akT—l + aTk
ap = lk—l + lk lk = ak2—1 _ !ITk




of transforming standard partition labels into Dynkin labels and vice versa.

Table 3 The modification rules appropriate to the classical Lie groups.

Group modification rule h
Un,SUn @A} = (=1)F " =Ry A — h} h=0i+6-n-1>0
Ogpi1 [\ = (=1)"1[\ - h]# h=20-2k-1>0
(A# = (=1)"x -] h=20,-2k-1>0
[A;A] = (=1)[A; X — h]# h=20,-2k—-2>0
[A;A]# = (=1)°[A; A — A h=20,-2k—-2>0
SOgp41 [\ = (=1)1[x - 3] h=20-2k-1>0
[A;A] = (=1)¢[A; A= h] h=20,-2k—-2>0
Spaj, <A>=(-1)<A-h> h=20,-2k—-2>0
Oqp, [\ = (=1)"1[\ - h]# h=20,-2k>0
N# = (=1) A = 4] h=20,-2k>0
[A;A] = (=1)¢[A; A= h] h=20,-2k-1>0
SOy, (A= (=1)t[x—n] h=2(—-2k>0
Me = (=1)"A - hlz h=20,-2k>0
[As ]+ = (=1)°[A; A= h]F h=20,-2k-1>0

A considerable advantage in using partition labels acrues when it is realised that the
characters of the classical Lie groups can be represented in terms of finite sequences of the
symmetric Schur functions®? (S—functions), themselves indexed by partitions, allowing
the calculation of Kronecker products and branching rules to be made in terms of simple
manipulations of S—functions . In practice well defined infinite series of S—functions are
involved with the number of terms being limited by the fact that the unitary irreducible
representations of the compact Lie groups are all finite dimensional?. scHUR is able to
automatically determine the content of the appropriate S—series, make the truncation of
the infinite series, and carry out the necessary S—function computations rapidly. The

irreducible representations of the compact exceptional Lie groups may also be labelled



in terms of constrained partitions based upon the corresponding labels of their maximal

7

classical Lie subgroups!®=7. A similar procedure may be used for the discrete series of

irreducible representations of non-compact groups®?.
3. Labelling the Irreducible representations of Non-compact Lie Groups

Here we shall limit ourselves to discussion of the so-called positive discrete unitary
irreducible representations of the group Sp(2n, R) and its double covering group, Mp(2n),
drawing heavily upon references [8] and [9]. These irreducible representations are all infi-
nite dimensional and are characterised by a lowest weight with respect to the ordering of
weights of the maximal compact subgroup U(n). There exists a harmonic representation,
A, associated with the Heisenberg algebra. This is a true, unitary, infinite dimensional
irreducible representation of the double covering group Mp(2n) of Sp(2n, R), the so-called
metaplectic group. This representation is reducible into the sum of two irreducible repre-

1

sentations Ay and A_ whose leading weights are (11...1) and (

11 :
: +...3) corresponding to

the highest weights of the representations ¢2{0} and ¢z {1} which appear in the restriction

of Sp(2n, R) to its maximal compact subgroup U(n).

The tensor powers AF all decompose into a direct sum of unitary irreducible rep-
resentations of Mp(2n). All those irreducible representations which derive from AF for
some k will be referred to as harmonic series representaions. All those irreducible repre-
sentations that appear in A* will be labelled by the symbols (£(A)). The harmonic series
representations appearing in AF are in one-to-one correspondence with the terms arising

in the branching rule appropriate to the restriction from Mp(2nk) to Sp(2n, R) x O(k)

A= Y a() < (1)

where the summation is carried out over all partitions (A) = (A1, Ag,...) for which the

conjugate partition (A) = (A1, Ay, ...) satisfies the constraints

:\1 —|— :\2 S k (2&)



and
Irreducible representations of Sp(2n, R) ($k())) satisfying Eq.(2) will be said to be standard
and we may limit our attention to these irreducible representations of Sp(2n, R).

The value of £ maybe an integer (k even) or a half-odd-integer (k odd). In terms
of inputting and outputting Sp(2n, R) labelled irreducible representations into scCHUR it is

useful to introduce the equivalent notation

(55 (V) = (5 (1)) (3)
where
g—zzsﬁ—ﬁ (4)

with & being the integer part of £ and the residue part is s = 0 or 1. Thus we have the

typical notational equivalences

CLOY=GONE=3 (LO)=10) k=2

SCHUR accepts irreducible representation labels in the form of lists of (s«; \) and standard-
ises the input in accordance with the constraints of Eq.(2) making null all non-standard
Sp(2n, R) irreducible representations. As an example taken from scHUR with the inputs

marked — > we have
->gr spr8
Group is Sp(8,R)
REP>
->2;211 + 2;31 + 2;2211 + s1;21 + 82;32
<2;(2172) > + <2;(31)> + <2;(272 172) > + <s81;(21)> + <82;(32)>
REP>
->std last

<s2;(32)> + <2;(31)> + <2;(2172)> + <s1;(21)>



The second instruction has applied Eq.(2) to the list and eliminated the non-

standard < 2;(2211) > label.
4. Branching Rules for subgroups of Ap(2n) and Sp(2n, R)

The branching rule for the group-subgroup decomposition Sp(2n, R) — U(n) has been

shown to be®?

(00 =<t 1 Dy (5)

with N = min(n, k). The infinite S—function series

D=3{s} (6)

involves a sum over all partitions (§) whose parts are even. This series is restricted to
Dy in Eq. (6) involving members (§) of the D—series having not more than N parts.

Nevertheless, the series Dy remains as an infinite series of S—functions.

The signed sequence®® {A;}% is the set of terms +{p} such that £[p] is equivalent
to [A] under the modification rules of the group O(k). The signed sequence is rendered

finite by restriction to terms {p} involving not more than N parts.

The first - indicates a product in U(n) and the second - a product in U(N) as implied

by the final subscript ~.

The harmonic discrete series irreducible representations of Sp(2n, R) are all of infi-
nite dimension and hence there are an infinite number of U/(n) irreducible representations
arising on the right-hand-side of Eq. (5). Clearly, in practical implementations of the
branching rule a user definable cutoff must be introduced to produce a manageablely
finite number of terms. In scHUR we solve this problem by introducing a user defined
integer constant that results in the computation of all terms up to a chosen maximal
weight partition. SCHUR possesses procedures to generate the necessary signed sequences
and S—function series, as well as carrying out the relevant Kronecker products and mod-

ification rules. A typical example of verbatim scHUR input and output is given below:



->gr spr8
Group is Sp(8,R)
DP>
->br44,8grils1;21]
Group is U(4)
{s;11 2172 } + {s;10 31"2 } + {s;10 272 1} + {s;941°2 } + {s;9321}

+ {s5;921°2 } + {s;851°2 } + 2{s;8421} + {s;831"2 } + {s;82"2 1}

+

{s;761°2 } + {s;7521} + {s;7431} + {s;741"°2 } + {s;7321}

+

{s;721"2 } + {s;6"2 21} + {s;6531} + {s;651"2 } + {s;64"2 1}

+

2{s;6421} + {s;631°2 } + {s;62"2 1} + {s;5431} + {s;541°2 }

+

{s;5321} + {s;521"2 } + {s;4"2 21} + {s;431"2 } + {s;42"2 1}
+ {s;321"2 }
The branching rule for the decomposition of the irreducible representation A=

(s;(0)) of the metaplectic group Mp(2nk) upon restriction to the subgroup Sp(2n, R) x O(k)

follows from implementation of Eq. (1) into scHUR.
We find for example:
DP>
->sb_tex true
DP>
->columns4
DP>
->gr mp24
Group is Mp(24)
DP>

->br46,6,4gri[s;0]
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Groups are  Sp(6,R) * 0(4)

<2;(12)>[12] + <211 1) >[11 1] + <2(11)>[11]  + <2:(10 2) > [10 2]
+ <2(1012)>[10 ]# <2;(10 1) > [10 1] 4+ <2,(10 ) >[10]  + <2;(93) > [93]
+ < 2:(92) > [92] + <2;(912) > [9]# 4+ <2;(91) > [91] + <2;(9) > [9]

+ <2;(84)>[84] 4+ <2(83)>[83] 4+ <2(82)>[82]  + <2:(812) > [8]#
+ < 2;(81) > [81] + <2;(8) > [8] + < 2:(75) > [75] + < 2;(74) > [74]
+ <2(13)>[13] 4+ <2(72)>[72] 4+ <2(7T1%) > [T# + <2;(71) > [71]
+ < 2:(7) > [7] + <2;(62) > [6%] + < 2:(65) > [65] + < 2;(64) > [64]
+ <2:(63)>[63] + <2;(62)>[62] 4+ <2(612)>[6]# + <2;(61)>[61]
+ < 2;(6)>[6] + < 2;(5%) > [5?] + <2;(54)>[54]  + <2;(53) > [53]
+ < 2:(52) > [52] + <2;(512) > B]# 4+ <2;(51) > [51] + <2;(5) > [5]

+ < 2;(4%) > [4%] + < 2;(43) > [43] + < 2;(42) > [42] + < 2;(412) > [4]#
+ < 2;(41) > [41] + <2;(4) > [4] + <2:(3?) > [3?] + <2;(32) > [32]
+ <2031 >Bl# + <206L)>B1] + <2%03)>[3] + <2;(2%) > [27]
+ <22 > [21#  + <22 >[21]  + <2(2)>[2] + <2(1°) > [1]#
+ <2;(1%) > [17] + <2:(1) > [1] + <2;(0) > [0]

Note that in this case sCHUR has been requested to produce TEX output in four columns

forming a setbox with the appropriate settabs and TEX commands automatically inserted.

Under the restriction Mp(2n) — Sp(2n, R) we have

(5 (0)) — (5 (0)) + (5 (1)) (7)
It the case of the harmonic oscillator this corresponds to separating the odd and even

states. The appropriate branching rules for these two irreducible representations have

10,11

been given by Haase and Johnson and have been implemented in scHUR. For example,
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->gr spr24

Group is Sp(24,R)

DP>

->br47,6,4gri[s;0]

Sp(6,R) * 0(4)

Groups are

S
(aw]
= —  — _— —
ANBE S B R B
A AR AT A S ARSARA
o =4 w4 4 N = &
X =2 v =
SN B~ TR R RN T SN
vV V. OV VOV VOV VY
+ + + + + + + +
N
(aw]
— — —_— —
—_ ~ a0
N2 g L s R T
)>_|_ L L
A A A AR
(e R et e U ~ e N - T o N
0 2 xr e e == oo
SN B~ TR R RN T SN
vV V. OV VOV VOV VY
+ + + + + + + +
p—
= . #® _ HH =
— ™ w — o N
T T T
e A A A
)2)2)\/2
e T T N e R
-0 2 xr = ore == oo
SN B~ TR R RN T SN
vV V. OV VOV VOV VY
+ + + + + + + +
S N ™ N - MW ~
S T S = R
= N A A A A DA
N o & & o » 5 o
—~ - X = e »n =T O =2
O B S NP S S S S S SR SO S
M<<<<<<<
v o+ + 4+ 4+ + + +

->gr spr24

Group is Sp(24,R)

DP>

->br47,6,4grils;1]

Sp(6,R) * 0(4)

Groups are

#

—

912) > [9

— — e o

e i N

o~ o~ = =

[ N N NS

+ <2

92) > [92]

+ <2

81) > [81]

+ <2

54) > [54]

+ <2

43) > [43]

+ <2

3) > [3]

e e e e e

+ <2

83) > [83]

+ <2

61) > [61]

R N T O e g

+ <2

<2:(11)>[11]

+ <2

72) > [72]

+ <2

63) > [63]

+ <2

32) > [32]

[ N N N

+ <2

+ <2

+ <2

+ <2
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Not surprisingly the sum of the above two results coincides with those for the

Mp(24) — Sp(6, R) x O(4) decomposition given earlier.

The final branching rule we require is the general reduction for

Sp(2n, R) — Sp(2,R) x O(n). Again the relevant result is available and has been added to

SCHUR. As a typical example we have:-
->gr spr8
Group is Sp(8,R)
DP>
->br45,8grils1;21]

Sp(2,R) * 0(4)
+ <6;(11)>[92]

Groups are

<6;(11 ) >[101]

+<6;(11)>[83]  +4<6;(11)>[81]
+3<6;(11)>[T# +4<6;(11)>[7)
F10<6;(11 ) > [61] +3<6;(11 ) > [54]
+8<6;(11)>[5]  +6<6;(11)>[43]
F5<6:(11) > [3]# + 7<6;(11)>[3]
+3<6:(11)>[1] + <6;(9)>[81]
9) > [7] + < 6:(9) > [63]

+ 3<6:(9) > [5]#
+ 5 <6:(9) > [32]

F6<6(9)>[21] 4+ <6;(9)> [1]#
+o<6(T)> 2] 4 <6(T)> Bl
FA<6(T) >[4 4+ 3<6:(7) > [32]
FA<6(T)> 2] 4 <65(T)> [1#

+ <6;(5) > [3]#
+ <6;(5) > [1]

<6 (11 ) > [9)#
+ < 6;(11) > [74]
+o<6;(11 ) > [65]
+9<6;(11) > [52]
+ 13 <6;(11 ) > [41]
7 <6:(11) > [21]
4 <6;(9) > [72]
+4<6;(9) > [61]
44 <6;(9) > [5]
44 <6:(9) > [3]4
4 2<6:(9) > [1]
+2<6(7) > [5]
4 2<6:(T) > [3]4
4 2<6:(7) > [1]
+2<6:(5) > [3]
4 <6:(3) > [21]

4 <6;(7) > [61]
4 o< 6;(7) > [43]
43 <6:(7) > [3]
+ o< 6;(5) > [41]
+2<6:(5) > [21]
+o<6(3) > [1]

The above results give an indication of the application of scHUR to branching



rules involving non-compact groups. The examples have been kept quite small but scHUrR
can evaluate terms almost without limit if required. The application of these results to
quantum dots will be considered shortly but first we digress to consider the Kronecker
products of irreducible representations of the harmonic series of the non-compact group
Sp(2n, R)

5. Kronecker Products for Sp(2n, R)

The evaluation of Kronecker products of harmonic series irreducible representations
of the non-compact group Sp(2n, R) have been considered by King and Wybourne®. They
establish the complete result

(500 * () = (el 105) D)) (8)

where ((A))g4s, is interpreted as null unless the constraints of Eq.(2) are satisfied. This
method requires the use of two signed sequences and as a consequence there is considerable

overcounting.

They have conjectured the validity of a somehat simpler formula

(5 (1)) * (5 (v))

_ <¥(({ﬂ} Avs¥y Dx)y)n with N = min(n, ¢) (9a)
= (ST - ) Dar)ar)e with M = min(n ) (9%)

The symbol (£££(1)),, is interpreted as a harmonic series irreducible representation subject
to a two stage modification that first modifies (A) in O(k + ¢) and then modifies in U(n).

These modifications are automatically done in scHUR.

To date no counter-example to Eq.(9) is known in spite of much searching. King
and Wybourne® have presented arguments in favour of the plausibility of their conjecture
but to date no formal proof has been offered. Currently there is implementation of both
Eq. (8) and (9) in scHUR but only when a complete proof is obtained can one consider
the results with certainty from Eq. (9). As an example of the implementation of Eq. (9)

we have

13
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REP>

->gr spr8

Group is Sp(8,R)

->p s1;21,2;31

<3:(92) > Fo<3:(912) > +2<3:(83)>  +4<3(821)> +2<3:(81%) >
+3<3:(T4) > 4+ T7<3;:(131)> +4<3(722)> +5<3(7212)> + <3;(72) >
Fo<3(T12) > +2<3:(65)> +8<3(641)> +8<3;(632)> +8<3;(6312) >
F2<3:(63)> 4+ 4<3;(6221) > +4<3:(621) > +2<3;(613)> +3<3:(520)>
FT<3(542) > +6<3:(5412) > +2<3:(50) >  +4<3:(532)> +8<3;(5321) >
+5<3:(531)> +3<3;(522)> +4<3(5212)> + <3;(52)>  + <3;(512) >
F3<3(423) > £ 4<3(4221) > +3<3(421) > +4<3;(437]) > + 4<3;(432) >
+4<3;(4312) > + <3;(43) > +2<3;(4221) > + 2<3;(421) > 4+ <3;(41%) >

+ <333 > +2<3;(321) > + <3:(31) > 4 <3;(322)>  + <3:(3212) >

also in agreement with Eq. (8). A boolean has been added to scHUR to permit the user

to toggle between the two equations.
6. Application to Quantum Dots

The development of scHUR has always been motivated by specific applications.
Thus the extension to the non-compact groups Mp(2n) and Sp(2n, R) has been driven by a
need to develop systematic methods for calculating the relevant branching rules required
for the classification of the states quantum dots and of nuclei. A quantum dot involves
the confinement of N electrons in d = 2or3 dimensions over a nanometre scale'?. The
confining potential is, to a good approximation, parabolic. The quantum dot behaves
like an N—electron atom without a nuclear core. In an atom the kinetic energy tends
to dominate over the potential energy (the confinement length is small) whereas in a
quantum dot the two contributions are roughly of the same order. A closely analogous

problem is that of nucleons confined in a harmonic oscillator potential with quantised

motion occuring about the centre-of-mass of the N—nucleon system. Indeed the formal



group structure is identical to that proposed by Haase and Johnson!'%!'! for a quantum
dot confined in three dimensions. A quantum dot may involve anything from a single

electron to sixty or more electrons.

The symmetry, or degeneracy, group of the isotropic harmonic oscillator is SU(3).
A dynamical group'?, containing the degeneracy group as a subgroup, with a single irre-
ducible representation that can be spanned by the complete set of states maybe found!'%:!1
by consideration of the commutation relations satisfied by the coordinate and momentum
operators of the individual particles. Such an irreducible representation is necessarily
infinite dimensional and the dynamical group is necessarily non-compact. For our case of
N-particles confined in d dimensions the appropriate dynamical group!®1! is Sp(2Nd, R)
with its covering group being the metaplectic group Mp(2Nd). More accurately, we have
a Lie algebra, but by the customary physicists abuse of notation we shall discuss them as
groups.

1011 which we portray

The group Mp(2Nd) possesses a very rich subgroup structure
in Fig. 1. The group Mp(2Nd) sits at the top and involves the single irreducible represen-
tation A ~ (s;(0)). Upon restriction to Sp(2Nd, R) the irreducible representation splits into
two irreducible representations as in Eq. (7). Continuing down Fig. 1. we pass through
various group-subgroup chains each involning branchings that may be determined using
SCHUR . The various subgroups reflect different ways of separating the spatial and particle
number dependencies. The group O(d) describes the angular momentum states of the
14-16 of

system while the group O(N) gives information on the permutational symmetries

the states via the S(N) symmetric subgroup of O(N).
7. Permutational Symmetries and Spurious States

The role of permutational symmetries and the removal of spurious states is best
illustrated by a specific example of six electrons (N = 6) in an isotropic three-dimensional

space (d = 3). The dynamical group is Mp(36) and upon restriction to Sp(36, R) we have

(5;(0)) = (53 (0)) + (55 (1)) (10)

15



16

Looking at Fig. 1 let us choose the subgroup Sp(6, R) x O(6). The group O(6) gives the

spatial symmetries of the six-electron states. Using scHUR we have (s; (0)) —

and

DP>
->gr spr36
Group is Sp(36,R)
DP>
->br47,6,6grils;0]
Groups are Sp(6,R) * 0(6)
........................................ + <3;(8)>[6]
+ <3;(572 2)>[5"2 2] + <3;(5°2 )>[5"2 ] + <3;(543)>[543]
+ <3;(541)>[541] + <3;(532)>[532] + <3;(53)>[563] + <3;(521)>[521]
+ <3;(51)>[51] + <3;(4°3 )>[4°3 ] + <3;(4°2 2)>[4"2 2]
+<3;(472 )>[4"2 ] + <3;(4372 )>[43"2 ] + <3;(431)>[431]
+ <3;(42°2 )>[4272 1 + <3;(42)>[42] + <3;(41°2 )>[41°2 ]
+<3;(4)>[4] + <3;(372 2)>[372 2] + <3;(3°2 )>[3"2 ]
+ <3;(321)>[321] + <3;(31)>[31] + <3;(2°3 )>[2"3 ]
+<3;(2°2 )>[272 ] + <3;(2172 )>[2172 ] + <3;(2)>[2]
+ <3;(172 )>[172 1 + <3;(0)>[0]

DP>

->gr spr36
Group is Sp(36,R)
DP>

->br47,6,6gri[s;1]



Groups are Sp(6,R) * 0(6)
...................................... + <3;(61)>[61]
+ <3;(572 1)>[6"2 1] + <3;(542)>[542] + <3;(54)>[54]
+ <3;(5372 )>[5372 1 + <3;(531)>[531] + <3;(52°2 )>[52"2 ]
+ <3;(52)>[52] + <3;(5172 )>[51"2 ] + <3;(5)>[5]

+ <3;(472 3)>[4"2 3] + <3;(4°2 1)>[4"2 1] + <3;(432)>[432]

+ <3;(43)>[43] + <3;(421)>[421] + <3;(41)>[41] + <3;(3"3 )>[3"3 ]

+ <3;(372 1)>[372 1] + <3;(3272 )>[32"2 ] + <3;(32)>[32]

+<3;(3172 )>[31°2 ] + <3;(3)>[3] + <3;(2°2 1)>[2"2 1]

+ <3;(21)>[21] + <3;(173 )>[1°3 1 + <3;(1)>[1]

DP>

The permutational symmetries associated with each O(6) irreducible representation

[A\] is determined by an examination of its decomposition under O(6) — S(6).

example we have from scHUR
DP>
->brm
Branch Mode
->4,8
0(8) to S(8)
BRM>
0 -> {6}
12 -> {51} + {41°2 }
2 -> {6} + 2{561} + {42}
2172 —> {42} + 2{41°2 } + 2{321} + 2{31"3 } + {272 172 }

272 > {51} + 3{42} + {412 } + {372 } + 2{321} + {2"3 }

Thus for

17
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273 —> {42} + 2{3"2 } + 2{321} + 2{2"3 } + {2"2 1”2 }
31 > {6} + 4{51} + 4{42} + 5{41"2 } + 2{372 } + 3{321} + {31°3 }
321 —> 2{51} + 6{42} + 6{41"2 } + 4{3°2 } + 14{321} + 6{31"3 }
+ 4{2°3 } + 6{2"2 172 } + 2{21°4 }
BRI>

Only permutational states involving partitions of the form [271°], where r = ¥ — 5
and s = 2S5, can give rise to totally antisymmetric states as required for N identical spin
+ fermions. Inspection of the above O(6) — S(6) decompositions shows that the states

associated with the Sp(6, R) irreducible representations

(3: (0)), (3; (11)), (3;(2)), (3; (31))
are spurious and must be discarded. Likewise for other Sp(6, R) irreducible representations
only certain spin states are admissible.

As a second example consider the alternative group-subgroup chain
Sp(36,R) — U(18) — U(3) x U(6) — U(3) x O(6)

Here the group U(3) involves the angular momentum states associated with its subgroup
O(3) while U(6) involves the permutational symmetries associated with the O(6) > S(6)
subgroup. The irreducible representations of U(18) all involve partitions (m) where m is
an even integer for (s;(0)) and an odd integer for (s;(1)). Let us restrict our attention to

the U(18) representations with m =0,2,4,6. From scHUR we have
DP>
->gr ul8
Group is U(18)
DP>
->br9,3,6gr1[0+2+4]

Groups are U(3) * U(8)
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{43{a} + {31}{31} + {272 {22 } + {2172 }{21"2 }
+ {23{2} + {172 {12 } + {o}{o}

DP>

->bri,6gr2last

Groups are U(3) * 0(8)
{43041 + {4¥[2]1 + {4}[0] + {31}[31]1 + {313}[2]
+ {31}[172 1 + {272 }[2"2 1 + {272 }[2] + {272 }[0]
+ {2172 }[21°2 1 + {2172 }[1"2 1 + {2}[2] + {2}[0]
+ {172 }[1"2 1 + {0}[0]

DP>

Inspection of the O(6) — S(6) branching rules show that the U(3) irreducible rep-

resentations {0}, {1%2},{2}, {31}, {4} are all associated with spurious states and may be

eliminated. This leaves just two irreducible representations of U(3) x O(6), {22} x [2?] and

{212} x [21?], as survivors, the first having spin S = 0 and the second with § = 1.

Under U(3) — O(3) we have

{22y =21+ [0] {217} = 1]

and thus we have the states 15D and 2P. These are precisely the states that are expected

from putting two electrons in the lowest s—orbital and four electrons in the lowest p—orbital

of a three-dimensional isotropic harmonic oscillator potential, that is the states of a s?p*

electron configuration. Going to higher values of m for irreducible representations of

U(18) we of course obtain a larger portion of the spectrum of states. Similar analyses

can be made for the odd m cases that arise in the reduction of the (s;(1)) irreducible

representation of Sp(36, R) and again with the elimination of spurious states.

8. Concluding Remark

SCHUR has in the past being able to handle many problems associated with compact
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Lie groups. Here we have outlined how scHUR has been extended to include the gener-
ation of information on the non-compact group Sp(2n, R) and its covering group Mp(2n)
and illustrated these extensions by their application to the classification of the states of
quantum dots.
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