
Plethysm and the Non-Compact Groups Sp(2n,R)B.G.WybourneInstytut Fizyki, Uniwersytet Miko laja Kopernikaul. Grudzi�adzka 5/787-100 Toru�nPolandABSTRACTSome preliminary results on the plethysms for the non-compact group Sp(2n;R) arepresented. Complete results are given for power 2 plethysms of the two fundamentalirreducible representations of Sp(2n;R). Several new S�function identities arise fromthis work. The stabilisation properties of the plethysms are briey considered andsome remarkable conjugacy mappings observed.IntroductionThe plethysm of S�functions has been the subject of much research ever since itsintroduction by Littlewood1. Many applications have been made to the classical compactLie groups by expressing the characters of the irreducible representations of the group interms of S�functions2�6. To date rather scant attention has been paid to application ofplethysm to non-compact Lie groups7�9.The non-compact group Sp(2n;R) is of special interest in physics as it is the dy-namical group10 of the n�dimensional isotropic harmonic oscillator which �nds importantapplications in symplectic models of nuclei11 and in the mesoscopic physics of quantumdots12;13. The non-trivial unitary irreducible representations of Sp(2n;R) are all of in-�nite dimension14;15. An extensive outline of notation, characters, Kronecker productsand branching rules is developed in reference 15. In other matters we follow the notationof Macdonald16 Arbitrary positive discrete harmonic series irreducible representations ofSp(2n;R) will be labelled as < k2 ; (�) > or equivalently as < s�; (�) > where � and s arethe integer and residue parts of k2 .The in�nite set of states of a harmonic oscillator span the pair of in�nite- dimensionalfundamental unitary irreducible representations of Sp(2n;R) which we shall designate15as < 12 ; (0) > and < 12 ; (1) >. Our central problem is to resolve symmetrised powers ofthese two irreducible representations which amounts to evaluating the plethysmss�(< s; (0) >) and s�(< s; (1) >) (1)To proceed with the plethysm problem for Sp(2n;R) we �rst consider the Sp(2n;R) !U(n) decompositions where U(n) is the unitary group in n�dimensions and then show howthese can be used to build up Sp(2n;R) plethysms up to some �nite cuto� and presentsome complete results for � ` 2. We are then led to some new S�function identities andafter some comments on the stability of Sp(2n;R) plethysms we end with a remarkableobservation of the existence of a mapping between the two types of plethysms.Sp(2n,R) ! U(n) decompositionsUnder the restriction15 Sp(2n;R) ! U(n) a given irreducible representation ofSp(2n;R) decomposes into an in�nite set of �nite dimension irreducible representations of1



the unitary group U(n). In the case of the two fundamental irreducible representations ofSp(2n;R) we have15 < s; (0) >! " 12M+ (2a)< s; (1) >! " 12M� (2b)where M+ and M� are the even and odd weight S�functions sm appearing in the in�niteseries M = 1Xm=0 sm (3)In general one has15 < k2 ; (�) >! " k2 � ((s�s )kN �DN )N (4)where N = min(n; k) and D is the in�nite S�function seriesD =X� s� (5)where the � are partitions involving only even parts. The subscriptN means that all termsinvolving partitions into more than N parts are to be discarded. The �rst � indicates aproduct in U(n) and the second � a product in U(N). (s�s)k is a signed sequence14;15 ofterms �s� such that �s� is equivalent to s� under the modi�cation rules of the orthogonalgroup O(k).Plethysms in Sp(2n,R)We are primarily interested in plethysms of the form s�(< s; (0) >) and s�(< s; (1) >).No general procedure seems to be known for evaluating Sp(2n;R) plethysms. Here weevaluate the terms, up to a given weight, by �rst decomposing the Sp(2n;R) irreduciblerepresentation into those of U(n), performing the plethysm at the U(n) level and theninverting to get irreducible representations of Sp(2n;R). This has been done for all� ` 4 and in some cases to � ` 6. Tables of the relevant plethysms are located athttp://www.phys.uni.torun.pl/�bgw/. In the case of � ` 2 it is possible to obtain com-pletely general results as followss2(< s; (0) >) = 1Xi=0 < 1; (0 + 4i) >s12(< s; (0) >) = 1Xi=0 < 1; (2 + 4i) >s2(< s; (1) >) = 1Xi=0 < 1; (2 + 4i) >s12(< s; (1) >) =< 1; (12) > + 1Xi=0 < 1; (4 + 4i) > (6)2



These results imply that the following S�function identity must holds12(M+) = s2(M�) (7)as indeed may be shown to be the case17.If L+ and L� are respectively the positive and negative terms of the seriesL = 1Xm=0(�1)msm (7)then one �nds s12 (L+) = s2(L�) (8)Still further identities arise for the in�nite S�function series de�ned byA� = L�(s12) B� = M�(s12 )C� = L�(s2) D� = M�(s2) (8)Use of the associativety property of plethysms leads directly tos12(Z+) = s2(Z�) (9)for Z = A;B;C;D. Furthermores2(Z) = ZZ+ and s12 = ZZ� (10)The study of plethysms within the group Sp(2n;R) leads to still further identities. Theobservation that s212(< s; (0) >) = s31(< s; (1) >) (11)leads to the remarkable S�function identitys212(M+) = s31(M�) (12)which generalises to s�(s12 (M+)) = s�(s2(M�)) (13)Again these identities extend to the series Z de�ned earlier.Stability of Kronecker products and plethysmsA given plethysm, Kronecker product or decomposition will be said to be stable ifat the stable value of n = ns there is a one-to-one mapping between the resultant list ofirreducible representations obtained at the stable value ns and those obtained for all valuesof n > ns. The Sp(2n;R) Kronecker product15< k2 (�) > � < 2̀ (�) >=< (k + `)2 ; ((s�s)k � (s�s)` �D)k+`;n > (14)3



is certainly stable for all n � (k + `). We say certainly because in some cases prematurestability may occur for values of n < (k + `).One observes that the power 3 plethysms for the two fundamental irreducible rep-resentations stabilise at n = 3 which is consistent with the stabilsation of the products< s; (0) > � < 1; (�) > and < s; (1) > � < 1; (�) > at n = 3 and for similar reasonsstabilsation of power N plethysms must occur at n = N as observed. Again, prematurestabilisation for individual plethysms may occur for n < N . Thus foe N = 3 all theplethysms stabilise at n = 2 except for s13(< s; (1) >) which stabilises at n = 3. Stabili-sation for arbitrary N occurs at n = N � 1 except for s1N (< s; (1) >) which stabilises atn = N .Plethysms and conjugacy mappingsBelow we give two short examples of plethysms with terms kept to weight 10.s4(< s; (0) >) = < 2; (0) > + < 2; (4) > + < 2; (42) > + < 2; (6) >+ < 2; (62) > + < 2; (73) > +2 < 2; (8) > + < 2; (91) >+ < 2; (10 >s14(< s; (1) >) = < 2; (14) > + < 2; (412) > + < 2; (42) > + < 2; (612) >+ < 2; (62) > + < 2; (73) > +2 < 2; (812) > + < 2; (91) >Looking at the above results one cannot help but be struck by the apparent simple mappingbetween them. Indeed looking at much more extensive tabulations one observes that theterms in s�(< s; (0) >) are simply related to those of s~�(< s; (1) >) by a one-to-onemapping subject to the following simple rules:-� ` 2 (0) ! (12)� ` 3 (0) ! (13) (a) ! (a1) (a1) ! (a)� ` 4 (0) ! (14) (a) ! (a12) (a12) ! (a)� ` 5 (0) ! (15) (a) ! (a13) (ab) ! (ab1) (ab1) ! (ab)� ` 6 (0) ! (16) (a) ! (a14) (a14) ! (a) (ab) ! (ab12) (ab12) ! (ab)The explanation of such simple results remains unknown and deserves further study.Concluding remarksThe study of plethysms for the non-compact group Sp(2n;R) throws up many sur-prises that could be of interest to combinatorialists. The study of plethysms for othernon-compact groups, such as SO(4; 2) which plays a key role in Coulomb systems, is com-pletely unknown. I hope in these notes I might stimulate others to consider some of theproblems raised herein.AcknowlegementsThis work has been supported by a grant from the Polish KBN. All calculations weremade using SCHUR18. I thank the seminar organisers for the opportunity to participatein a stimulating and well organised meeting.References1. D. E. Littlewood, The Theory of Group Characters and Matrix Representations ofGroups 2nd edn (Oxford: Clarendon) (1950)4
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