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2 R C King F Toumazet and B G Wybournethe non-compact groups Sp(2n;<) and U (p; q) with detailed derivations of appropriatebranching rules and tensor products. Only scant attention was paid to SO�(2n) andthe authors concluded their paper with the remark: \Little attention has been givento SO�(2n) but we suspect that comparable formulae can be derived in this case, itbeing merely necessary to change D to B and modify other rules appropriately". Inthis paper we explore in some detail the properties of the irreducible representationsof SO�(2n) and obtain the non-trivial \merely necessary" changes. Recent work5�7has shed further light on the properties of Sp(2n;<) and U (p; q), and more recentlystill8 it has been found convenient to introduce the notion of associate irreduciblerepresentations of Sp(2n;<). While such a notion owes its origin to the existence ofmutually associate pairs11;12 of irreducible representations of SO(2k), such irreduciblerepresentations do not exist for SO�(2n). Nonetheless, we show herein that one canmap self-associate �nite sets of irreducible representations of Sp(2n;<) into in�nitesets of irreducible representations of SO�(2n).Formulae are given for the evaluation of branching rules, tensor products andplethysms for arbitrary unitary harmonic series irreducible representations of SO�(2n).These irreducible representations all appear as constituents of some power of theharmonic representation, H, of SO�(2n). The representation H is the restriction toSO�(2n) of the irreducible metaplectic representation, ~�, of the metaplectic groupMp(2n). H is itself reducible into a direct sum of an in�nite number of fundamentalirreducible representations in accordance with the decomposition:H = 1Xm=0 Hm = 1Xm=0 [1(m)]; (1.1)where it has been convenient to denote each of the in�nite-dimensional fundamentalirreducible representations Hm of SO�(2n) by [1(m)]. It is also convenient to writeH = H+ +H� withH+ = 1Xk=0 [1(2k)] and H� = 1Xk=0 [1(2k + 1)]: (1.2)Relatively simple expressions are obtained for the branching rules, tensor products andplethysms involving H and its various constituents H� and Hm for m = 0; 1; : : : ;1.In particular, complete results are given for the terms in H2 = H�H and for those inthe symmetric and antisymmetric parts, H 
 f2g and H 
 f12g, respectively, of H2.Throughout we follow the notation developed earlier4;5;8;9 for representations ofnon-compact groups and certain signed sequences. In the case of the notation forpartitions and symmetric functions we follow that of Macdonald10, while for S-functions series and modi�cation rules we call where appropriate on formulae collectedtogether in three previous articles11�13. References [4] and [8] will often be designatedas KW1 and KW2, respectively.2. SO�(2n)! U (n) branching ruleIt should �rst be noted that the non-compact group SO�(2n) and the compactgroup Sp(2k) are a dual pair with respect to Mp(4nk) in the sense that each is a



Symmetrised powers of irreducible representations of SO�(2n) 3maximal centraliser of the other in the metaplectic group Mp(4nk). As a directconsequence of this, the metaplectic representation of Sp(4nk;<) decomposes underrestriction to SO�(2n)� Sp(2k) in accordance with the rule:~�!X� [k(�)]� h�i; (2.1)where the summation is over all � such that�01 � k and �01 � n: (2.2)The procedure necessary to determine the U (n) content of each harmonic seriesirreducible representation [k(�)] of SO�(2n) is closely related to that used for Sp(2n;<)in Section 5 of KW1. Consider the two group-subgroup chains:Sp(4nk;<)! SO�(2n) � Sp(2k)! U (n) � Sp(2k); (2.3a)Sp(4nk;<)! U (2nk)! U (n)� U (2k)! U (n)� Sp(2k): (2.3b)The �rst of these gives~�!X� [k(�)]� h�i !X�;� "kB��f�g � h�i; (2.4)while the second leads to~�!Xm "1=2fmg !X� "kf�g � "n=2f�g !X�;� "kR��f�g � h�i; (2.5)or, equivalently,~�!Xm "1=2fmg !X� "kf�g � "n=2f�g !X� "kf�g � h�=Bi=X� "kf� �Bg � h�i; (2.6)where11�13 B =X� f�g = f0g+f12g+f22g+f14g+f32g+f2212g+f16g+ � � � ; (2.7)with the summation taken over all partitions � such that each distinct part is repeatedan even number of times. In (2.4) the coe�cients B�� are the required branching rulecoe�cients for SO�(2n) ! U (n), while in (2.5) the coe�cients R�� are the knownbranching rule coe�cients for U (2k)! Sp(2k). These are de�ned implicitly by (2.6).We thus arrive at the following:Proposition 2.1 Let � be such that �01 � min(k; n). Then on restriction fromSO�(2n) to U (n) the irreducible representation [k(�)] of SO�(2n) decomposes inaccordance with the branching rule:[k(�)]!X� "kR��f�g = "k � f�sgh2ki �B; (2.8)



4 R C King F Toumazet and B G Wybournewhere f�sgh2ki is the signed sequence4;5;8;9f�sgh2ki =X� ��� f�g (2.9)with the summation extending over all � with �01 � 2k such h�i = ���h�i under themodi�cation rules of Sp(2k).The superscript h2ki has been used as a notational device to emphasise that thesigned sequences are constructed from a knowledge of the modi�cation rules of Sp(2k).These rules11;13 are such that the non-vanishing coe�cients ��� are all �1.It follows from further consideration of the limitations imposed by branching viaU (n) � U (2k) in (2.5) and (2.6) that (2.8) can be re-written in the computationalsimpler form: [k(�)]! "k � ff�sgh2kiN �BNgN : (2.10)where N = min(2k; n). The �rst � indicates a product in U (n) and the second � aproduct in U (N ) as implied by the various subscripts N which limit all terms to thoselabelled by partitions into no more than N parts.Irreducible representations [k(�)] of SO�(2n) satisfying (2.2) will be said to bestandard. The signed sequence f�sgh2kiN associated with modi�cations in Sp(2k) isrendered �nite by the constraint implied by the subscript N . Thus for k = 2 andn = 4 we have N = 4 and, for example,f31gh4i4 = f31g � f313g; (2.11a)whereas for k = 2 and n = 3 we have N = 3 and only the �rst term survives:f31gh4i3 = f31g: (2.11b)In general the modi�cation rules11;12 for Sp(2k) are such that for each standardirreducible representation [k(�)] of SO�(2n) the corresponding signed sequence takesthe form: f�sgh2ki = f�g � f�g � f�g+ � � � with �01 < � 01 � �01 � � � � : (2.12a)where f� 0g = f2k+ 2� �01; �02; �03; : : :g: (2.12b)Standard irreducible representations [k(�)] associated with signed sequences f�sg2kNinvolving just one term are said to be highly standard. From (2.12) it can be seen thatthis will be the case whenever2k + 2� �01 > N = min(n; 2k): (2.13)In particular this condition is automatically satis�ed if �01 � 1. Hence all theirreducible representations [k(m)] are highly standard, including Hm = [1(m)] forall m.



Symmetrised powers of irreducible representations of SO�(2n) 5More generally, for all highly standard irreducible representations of SO�(2n)(2.10) simpli�es to just[k(�)]! "k � ff�g �BNgN (2.14)For example, the highly standard irreducible representation [2(31)] of SO�(6) branchesunder SO�(6)! U (3) as[2(31)]! "2 � ff31g �B3g3= "2 � ff31g � (f0g+ f12g+ f22g+ f32g+ f42g+ � � �)g3= "2 � (f31g+ f321g+ f322g+ f412g+ f42g+ f422g+ f431g+ f521g+ f53g+ � � �)= f532g+ f543g+ f524g+ f632g+ f642g+ f642g+ f653g+ f743g+ f752g+ � � � : (2.15)In the case of the standard, but not highly-standard irreducible representation[2(31)] of SO�(8) we have from (2.10) and (2.11), for SO�(8)! U (4)[2(31)]! "2 � f(f31g � f313g) �B4g4= "2 � f(f31g � f313g) � (f0g+ f12g+ f14g+ f22g+ f2212g+ f24g+ f32g+ f3212g+ f42g+ � � �)g4= "2 � (f31g+ f321g+ f322g+ f412g+ f42g+ f4212g+ f422g+ f431g+ f521g+ f53g+ � � �)= f5322g+ f5432g+ f5242g+ f6322g+ f6422g+ f6432g+ f6422g+ f6532g+ f7432g+ f7522g+ � � � : (2.16)In the particular case of the fundamental irreducible representations Hm ofSO�(2n) we haveHm = [1(m)]! " � ffmg �B2g2 = 1Xr=0 " � fm+r; rg = 1Xr=1fm+r; rg; (2.17)since B2 =P1r=0fr2g and the relevant products are taken in U (2) with " = f12g. Itfollows that under SO�(2n)! U (n) the basic harmonic representation decomposes asH = 1Xm=0 [1(m)]! 1Xm;r=0 " � fm+r; rg: (2.18)Equivalently, but more formally, we haveH = 1Xm=0 [1(m)]! 1Xm=0 " � ffmg �B2g2 = " � fMB2g2 = " � F2; (2.19)where quite generally11�13M =Xm fmg and MB = F =X� f�g; (2.20)with the latter sum being over taken over all partitions �, although in (2.19) thesubscript on F2 indicates that the series is to be restricted to partitions involving atmost two parts.



6 R C King F Toumazet and B G Wybourne3. Tensor products for harmonic unirreps of SO�(2n)The case of tensor products for the holomorphic discrete series of SO�(2n) wasconsidered in KW1 who gave the result as (KW1 (7.12))[f�g]� [f�g] = [f� � � �Bg] (3.1)The corresponding results for the harmonic irreducible representations follow in avery similar fashion to KW1 (8.10 - 8.15) by consideration of the two group-subgroupchains Sp(4nk+4n`;<)! Sp(4nk;<)� Sp(4n`;<)! SO�(2n) � Sp(2k) � SO�(2n) � Sp(2`)! SO�(2n) � Sp(2k) � Sp(2`) (3.2)and Sp(4nk+4n`;<)! SO�(2n) � Sp(2k + 2`)! SO�(2n) � Sp(2k) � Sp(2`): (3.3)Under (3.2) we have~�! ~�� ~�!X�;� [k(�)]� h�i � [`(�)]� h�i! X�;�;�K��� [k+̀ (�)]� h�i � h�i; (3.4)where K��� are the required tensor product coe�cients for SO�(2n). Alternatively,under (3.3) we have~�!X� [k+̀ (�)]� h�i!X� [k+̀ (�)]�X�;� R��� h�i � h�i; (3.5)where the coe�cients R��� are the branching rule coe�cients for the restrictionSp(2k+2`)! Sp(2k)� Sp(2`). Comparison of (3.4) and (3.5) shows that K��� = R��� ,thereby yielding:Proposition 3.1 The tensor product of a pair of unitary harmonic irreduciblerepresentations [k(�)] and [`(�)] of S)�(2n) decomposes in accordance with the rule[k(�)]� [`(�)] =X� R��� [k+̀ (�)]: (3.6)To implement (3.6) it is convenient to note that under the restriction Sp(2k+2`) !Sp(2k) � Sp(2`) we haveh�i !X�;� R��� h�i � h�i =X� h�=�i � h�=Bi: (3.7)



Symmetrised powers of irreducible representations of SO�(2n) 7This may be derived through the use of standard S-function method11.An alternative formula may be derived from a consideration of the group-subgroupchains: SO�(2n)� SO�(2n)! U (n)� U (n)! U (n); (3.8a)SO�(2n)� SO�(2n)! SO�(2n)! U (n): (3.8b)Using (2.8) the �rst of these gives[k(�)]� [`(�)]! �"k � f�sgh2ki �B�� �"` � f�sgh2`i �B�! "k+` ��f�sgh2ki � f�sgh2`i �B� �B; (3.9)while from (3.6) and the use once more of (2.8) we obtain[k(�]� [`(�)] =X� R��� [k+̀ (�)]!X� R��� "k+` � f�sgh2(k+`)i �B; (3.10)with �01 � N = min(k+̀ ; n). Comparison of (3.9) and (3.10) then yields:Proposition 3.2 The tensor product of a pair of unitary harmonic irreduciblerepresentations of SO�(2n) decomposes in accordance with the rule[k(�)]� [`(�)] = [k+̀ ((f�sgh2ki � f�sgh2`i �B)N )]: (3.11)where N = min(k+̀ ; n) and(�)N = � (�) if �01 � N ;0 otherwise. (3.12)Either (3.6) or (3.11) may be used to evaluate tensor products. Equation (3.6) hasadvantages when a single coe�cient R��� is required. In that case signed sequencesare not needed. However, equation (3.11) is particularly useful in evaluating completeproducts.By way of example, consider the evaluation of the terms, to weight eight, in thetensor product [2(21)] � [3(12)] for the group SO�(8). Since N = 4 all productsappearing in (3.11) may be evaluated within U (4) and the signed sequences restrictedto the terms f21sgh4i = f21g � f213g; (3.13a)f12sgh6i = f12g: (3.13b)Their product in U (4) yields the termsf213g+ f221g � f231g+ f312g+ f32g � f3212g: (3.14)



8 R C King F Toumazet and B G WybourneSince we are evaluating terms to weight eight only terms in the B-series to weightthree are relevant, that is the two termsf0g+ f12g; (3.15)and forming the product we obtain the terms, to weight eight, asf213g+ f221g+ f231g+ f312g+ f32g+ 3f3212g+ 2f322g+ 2f321g+ f413g+ 2f421g+ f43g: (3.16)Changing the notation to that for SO�(8) and inserting the integer 5 in front of eachpartition, we �nally obtain the result[2(21)]� [3(12)] =[5(213)] + [5(221)] + [5(231)] + [5(312)] + [5(32)]+ 3[5(3212)] + 2[5(322)] + 2[5(321)] + [5(413)]+ 2[5(421)] + [5(43)] + � � � : (3.17)4. The explicit decomposition of H �HEquation (3.11) is also useful in deriving explicit complete fomulae for tensorproducts. In particular the use of (3.11) immediately leads to the resultHm �Hm0 = [1(m)]� [1(m0)] = 1Xp=0min(m;m0)Xx=0 [2(m+m0 + p� x; p+ x)]: (4.1)This can be seen by noting that successive multiplication in U (2) of a term fp2g in Bby fmg and then fm0g can be carried out diagrammatically to give:a a a c c c c c c d d db b b d d (4.2)where there are precisely p columns containing the pair (a; b), m entries c in the �rstrow and m0 entries d, x of which are in the second row and the remainder in the �rst,with no identical entries d allowed in the same column.Extending this analysis to the case of the square of the basic harmonicrepresentation we haveProposition 4.1 For H as de�ned in (1.1)H2 = H �H = 1Xr=0 rXs=0 (r � s + 1)(s + 1)[2(r; s)]: (4.3)Proof We have from (1.1) and (4.1)H2 = H �H = 1Xm;m0=0 [1(m)]� [1(m0)]= 1Xp;m;m0=0min(m;m0)Xx=0 [2(m+m0 + p� x; p+ x)]= 1Xr=0 rXs=0 Cr;s [2(r; s)]; (4.4)



Symmetrised powers of irreducible representations of SO�(2n) 9where Cr;s is the number of diagrams of type (4.2) having rows of length r and s forany p, m, m0 and x. For �xed r and s it is clear that the distribution of the letters issuch that the number of d's in the second row of length s can vary from 0 to s, whilethe number in the �rst row of length r can, independently, vary from 0 to r� s. ThusCr;s = (s + 1)(r � s + 1), as required.It is useful for later work to split H into its even and odd parts, H+ and H�,respectively, which are de�ned in (1.2). The coe�cients C��rs of the terms [2(r; s)] inthe various products H� �H� are given by the following propositionProposition 4.2 Let Crs = (r � s + 1)(s + 1). Then for �; � 2 f+;�g we haveH� �H� = 1Xr=0 rXs=0 C��rs [2(r; s)] (4.5)with C++rs = 8>>><>>>: 12(Crs + 1) if r and s are both even;12Crs if r and s are both odd;0 otherwise, (4.6a)C��rs = 8>>><>>>: 12(Crs � 1) if r and s are both even;12Crs if r and s are both odd;0 otherwise, (4.6b)C+�rs = C�+rs = 8>>><>>>: 12Crs if r is even and s is odd;12Crs if r is odd and s is even;0 otherwise. (4.6c)Proof First it should be noted thatH� �H� = [2(M� �M� �B)2]; (4.7)where M+ = Pmevenfmg and M� = Pmoddfmg. Since all the term of B are ofeven weight it follows that all terms [2(r; s)] of both H2+ and H2� must be of evenweight, so that r and s are either both even or both odd. Similarly, all the terms ofH+�H� must have r and s of opposite parity. This accounts for all the 0's appearingin (4.6a-c).Separating H2 = (H++H�)2 = (H2++H2�)+2(H+�H�), as given by (4.3), intoterms of even and odd weight, then immediately gives (4.6c). Moreover to separate theterms of H2+ +H2� into those of (4.6a) and (4.6b) it is merely necessary to show thatH2+ �H2� =P1r=0Prs=0[2(r; s)] with the summation restricted to r and s both even.This may be established, by using (4.7) and various S-function series identities5;13which imply thatH2+ �H2� = [2((M2+ �M2�) �B)2] = [2(W �B)2] = [2(D2)]; (4.8)where the restriction of the S-function series D to two-part partitions gives D2 =P1r Prs=0fr; sg with r and s both even, as required.



10 R C King F Toumazet and B G Wybourne5. Symmetrised powers of irreducible representations of SO�(2n)Following the techniques of Section 6 of KW2 it is not di�cult to derive thefollowing general formula for symmetrised powers or plethysms of arbitrary irreduciblerepresentations of SO�(2n):Proposition 5.1 Let the partition � be such that �01 � min(k; n) and let � be anarbitrary partition of r, then[k(�)]
 f�g =X� y��� [kr(�)] (5.1)where the summation is over all partitions � such that �01 � min(kr; n) and thecoe�cients y��� are determined by the expansion��f�sgh2ki �B� 
 f�g� �A =X� y��� f�sgh2kri (5.2)where A = B�1.Furthermore, just as for ease of calculation (2.8) can be replaced by (2.10), so (5.2)can be replaced by���f�sgh2kiN �BN �N 
 f�g�M �AM�M =X� y��� f�sgh2kriM (5.3)where N = min(2k; n) and M = min(2kr; n). Finally in order to read o� the requiredplethysm coe�cients in (5.1) from (5.3) it is only necessary to retain the leading termf�g in each signed sequence f�sgh2kriM , since it is only the leading term of each signedsequence that satis�es the required Sp(2kr)-standardness condition �01 � kr. Thisimplies that in using (5.3) in (5.1) we may e�ectively replace M = min(2kr; n) bymin(kr; n), a considerable simpli�cation which leads to:Corollary 5.2With the notation of Proposition 5.1 the SO�(2n) plethysm coe�cientsy��� are determined by���f�sgh2kiN �BN �N 
 f�g�K �AK�K =X� y��� f�g (5.4)where N = min(2k; n) and K = min(kr; n).The signi�cance of (5.3) and the subsequent remarks leading �nally to (5.4) canbe seen in the evaluation of the terms in the plethysm [2(21)]
 f21g of SO�(24). Insuch a case we have k = 2, r = 3 and n = 12 so that N = 4, M = 12 and K = 6. Weshow how to calculate all terms [6(�)] of [2(21)]
 f21g up to weight 16 and of width�1 � 3 using (5.3). Such terms will necessarily have length �01 � 6.Since k = 2 the signed sequence is evaluated in Sp(4) givingf21sgh4i4 = f21g � f213g (5.5)Next the terms in the B-series up to weight 16, width 3 and length 4 are:f0g + f12g + f14g + f22g + f2212g+ f24g + f32g + f3212g + f3222g + f34g (5.6)



Symmetrised powers of irreducible representations of SO�(2n) 11The tensor product of the terms in (5.5) with those of (5.6) is to be carried out inU (N ) with N = 4. Again up to weight 16, width 3 and length 4 this givesf21g + f221g + f312g + f32g + f3212g+ f322g + f321g + f3221g (5.7)Now we calculate the mixed symmetry third order plethysm signi�ed by f21g of thissum of terms in U (M ) with M = 12 to give up to weight 16, width 3 and now length12:f241g + f2413g + 2f251g + f2513g + 2f261g+ f271g + f3214g + 2f32212g + 3f32214g + f323g+ 9f32312g + 5f32314g + 6f324g + 15f32412g + 4f32414g+ 10f325g + 11f32512g + 7f326g + f3213g + 2f3215g+ 3f3221g + 12f32213g + 7f32215g + 18f32221g + 33f322213g+ 9f322215g + 45f32231g + 40f322313g + 54f32241g + 12f3312g+ 20f3314g + 5f3316g + 10f332g + 60f33212g + 51f33214g+ 40f3322g + 117f332212g + 71f3323g + 32f341g + 70f3413g+ 120f3421g + 28f35g (5.8)Then the terms in the A-series up to weight 16, width 3 and length 12 are found tobef0g � f12g + f212g � f23g � f313g+ f3221g � f3222g + f34g (5.9)and their tensor product with the terms in (5.8) calculated in U (12) givesf241g � f2415g + f251g � f2513g + f3214g� f3216g + 2f32212g � 2f32216g + f323g + 4f32312g� 4f32314g � f32316g + 3f324g � 3f32414g + 2f325g� 2f32512g + f3213g � f3217g + 3f3221g + 5f32213g� 5f32215g � 3f32217g + 10f32221g � 10f322215g + 10f32231g� 10f322313g + 7f3312g � 7f3316g + 6f332g + 13f33212g� 13f33214g + 12f3322g + 6f3323g + 10f341g + 14f3421g+ 4f35g (5.10)Now the labelling is changed to that of irreducible representations of SO�(24) withkr = 6 inserted before each partition to yield[6(241)] � [6(2415)] + [6(251)] � [6(2513)] + [6(3214)]� [6(3216)] + 2[6(32212)] � 2[6(32216)] + [6(323)] + 4[6(32312)]� 4[6(32314)] � [6(32316)] + 3[6(324)] � 3[6(32414)] + 2[6(325)]� 2[6(32512)] + [6(3213)] � [6(3217)] + 3[6(3221)] + 5[6(32213)]� 5[6(32215)] � 3[6(32217)] + 10[6(32221)] � 10[6(322215)] + 10[6(32231)]� 10[6(322313)] + 7[6(3312)] � 7[6(3316)] + 6[6(332)] + 13[6(33212)]� 13[6(33214)] + 12[6(3322)] + 6[6(3323)] + 10[6(341)] + 14[6(3421)]+ 4[6(35)] (5.11)At �rst the appearance of negative terms seems disconcerting until it is realised thatthey correspond to non-standard terms in the signed sequences f�sgh12i of (5.3).



12 R C King F Toumazet and B G WybourneRestricting attention, as required, to SO�(24)-standard terms in accordance with (5.4),�nally yields the result[2(21)]
 f21g =[6(241)] + [6(251)] + [6(3214)] + 2[6(32212)] + [6(323)]+ 4[6(32312)] + 3[6(324)] + 2[6(325)] + [6(3213)] + 3[6(3221)]+ 5[6(32213)] + 10[6(32221)] + 10[6(32231)] + 7[6(3312)] + 6[6(332)]+ 13[6(33212)] + 12[6(3322)] + 6[6(3323)] + 10[6(341)] + 14[6(3421)]+ 4[6(35)] + � � � (5.12)up to weight 16 and width 3, where it is to be noted that, as promised, the survivingterms all have length �01 � 6. This is because K = min(kr; n) = 6. It would clearlyhave been simpler to use (5.4) at an earlier stage and discard all terms of length greaterthan 6 in (5.8)-(5.11) rather than to use (5.3) and keep terms up to length 12. At eachstep the calculation would have involved fewer terms and the �nal signed sequenceproblems would have been circumvented. This example, while exhibiting the fact thatsigned sequences do emerge in a natural way, serves to illustrate the computationalmerits of Corollary 4.2.6. Resolution of H2 = H 
 f2g+H 
 f12gIn the special case for which � is a partition of 2, so that r = 2, we haveK = N = min(2k; n) in (5.4). Consequently for symmetrised squares of irreduciblerepresentations of SO�(2n) we have[k(�)]
 f�g] = [��f�sgh2ki �B� 
 f�g� �A�N ]; (6.1)where all products and plethysms are to be carried out in U (N ). Setting f�g = f2g andf12g, using the algebra of plethysms and the fact that5 (B 
 f2g) �A = B+BA = B+and (B 
 f12g) �A = B�BA = B� it follows that[k(�)]
 f2g = [2k((f�sgh2ki 
 f2g) �B+)N ] + [2k((f�sgh2ki 
 f12g) �B�)N ]; (6.2a)[k(�)]
 f12g = [2k((f�sgh2ki 
 f12g) �B+)N ] + [2k((f�sgh2ki 
 f2g) �B�)N ]; (6.2b)where N = min(2k; n).Further specialisation of the above result leads toHm 
 f2g = [1(m)]
 f2g = 1Xp=0 mXx=0[2(2m+ p� x; p+ x)] with p+x even; (6.3a)Hm 
 f12g = [1(m)]
 f12g = 1Xp=0 mXx=0[2(2m+ p � x; p+ x)] with p+x odd: (6.3b)This can be seen by noting that in U (2) each term fp2g of B belongs to B+ or B�according as p is even or odd, respectively, while fmg 
 f2g and fmg 
 f12g containterms of the form f2m � x; xg with x even and odd, respectively. Typical termscontributing to (6.3a) are represented diagrammatically by:a a a a c c c c c d d db b b b d d (6.4)



Symmetrised powers of irreducible representations of SO�(2n) 13where there are precisely p columns containing the pair (a; b), x columns containingthe pair (c; d), m� x columns containing just c and the same number containing justd, with p and x either both even or both odd.Summing over all m we obtain1Xm=0Hm 
 f2g = 1Xr=0 rXs=0 (s + 1)[2(r; s)] with r and s both even; (6.5a)1Xm=0Hm 
 f12g = 1Xr=0 rXs=0 (s + 1)[2(r; s)] with r and s both odd: (6.5a)The �rst of these follows from the fact that for �xed r and s the distribution of lettersin diagrams of type (6.4) is such that the number of d's in the second row of length scan vary from 0 to s, while the number in the �rst row is necessarily (r � s)=2. Thesecond follows in the same way. The only di�erence is now that instead of r and sboth being even, they are both odd.This allows us to resolve H2 into its symmetric and antisymmetric parts H 
 f�gwith f�g = f2g and f12g, respectively:Proposition 6.1 Let Crs = (r� s+1)(s+1). Then for f�g = f2g and f12g we haveH 
 f�g = 1Xr=0 rXs=0 Cf�grs [2(r; s)] (6.6)with Cf2grs = 8>>>>><>>>>>: 12(Crs + 1) if r and s are both even;12(Crs � 1) if r and s are both odd;12Crs otherwise, (6.7a)Cf12grs = 8>>>>><>>>>>: 12(Crs � 1) if r and s are both even;12(Crs + 1) if r and s are both odd;12Crs otherwise, (6.7b)Proof Since H2 = �Xm Hm�2 =Xm H2m + Xm 6=m0 HmHm0 ; (6.8)it follows thatH 
 f2g = �Xm Hm�
 f2g =Xm �Hm 
 f2g�+ 12 Xm 6=m0 HmHm0=Xm �Hm 
 f2g�+ 12�H2 �Xm H2m�= 12�H2 +Xm �Hm 
 f2g �Hm 
 f12g��: (6.9a)



14 R C King F Toumazet and B G WybourneSimilarly H 
 f12g = 12�H2 �Xm �Hm 
 f2g �Hm 
 f12g��: (6.9b)The results (6.7) then follow from (4.3) and (6.5).7. Relations between group chains and irreducible representations ofSO�(2n) and Sp(2n<)Starting with the metaplectic group Mp(4nk) we may relate the decompositionsinvolving the non-compact subgroups SO�(2n) and Sp(2n;R) by means of thecommutative diagram:SO�(2n)� Sp(2k)  ���� Mp(4nk) ����! Sp(2n;R)�O(2k)????y ????yU (n)� Sp(2k) U (n)� O(2k)????y ????yU (n)� SO(2k) ����!  ���� U (n) � SO(2k) (7.1)The terminal subgroup in each case is U (n) � SO(2k). Taking into account thelabels used to distinguish mutually associate pairs of irreducible representationsof Sp(2n<), the decomposition of the metaplectic irreducible representation ~� ofMp(4nk) proceeds as indicated below:P�[k(�)]� h�i  ���� ~� ����! P�hk(�)i � [�]????y ????yP�[k(�)]U(n) � h�i P�hk(�)iU(n) � [�]????y ????yP�[k(�)]U(n) � [�=AD] ����!  ���� P��hk(�+ (1� ��01k)��)iU(n) � [�](7.2)where the symbols [� � �]U(n) and h� � �iU(n) signify restriction from SO�(2n) andSp(2n;<), respectively, to U (n), while the skew products of �withA andD correspondto passing from Sp(2k) up to U (2k) and then down to SO(2k). It should be notedthat at the level of U (n) � SO(2k) the summations over both � and � are restrictedso that these partitions have no more than P parts with P = min(k; n).Since13 AD = W = 1Xr=0 rXs=0 (�1)sfr; sg with r � s even, (7.3)



Symmetrised powers of irreducible representations of SO�(2n) 15it follows that on comparing the terms of the form � � � � [�] we have[k(� �W )]U(n) = hk(�)iU(n) + �1� ��01k�hk(��)iU(n): (7.4)As special cases of this with k = 1 and � = (0) and (1), we obtain:�H+�U(n) = [1(M+)]U(n) = h1(0)iU(n) + h1(0�)iU(n); (7.5a)�H��U(n) = [1(M�)]U(n) = h1(1)iU(n): (7.5b)It should be stressed that quite generally a knowledge of the restriction to U (n) ofany direct sum of harmonic series unitary irreducible representations of both SO�(2n)and Sp(2n;<) is su�cient to determine these representations up to equivalence. Thisis because such representations are determined up to equivalence by their characterswhich are themselves evaluated on elements of the maximal compact subgroup U (n).8. Powers and plethysms of irreducible representations of SO�(2n) fromthose of Sp(2n;<)The results of the previous section lead to an alternative method of computingpowers of the basic harmonic representation H of SO�(2n) and its constituents H+and H�. Since H = H+ + H� it follows from (7.5) that the U (n) content of theharmonic representation H of SO�(2n) coincides with that of the representation S ofSp(2n;<), whereS = h1(0)i + h1(0�)i+ h1(1)i: (8.1)The same must be true of both their powers and plethysms.Since S is a self-associate representation of Sp(2n;<) it follows that its pth powermay be written in the form:Sp = X�:�01�P g� hp(� + (1� ��01p)��i; (8.2)with P = min(p; n), for some set of coe�cients g�. It then follows from (7.5) thatHp = X�:�01�P g� [p((� �W )P )] (8.3)where the subscript P on (� �W )P indicates that the only terms (�)P to be retainedare those for which �01 �= P = min(p; n). Likewise, for any partition � of p, thecorresponding pth-fold symmetrised power may be expanded in the formS 
 f�g = X�:�01�P h� hp(�+ (1� ��01p)��i; (8.4)for some particular set of coe�cients h�. It then follows thatH 
 f�g = X�:�01�P h� [p((� �W )P )]: (8.5)



16 R C King F Toumazet and B G WybourneA similar situation applies to H+ and H�, and indeed to plethysms and powers ofany sum of SO�(2n) representations of the form [k(� �W )] as in (7.4). Conversely,plethysms and powers of any self-associate sum of Sp(2n;<) representations of theform hk(� � V )i can be evaluated from a knowledge of the powers and plethysms of[k(�)] in SO�(2n), where V =W�1 = W 0.As a �nal example we compute the terms of H�
f21g up to weight 12 and width4 in SO�(24) starting from the Sp(24;<) plethysmh1(1)i 
 f21g =h3(21)i + h3(213)i + h3(221)i + 2h3(312)i + 2h3(32)i+ 2h3(3212)i + 2h3(322)i + 3h3(321)i + 2h3(41)i + 2h3(413)i+ 6h3(421)i + 4h3(43)i + 4h3(4312)i + 5h3(432)i + 5h3(421)i+ 2h3(423)i (8.6)Now we remove the pre�x p = 3 and standardise the irreducible representations in thegroup U (3) to givef21g + f221g + 2f312g + 2f32g + 2f322g+ 3f321g + 2f41g + 6f421g + 4f43g + 5f432g+ 5f421g + 2f423g (8.7)The terms in the W -series up to weight 12 aref0g � f12g + f2g + f22g � f31g� f32g + f4g + f42g + f42g (8.8)Forming the tensor product, in U (3), of (8.7) and (8.8), and keeping terms up weight12 and width 4 givesf21g + f221g + 2f312g + 2f32g + 2f322g+ 4f321g + f33g + 3f41g + 7f421g + 6f43g+ 9f432g + 7f421g + 6f423g (8.9)These U (3) irreducible representations are now converted into SO�(24) irreduciblerepresentations by inserting p = 3 before each partition and adopting the notationappropriate to the group SO�(24) leading toH� 
 f21g =[3(21)] + [3(221)] + 2[3(312)] + 2[3(32)] + 2[3(322)]+ 4[3(321)] + [3(33)] + 3[3(41)] + 7[3(421)] + 6[3(43)]+ 9[3(432)] + 7[3(421)] + 6[3(423)] + � � � : (8.10)This is the same as the result that can be found using (5.1) and (5.4). While the abovecalculation was carried out for SO�(24) it should be noted that the result is valid forall SO�(2n) with n � 6.
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