
Plethysm for the non-compact group Sp(2n;R) andnewS�function identitiesK. Grudzinskiyx and B. G. Wybourney{y Instytut Fizyki, Uniwersytet Miko laja Kopernika, ul. Grudzi�adzka5/7, 87-100 Toru�n, PolandAbstract. Methods of computing plethysms of the fundamentalunitary irreducible representations of the non-compact symplecticgroup Sp(2n;R) are considered. Complete results are given for thesymmetrised second powers. A number of new S�function identitiesare reported. The stability properties of the Sp(2n;R) plethysms arenoted as well as a remarkable conjugacy relation. The application of theplethysms to N�particles in an isotropic harmonic oscillator is brieyoutlined.
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2 K. Grudzinskiyx and B. G. Wybourney{1. IntroductionThe symplectic group Sp(6; R) is well-known as the dynamical group of theisotropic three-dimensional harmonic oscillator1. For a single particle the even-paritystates span a single in�nite-dimensional irrep commonly denoted2;3 as < 12(0) > whilethe odd-parity states span the irrep < 12(1) > of Sp(6; R). Collectively they spana single irrep ~� of the metaplectic group Mp(6), the covering group of Sp(6; R).These groups �nd signi�cant applications in many-body symplectic models of nuclei4and in the mesoscopic properties of quantum dots5;6. A central problem in makingapplications is the resolution of Kronecker powers of the fundamental irreps of Sp(6; R)into their various symmetry types. Basic methods are known7�9 for computing suchresolutions for the powers of the reducible representation < 12(0) > + < 12(1) >.However, it is desirable to also resolve separately the Kronecker powers of the twofundamental irreps of Sp(6; R) and it this problem we address herein.Such problems fall in the domain of plethysms7�11. We present a method ofsystematically evaluating plethysms for the fundamental irreps of the group Sp(6; R).In principal the same method applies for all Sp(2n;R). The Kronecker squares of thefundamental irreps for all Sp(2n;R) are fully resolved which in turn leads to a numberof new S�function identities as well as a new insight into two-particle states. Explicitcalculation of the fourth powers leads to a surprising result that implies a remarkableS�function identity for certain in�nite series of S�functions.We illustrate the application of the method by a brief discussion of the two andthree particle states in the symplectic model.2. The Sp(2n;R) ! U(n) reductionThe general problem of the Sp(2n;R) ! U(n) reduction has been studied in somedetail2;3. Under that restriction the two fundamental irreps of Sp(2n;R) decomposeas2;3 < 12(0) >!" 12 (f0g+ f2g+ f4g+ : : :)= " 12M+ (1)< 12(1) >!" 12 (f1g+ f3g+ f5g+ : : :)= " 12M� (2)where M+ and M� are respectively the even and odd terms of the in�nite S�functionseries indexed by the one part partitions (m) with m = 0; 1; : : : ;1.In general < k2 (�) >! " k2 � ff�sgkN �DNgN (3)where N = min(n; k), f�sgk is a signed sequence2 of terms �f�g such that �[�]is equivalent to [�] under the modi�cation rules12�14 of the group O(k), DN is the



Plethysm, Sp(2n;R) and new S�function identities 3in�nite S�function series indexed by even partitions into not more than N parts.The �rst � indicates a product in U(n) and the second � a product in U(N) as impliedby the �nal subscript N . Speci�c examples may be found elsewhere2;3.Clearly, Eqs.(1) to (3) will involve an in�nite series of irreps of U(N) and anypractical calculations must be truncated at some bound. Such calculations can bereadily made using the programme SCHUR15. The irreps < k2(�) > of Sp(2n;R) areconstrained by the requirement that the conjugate partition (~�) = (~�1; ~�2; : : :) satisfythe constraints~�1 + ~�2 � k (4a)~�1 � n (4b)The value of 12k may be an integer or half-odd integer. In that respect it is useful tointroduce the equivalent notation< s�; (�) >�< k2 (�) > (5)where k2 = s+ � (6)with � being the integer part of k2 and the residue part is s = 0 or 12. Thus the twofundamental irreps will henceforth be designated as < s; (0) > and < s; (1) >.It is critical to our analysis to note that under the reduction Sp(2n;R) ! U(n)the lowest weight U(n) irrep appearing in the decomposition is the irrep f�g.3. Evaluation of plethysms for Sp(2n;R)The evaluation of plethysms of the type (< s; (0) > + < s; (1) >) 
 f�g has beendiscussed elsewhere8;9 using the group chainSp(2nk;R) � Sp(2n;R) �O(k) � Sp(2n;R) � S(k) (7)with the O(k) ! S(k) decomposition playing a key role. Plethysms in Sp(2n;R) ofthe type < k2 (�) > 
f�g =X� c�� < 2̀(� ) > (8)with ` = k � j�j (9)require a di�erent approach.



4 K. Grudzinskiyx and B. G. Wybourney{Here we proceed by �rst doing the branching Sp(2n;R) ! U(n) to give< k2 (�) >!X� c��f�g (10)where the coe�cients c�� are non-negative integers. The sum is in�nite with the lowestweight irrep of U(n) being f�g withc�� = 1 (11)The next step is to evaluate the plethysms in U(n) to some user chosen cuto�.This gives a list of U(n) irreps which may be ordered in increasing weight startingwith the lowest f�mg. This observation implies that the Sp(2n;R) irrep < 2̀(�m) >occurs in the Sp(2n;R) plethysm. Thus we may remove from the list of U(n) irreps allthose derived from that Sp(2n;R) irrep. The lowest weight irrep of the residue U(n)is identi�ed and the U(n) content of the next Sp(2n;R) irrep removed. This processis continued up to the chosen cuto�.The above process may be illustrated by calculating the plethysm < 32(21) > 
f2gup to terms of maximum weight 10. We �rst compute the Sp(6; R) ! U(3) branchingrule keeping all terms of weight � 10 to obtain< 32(21) >!f81g + f72g + f712g + f63g + f621g + f61g+ f54g + 2f531g + f52g + f512g + f432g + f43g+ f421g + f41g + f321g + f32g + f312g + f21gWe now compute the plethysm at the U(3) level again keeping all terms of weight� 10 to give the following list of U(3) irreps2f82g + f812g + 3f73g + 7f721g + 5f64g + 11f631g+ 9f622g + f62g + f612g + f52g + 10f541g + 11f532g+ 2f53g + 4f521g + 8f422g + f42g + 4f432g + 4f431g+ 3f422g + f42g + 2f322g + f321g + f23gThere are three irreps of weight 6 in the above list (f42g; f321g; f23g allowing us toimmediately conclude that the Sp(6; R) irreps < 3(42) >;< 3(321) >;< 3(23) > mustoccur in the plethysm. These three irreps may be branched to U(3) and the resultingU(3) irreps of weight � 10 removed from the list to leave the U(3) residuef82g + f812g + 2f73g + 5f721g + 3f64g + 8f631g+ 5f622g + f612g + f52g + 7f541g + 7f532g + f53g+ 2f521g + 4f422g + 3f432g + 2f431g + f322gInspection of the above list shows that there are seven irreps of weight eight and henceseven more Sp(6; R) irreps. Continuing we readily �nd < 32(21) > 
f2g contains, toweight 10, the Sp(6; R) irreps



Plethysm, Sp(2n;R) and new S�function identities 5< 3; (82) > + < 3; (73) > + 2 < 3; (721) >+ 2 < 3; (64) > + 2 < 3; (631) >+ 3 < 3; (622) > + < 3; (612) > + 2 < 3; (541) >+ < 3; (532) > + < 3; (53) >+ 2 < 3; (521) >+ 2 < 3; (422) > + 2 < 3; (431) >+ < 3; (42) > + < 3; (322) >+ < 3; (321) > + < 3; (23) >The plethysms of the irreps < s; (0) > and < s; (1) > are of particular interestin physics applications. The resolution of their Kronecker squares is straightforward.The terms, to weight 16, for plethysms for up to power 4 are relevant to the descriptionof the states of two to four particles in an isotropic three-dimensional harmonicoscillator and have been evaluated. The tabulated results are available at the WEBsite http://www.phys.uni.torun.pl/�bgw/.4. The Kronecker square of the fundamental irrepsInspection of the symmetrised powers of the irreps < s; (0) > and < s; (1) >reveals a number of surprising features. It would appear that< s; (0) > 
f2g = 1Xi=0 < 1; (0 + 4i) > (12)< s; (0) > 
f12g = 1Xi=0 < 1; (2 + 4i) > (13)< s; (1) > 
f2g = 1Xi=0 < 1; (2 + 4i) > (14)< s; (1) > 
f12g =< 1; (12) > + 1Xi=0 < 1; (4 + 4i) > (15)holds for all Sp(2n;R) with n � 2. For n = 1 the irrep < 1; (12) > in Eq.(15) must bedeleted. The correctness of Eqs. (12) to (15) may be veri�ed by �rst noting that theKronecker squares of the fundamental irreps are n�independent for n � 2 and thenusing S�function identities for the in�nite series.Remarkably, the irrep content in Eqs. (13) and (14) are identical and hence< s; (0) > 
f12g �< s; (1) > 
f2g (16)which in turn implies a number of hitherto unnoticed identities for plethysms. Evenmore remarkable is the observation that suggests the conjectured equivalence that< s; (0) > 
f212g �< s; (1) > 
f31g (17)The equality is evidently n�independent for n � 3. Such an equivalence would onlybe possible if both plethysms under Sp(2n;R) ! U(n) yielded the same set of U(n)irreps. But this would again require a remarkable S�function plethysm identity.



6 K. Grudzinskiyx and B. G. Wybourney{5. Plethysm identities for in�nite series of S�functionsThe equivalence observed in Eq.(16) implies thatM+ 
 f12g �M� 
 f2g (18)Such an equivalence may be readily proved using the properties of the in�nite seriesof S�functions de�ned elsewhere7;16. The proof follows by �rst noting that2M� = M � P (19)where M = 1Xm=0 and P = 1Xm=0 (20)and that M2+ �M2� = MP = W (21)Then (2M+)
 f12g = 2(M+ 
 f12g) +M2+ = (M + P )
 f12g (22)leading to 2(M+ 
 f12g) = (M + P )
 f12g �M2+ (23a)2(M� 
 f2g) = (M � P )
 f2g �M2� (23b)Thus Eq.(18) will be valid if(M + P )
 f12g � (M � P ) 
 f2g = M2+ �M2� = W (24)Expanding the left-handside we obtainM 
 (f12g � f2g) + 2W = �M 
 p2 + 2W = W (25)which establishes the conjectured equality. From the equality it follows thatM 
 f2g = MM+ and M 
 f12g = MM� (26)In precisely the same manner one �ndsL+
f12g � L� 
 f2g (27)where L+ and L� are respectively the positive and negative terms of the seriesL = 1Xm=0(�1)mf1mg (28)



Plethysm, Sp(2n;R) and new S�function identities 7Still further identities arise for the in�nite S�function series de�ned byA� = f12g 
L�; B� = f12g 
M�; C� = f2g 
L�; D� = f2g 
M� (29)Use of the associativity property of plethysms10 leads directly toZ+ 
 f12g � Z� 
 f2g (30)for Z = A;B;C;D. Furthermore,Z 
 f2g = ZZ+ and Z 
 f12g = ZZ� (31)Now to the remarkable Eq. (17). This plethysm implies thatM+ 
 f212g �M� 
 f31g (32)Three independent proofs of this identity have been established. The author �rst,rather tediously constructed a proof similar to that given for Eq. (18), next Thibon17gave a simple proof based upon a power sum expansion of both sides of Eq. (32),�nally King18 used the associativity property of plethysms to giveM+ 
 f212g = M+ 
 (f12g 
 f12g)= (M+ 
 f12g)
 f12g = (M� 
 f2g)
 f12g= M� 
 (f2g 
 f12g) = M� 
 f31g: (33)where use has been made of the fact that f12g
f12g = f212g and f2g
 f12g = f31g.King further notes the generalisationM+ 
 (f12g 
 f�g) = M� 
 (f2g 
 f�g): (34)Again the identities in Eqs. (33) and (34) can be extended to the series given in Eq.(29). King's generalisation, Eq. (34), can give a useful check on computations ofSp(2n;R) plethysms. For example, choosing f�g � f2g gives the identityM+ 
 (f22g+ f14g) = M� 
 (f22g+ f4g) (35)6. Stable Sp(2n;R) plethysmsA given plethysm, Kronecker product or decomposition will be said to be stable ifat the stable value of n = ns there is a one-to-one mapping between the resultant listof irreps obtained at the stable value ns and those obtained for all values of n > ns.Eqs. (1) and (2) are examples of stable decompositions under Sp(2n;R) ! U(n) witha stable value of ns = 2. Likewise the decomposition in Eq. (3) is stable for all valuesof n � k.



8 K. Grudzinskiyx and B. G. Wybourney{It follows from King and Wybourne3 Eq. (8.18) that the Sp(2n;R) Kroneckerproduct < k2 (�) > � < 2̀ (�) >=< (k + `)2 ((f�sgk � f�sg` �D))k+`;n > (36)is certainly stable for all n � (k + `). We say certainly because in certain casespremature stability may occur for values of n < (k+ `). At this point note that all theS�functions in Eq. (36) must satisfy, at every stage in the calculation, the constraintsof Eqs. (4a) and (4b). This restricts terms in the in�nite D series of S�functions tothose members of the series of length `(�) � (k+`)2 . Similar restrictions apply to thesigned sequences appearing in Eq. (36). As a trivial example consider< 1; (0) >< 1; (0) >=< 2; ((f0sg2 � f0sg2 �D))4;n >We anticipate stabilisation at n = 4 butf0sg2 = f0g � f23gHowever, f23g cannot satisfy the constraints of (8.19) for n � 4 and should bediscarded. Furthermore only the terms of the D series of length 2 can satisfy Eqs.(4a) and (4b) and hence the product stabilises at n = 2.One observes that the third-order plethysms for the two fundamental irrepsstabilise at n = 3. This is consistent with the stabilisation of the products < s; (0) ><1; (�) > and < s; (1) >< 1; (�) > at n = 3 and for similar reasons stabilisation of theN-th order plethysms must occur at n = N as observed. Again premature stabilisationfor individual plethysms may occur for n < N . Thus for N = 3 all the plethysmsstabilise at n = 2 except for < s; (1) > 
f13g which stabilises at n = 3. Stabilisationfor arbitrary N stabilisation occurs at n = N � 1 except for < s; (1) > 
f1Ng whichstabilises at n = N .7. Conjugacy mappingsInspection of tables for the plethyms < s; (0) > 
f�g and < s; (1) > 
f~�g where~� is the conjugate of � suggests that the two plethysms are remarkably related byone-to-one mappings such that if< s; (0) > 
f�g =X� g� < k; (�) > (37)where k = j�j=2 and g� is the multiplicity, then the terms g� < k; (�) > in< s; (1) > 
f~�g are identical to those in Eq. (37) apart from those that are relatedby the following simple (�) one-to-one mappings� ` 2 (0) ! (12)� ` 3 (0) ! (13) (a) ! (a1) (a1) ! (a)� ` 4 (0) ! (14) (a) ! (a12) (a12) ! (a)� ` 5 (0) ! (15) (a) ! (a13) (a13) ! (a) (ab) ! (ab1) (ab1) ! (ab)� ` 6 (0) ! (16) (a) ! (a14) (a14) ! (a) (ab) ! (ab12) (ab12) ! (ab)(38)



Plethysm, Sp(2n;R) and new S�function identities 9That such simple relationships seem to exist is by no means evident from the methodsused to establish the plethysms and hints at an underlying simplicity that remains tobe discovered and a conjugacy theorem still to be exposed.8. Two-particle statesThe plethysm equivalence noted in Eq. (16) has consequences for the case ofthe states of two non-interacting fermions in an isotropic three-dimensional harmonicoscillator potential. It means that for the even-parity two-particle states there is aone-to-one correspondence between the spin triplet states formed by two-particles ineven-parity orbitals with the spin singlet states formed by two particles in odd-parityorbitals, a feature of the much studied isotropic three-dimensional harmonic oscillatorpotential that does not seem to have been hitherto observed.The corresponding plethysm equivalence noted in Eq. (17) is less applicable sincefor N spin 12 identical fermions the Pauli exclusion principle excludes spin statesinvolving irreps of of S(N) involving partitions into more than two parts. In the caseof nucleons where spin and isospin are considered irreps of S(N) involving partitionsinto up to four parts arise and some application is possible but not in the form foundso directly for two-particles.9. Three-particle statesThere is no di�culty, in principle, in determining the states for N�particles in anisotropic three-dimensional harmonic oscillator. The case of three particles su�ces toillustrate the general procedure. For three particles in an isotropic three-dimensionalharmonic oscillator potential the dynamical group is Mp(18) whose fundamental irrep~� decomposes under restriction to Sp(18; R) as~� !< 12(0) > + < 12(1) > (39)Then under Sp(18; R) ! Sp(6; R) �O(3)< 12(0) >! < s1; (0) > [0] + < s1; (12) > [1]# + < s1; (2) > [2]+ < s1; (31) > [3]# + < s1; (4) > [4] + < s1; (51) > [5]#+ < s1; (6) > [6] + < s1; (71) > [7]# + < s1; (8) > [8]+ < s1; (91) > [9]# + < s1; (10 ) > [10 ]< 12(1) >! < s1; (1) > [1] + < s1; (13) > [0]# + < s1; (21) > [2]#+ < s1; (3) > [3] + < s1; (41) > [4]# + < s1; (5) > [5]+ < s1; (61) > [6]# + < s1; (7) > [7] + < s1; (81) > [8]#+ < s1; (9) > [9] + < s1; (10 1) > [10 ]# (40)



10 K. Grudzinskiyx and B. G. Wybourney{The spins associated with these representations can be found from a knowledge of theO(3) ! S(3) branching rules. Note that to obtain the branching rule for [n]# onesimply replaces the S(3) irreps by their conjugates.The terms associated with the f3g irrep of S(3) are spurious while those with f21gand f13g correspond to states with spin S = 12 and 32 respectively.The three-particle states can be equivalently found from the use of the Sp(6; R)plethysms. The even parity states must arise from(S = 12) < 12(0) > 
f21g+ < 12(1) > 
f2g < 12(0) >+ < 12(1) > 
f12g < 12(0) > (41)(S = 32) < 12(0) > 
f13g+ < 12(1) > 
f12g < 12(0) > (42)while for the odd parity states they arise from(S = 12) < 12(1) > 
f21g+ < 12(0) > 
f2g < 12(1) >+ < 12(1) >< 12(0) > 
f12g (43)(S = 32) < 12(1) > 
f13g+ < 12(0) 
 f12g < 12(1) > (44)To weight 10 we obtain the following even parity states(S = 12) < s1; (12) > + 2 < s1; (2) > + 2 < s1; (31) > + 3 < s1; (4) >+ 4 < s1; (51) > + 4 < s1; (6) > + 5 < s1; (71) > + 6 < s1; (8) >+ 6 < s1; (91) > + 7 < s1; (10 ) >(S = 32) < s1; (12) > + 2 < s1; (31) > + < s1; (4) > + 2 < s1; (51) >+ 2 < s1; (6) > + 3 < s1; (71) > + 2 < s1; (8) > + 4 < s1; (91) >+ 3 < s1; (10 ) >while for the odd parity states we obtain(S = 12) < s1; (1) > + 2 < s1; (21) > + 2 < s1; (3) > + 3 < s1; (41) >+ 4 < s1; (5) > + 4 < s1; (61) > + 5 < s1; (7) > + 6 < s1; (81) >+ 6 < s1; (9) >(S = 32) < s1; (13) > + < s1; (21) > + < s1; (3) > + 2 < s1; (41) >+ < s1; (5) > + 3 < s1; (61) > + 2 < s1; (7) > + 3 < s1; (81) >+ 3 < s1; (9) >10. Lowest energy states for non-interacting particlesIn the case of N non-interacting particles in a harmonic oscillator potential theenergy of a given state is simply the sum of the one-particle energies and hence the



Plethysm, Sp(2n;R) and new S�function identities 11lowest energy state associated with a given Sp(6; R) multiplet < �(�) > is, relative tothe groundstate energy,w��h! (45)where ! is the oscillator angular frequency and w� is the weight of the partition (�).Representations of Sp(6; R) having di�erent partitions but of the same weight willhave the same zero-order energy as given in Eq. (45).For three-particles we have, to weight 6, the U(3) states with spin S = 12 areillustrated in Fig. 1 and those for S = 32 in Fig. 2.The U(3) states of weight w for N�particles may be determined as follows1. Partition the integer w into N parts allowing zero parts if necessary.2. Even weight partitions involve even parity states otherwise odd parity states.3. Replace each part ,i ,by fig which then labels the U(3) irrep for a single particlein the i�th harmonic oscillator orbital. A given orbital i can accommodate up to4i+ 2 particles with spin 12 .4. For a given partition containing k distinct non-repeating parts form the SU(2)�U(3) Kronecker productf12g � fi1g:f12g � fi2g � � � :f12g � fikg (46)to give a series of SU(2)S � U(3) multiplets.5. If the parts i are repeated with a multiplicity m then evaluate the plethysmf12gfig)
 f1mg = fm2 gfig 
 f1mg if m > 2= f1g(fig 
 f12g+ f0g(fig 
 f2g if m = 2 (47)For N = 3 we have for weight 4 the four partitions4 + 0 + 0; 3 + 1 + 0; 2 + 2 + 0; 2 + 1 + 1 (48)Applying the above algorithm we �nd for the �rst partition a U(3) multiplet withS = 12. The second partition gives two U(3) multiplets, f4g+ f31g with spins S = 12and S = 32 . The third partition yields the U(3) multiplet f31g with S = 32 and theU(3) multiplets f4g + f31g + f22g with spin S = 12. The fourth partition yields thetwo U(3) multiplets f31g + f22g with spin S = 32 and the three U(3) multipletsf4g + 2f31g + f22g + f212g with spin S = 12 . Thus for spin S = 32 we obtainthe U(3) multiplets f4g + 3f31g + f212g and for spin S = 12 the U(3) multiplets4f4g+4f31g+2f22g+f212g in agreement with those found in Figs. (1) and (2) usingthe group Sp(6; R) ) U(3) decompositions.
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Plethysm, Sp(2n;R) and new S�function identities 136�h! f321g+ f32g+f412g+ f51g 2(f321g+ 2f42g+f512g + f6g) 2(f32g + f412g+f42g+ f51g) 3(f42g+ f51g+f6g) 4f51g 4f6g5�h! f221g+ f32g+f41g+ f5g 2(f312g+ f32g+f41g) 2(f32g+ f41g+f5g) 3f41g 4f5g4�h! f212g + f31g 2(f22g+ f31g+f4g) 2f31g 3f4g3�h! f21g+ f3g 2f21g 2f3g2�h! f12g 2f2g�h! f1gFigure 1: U(3) multiplets to weight 6 for spin S = 12 3-particle harmonic oscillator states.6�h! f321g+ f32g+f412g+ f51g 2(f32g + f412g+f42g+ f51g) 2(f42g+ f51g+f6g) 2f51g 2f6g5�h! f312g f312g + f32g+4f41g f32g+ f41g+f5g f41g f5g4�h! f212g + f31g 2f31g 2f4g3�h! f13g f21g f3g2�h! f12gFigure 2: U(3) multiplets to weight 6 for spin S = 32 3-particle harmonic oscillator states.


