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The basic spin difference characterD9 of SO(2n) is a useful device in dealing with
characters of irreducible spinor representations of SO(2n). It is shown here that its
kth-fold symmetrized powers, or plethysms, associated with partitionsk of k fac-
torize in such a way thatD9^ $k%5(D9)r(k)Pk , wherer(k) is the Frobenius rank
of k. The analogy between SO(2n) and Sp(2n,R) is shown to be such that the
plethysms of the basic harmonic or metaplectic characterD̃ of Sp(2n,R) factorize
in the same way to giveD̃ ^ $k%5(D̃)r(k)P̃k . Moreover, the analogy is shown to
extend to the explicit decompositions into characters of irreducible representations
of SO(2n) and Sp(2n,R) not only for the plethysms themselves, but also for their
factorsPk andP̃k . Explicit formulas are derived for each of these decompositions,
expressed in terms of various group–subgroup branching rule multiplicities, par-
ticularly those defined by the restriction from O(k) to the symmetric groupSk .
Illustrative examples are included, as well as an extension to the symmetrized
powers of certain basic tensor difference characters of both SO(2n) and Sp(2n,R).
© 2000 American Institute of Physics. @S0022-2488~00!02608-6#

I. INTRODUCTION
In a preceding paper1 ~hereafter referred to as KWI! the analogy between finite-dimensional

representations of SO(2N) and infinite-dimensional representations of Sp(2n,R) was made highly
explicit at the level of the characters of these representations and the decompositions of their
various tensor products and powers. However, as pointed out in KWI a central problem in making
applications of Sp(2n,R) to various models of physical systems such as nuclei2,3 and quantum
dots4,5 is the resolution of tensor powers of the fundamental metaplectic representation which has

character6,7 D̃. Considerable progress8–11 has been made on this problem, which amounts to the

evaluation of symmetrized powers, or plethysms, ofD̃. Here we tackle this problem by empha-
sizing the remarkable analogies discussed in KWI that exist between SO(2n) and Sp(2n,R). In

this context the precise analog of the basic metaplectic character,D̃, of Sp(2n,R) is the basic
spin-difference character,12,13 D9, of SO(2n). While progress14–16 has also been made on the
problem of evaluating plethysms of such characters of SO(2n), the aim here is to draw on the
analogy that exists between the two problems so as to solve both problems in a unified manner.

Our notation follows that developed in KWI and in references contained therein. In the case of
the orthogonal group O(2n) the spin representation of dimension 2n with characterD decomposes
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on restriction to the proper orthogonal group SO(2n) into a direct sum of two irreducible repre-
sentations each of dimension 2n21 with charactersD1 andD2 .

The relevant character formulas for SO(2n) take the form:

D5D11D25)
i51

n

~x i
1/2

1x i
2 1/2!, ~1.1a!

D95D12D25)
i51

n

~x i
1/2

2x i
2 1/2!, ~1.1b!

wherex i andx i
21 for i51,2,...,n are the eigenvalues of an arbitrary group element of SO(2n). At

the identity elementI we havex i51 for i51,2,...,n so that dimD52n while dimD950.
The sumD̃ and differenceD̃9 characters of the infinite-dimensional irreducible representa-

tions of Sp(2n,R) are given by

D̃5D̃11D̃25)
i51

n

~x i
2 1/2

2x i
1/2!21, ~1.2a!

D̃95D̃12D̃25)
i51

n

~x i
2 1/2

1x i
1/2!21, ~1.2b!

where nowx i and x i
21 for i51,2,...,n are the eigenvalues of an arbitrary group element of

Sp(2n,R).
The symmetric and antisymmetric squares ofD andD9 are given by14–16

D ^ $2%5@1n#11@1n#21 (
x50

`

~@1n2124x#1@1n2324x#12@1n2424x# !, ~1.3a!

D ^ $12%5 (
x50

`

~@1n2124x#12@1n2224x#1@1n2324x# !, ~1.3b!

D9^ $2%5@1n#11 (
x50

`

~21!11x@1n212x#, ~1.3c!

D9^ $12%5@1n#21 (
x50

`

~21!11x@1n212x#, ~1.3d!

where @1k# is the character of thekth fold antisymmetrized power of the defining irreducible
representation@1# of SO(2n). These representations are irreducible fork51,2...,n21, while for
k5n we have@1n#5@1n#11@1n#2 .

Similarly, the symmetric squares ofD̃ and D̃9 are given by9–11

D̃ ^ $2%5^1~0!&1 (
x50

`

^1~x !&, ~1.4a!

D̃ ^ $12%5^1~0!&* 1 (
x50

`

^1~x !&, ~1.4b!
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D̃9^ $2%5^1~0!&1^1~0!&* 1 (
x50

`

~2^1~114x !&2^1~314x !&12^1~414x !& !, ~1.4c!

D̃9^ $12%5 (
x50

`

~2^1~114x !&12^1~214x !&2^1~314x !& !, ~1.4d!

where^1(m)& is the character of a certain harmonic series infinite-dimensional irreducible repre-
sentations of Sp(2n,R) and the asterisk signifies the associate11 of an irreducible representation of
Sp(2n,R).

Comparison of~1.1! and~1.2! gives a formal connection between the charactersD andD9 of
SO(2n) and the charactersD̃ andD̃9 of Sp(2n,R). The formal connection is brought home rather
forcibly in ~1.3! and~1.4! through the analogy between the symmetrized squares ofD andD̃9, and
between those ofD9 and D̃. It is the latter analogy which is explored further here through some
observations on the somewhat unexpected factorization of the plethysmsD9^ $k% of SO(2n) and
D̃ ^ $k% of Sp(2n,R).

For SO(2n), since16

D6D65@1n#61 (
x50

`

@1n2222x#, D6D75 (
x50

`

@1n2122x#, ~1.5!

it follows that ~1.3c! and ~1.3d! can be written in the form:

D9^ $2%5D9D1 , D9^ $12%52D9D2 , ~1.6!

with

dim~D1!52n21, dim~2D2!522n21. ~1.7!

These factorizations and the accompanying dimensionality formulas may appear somewhat unre-
markable, however, it is also the case that16

D9^ $21%5D9(
x50

`

~21!x~2@1n2123x#1@1n2223x# !, ~1.8!

with

dimS (
x50

`

~21!x~2@1n2123x#1@1n2223x# !D 523n21. ~1.9!

This factorization and the accompanying dimensionality formula is far from trivial to derive, but
taken in conjunction with~1.6! and~1.7! it is tempting to explore to what extent one might have

D9^ $k%5D9Pk , ~1.10!

with Pk both belonging to the ring overZ of characters of irreducible representations of SO(2n)
and having dimension given by

dimPk56kn21, ~1.11!

wherek is a partition ofk.
Similarly for Sp(2n,R) it is known that9
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D̃6D̃65^1~0!&61 (
x50

`

^1~212x !&, D̃6D̃75 (
x50

`

^1~112x !&, ~1.12!

where it has been convenient to denote^1(0)& and ^1(0)&* by ^1(0)&1 and ^1(0)&2 , respec-
tively. It then follows that~1.4a! and ~1.4b! can be written in the following form:

D̃ ^ $2%5D̃D̃1 , D̃ ^ $12%5D̃D̃2 . ~1.13!

Once again we have a rather trivial looking factorization leading us to seek an Sp(2n,R) analog
of ~1.10! of the form

D̃ ^ $k%5D̃P̃k , ~1.14!

whereP̃k belongs to the ring overZ of characters of irreducible representations of Sp(2n,R), but
now we would expect

dim P̃k5`. ~1.15!

Before embarking on the evaluation of the plethysms of interest here, namelyD9^ $k% and
D̃ ^ $k%, some general formulas are given in Sec. II for the evaluation of arbitrary plethysms of the
form S ^ $k%, emphasizing the advantages that follow from expressing the partitionk in Frobenius
notation and from distinguishing between even and odd weight contributions to series ofS func-
tions. In conjunction with a crucial proposition due to Scharf and Thibon,17 rederived here in Sec.
II, some of these formulas are then used in Sec. III to evaluate quite explicitly the plethysms
D9^ $k% andD̃ ^ $k%. The results are expressed in terms of the branching rule coefficients appro-
priate to the restriction from the orthogonal group O(k) to its finite subgroup, the symmetric group
Sk . In the case of the plethysmsD̃ ^ $k% of Sp(2n,R) this connection with such branching rule
coefficients was first pointed out by Carvalho.8 The coefficients themselves may be evaluated in a
variety of ways.18–23

The remaining formulas of Sec. II are then used in Sec. IV to derive factorizations of these
same plethysms in the form

D9^ $k%5~D9!r(k)Pk ~1.16!

and

D̃ ^ $k%5~D̃ !r(k)P̃k , ~1.17!

wherer(k) is the Frobenius rank of the partitionk. Explicit formulas are given forPk andP̃k in
terms of characters of the symmetric group and certain symmetric functions. Furthermore, certain
determinantal expansions are derived for bothPk and P̃k , leading to a very simple dimension
formula for Pk , but not of course forP̃k , which is infinite dimensional.

However, these formulas do not reveal whetherPk andP̃k can be expressed as linear com-
binations of characters of irreducible representations of SO(2n) and Sp(2n,R), as appropriate,
with integer coefficients. This is accomplished in Sec. V, where formulas interpolating between
D9^ $k% andPk , and betweenD̃ ^ $k% andP̃k are established. The coefficients in these expan-
sions are all integers, determined once again by group–subgroup branching rules and their in-
verses. Numerous examples of the explicit calculation ofPk , P̃k , D9^ $k% and D̃ ^ $k% are
provided in Sec. VI.

Finally, in Sec. VII, the procedures are extended to the case of the plethysms of the basic
tensor difference characters of SO(2n) and Sp(2n,R). Once again factorization occurs, and the
remarkable analogy between SO(2n) and Sp(2n,R) is shown to hold true yet again.
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II. SOME TECHNIQUES FOR EVALUATING PLETHYSMS

Before embarking on the evaluation of pleythysms ofD9 and D̃, it is worth recalling from
KWI some of the Schur-function and character-theoretic background to these problems. This relies
heavily on the exploitation of partitions and Young diagrams.

Each partitionk5(k1 ,k2 ,...,kp) of k specifies a Young diagramFk consisting ofk5uku
boxes arranged inp5l (k) left-adjusted rows of lengthsk i for i51,2,...,p. The lengthsk j8 for
j51,2,...,q of the q5b(k) top-adjusted columns ofFk serve to define the conjugate partition
k85(k18 ,k28 ,...,kq8). The number of boxesr5r(k) on the principal diagonal ofFk is known as
the Frobenius rank of the partitionk. In Frobenius notation

k5S a1 a2¯ar

b1 b2¯br
D ,

where for k51,2,...,r the parametersak5kk2k and bk5kk82k are the arm and leg lengths,
respectively, ofFk with respect to its main diagonal of lengthr. With this notation the Young
diagram can also be viewed as the union of a set of nested hooks of lengthhk5ak1bk11 with
k51,2,...,r. All this is illustrated schematically by

~2.1!

With this notation there exist a number of distinct determinantal expansions of the Schur
function $k%. These include the following:13,24,25

$k%5u$k i2i1 j%up3p5u$1k j82 j1i%uq3q5u$k i2i11,1k j82 j%ur3r5UH a i

b j
J U

r3r

. ~2.2!

In the present context the significance of the last of these expansions is that for any linear
combination,S, of Schur functions the evaluation of its plethysmS ^ $k% can be effected by
means of the determinantal expansion:

S ^ $k%5US ^ H as

b t
J U

r3r

. ~2.3!

An alternative expansion of$k%, entirely different to those of~2.2!, takes the form:13,23,24

$k%5(
r£k

1

zr
xr

kpr , ~2.4!

where the sum is taken over all partitionsr of k, and pr is the power sum symmetric function
specified byr. The coefficientxr

k is the character in the irreducible representation~k! of the
symmetric groupSk of the conjugacy class of elements having cycle structure specified by the
partition r. If the length ofr is l (r) then

r5~r1 ,r2 ,...,r l (r)!5~kmk,...,2m2,1m1! ~2.5!

with

(
j51

k

m j5l ~r !, (
j51

k

jm j5k. ~2.6!

With this notation
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zr5)
j51

k

m j! jm j, pr5)
j51

k

p j
m j , ~2.7!

wherep j is just the elementary power sum function defined for allj>1 by

p j~x1 ,x2 ,...,xn!5(
s

xs
j , ~2.8!

for whatever is the appropriate set of indeterminates$x1 ,x2 ,...% that is denumerable but not
necessarily finite.

For any givenk the summation overr in ~2.4! may be restricted to those partitions for which
the charactersxr

k of Sk are nonvanishing. The Murnaghan–Nakayama recurrence relation for
characters of the symmetric group takes the form:12,13,24,25

xr
k
5(

j
~21! l l (j)xs

l , ~2.9!

where if r5(r1 ,r2 ,...,r l (r)) thens5(r2 ,r3 ,...,r l (r)). The summation is over all continuous
boundary stripsj of lengthr1 such that their removal from the Young diagramFk leavesFl for
some partitionl. The parameterl l (j) is the leg length ofj, which is one less than the number
of rows containing boxes within the boundary stripj.

For xr
k to be nonvanishing it is necessary under the iteration of~2.9! to remove all boxes ofFk

through various sequences of preciselyl (r) continuous boundary strip removals leading tox0
0

51 multiplied by some combination of leg length factors (21)l l (j). Since these continuous
boundary strips each have at most one box on any diagonal and the longest diagonal ofFk is the
principal diagonal whose length is the Frobenius rankr5r(k), it follows that25

xr
k
50 if l ~r !,r~k !. ~2.10!

Just as~2.2! could be used by way of~2.3! to simplify the evaluation of plethysms, so a
further time-honored method of evaluatingS ^ $k% makes use of the expansion~2.4!. This ap-
proach, supplemented by the multiplicative expansion ofpr in ~2.7! and the simple observation
~2.10!, yields the following formula:

S ^ $k%5 (
r£k,l (r)>r(k)

1

zr
xr

k)
j51

k

~S ^ p j!
m j. ~2.11!

It might be stressed that the boundl (r)5r(k) can always be saturated in such a way that
xr

kÞ0. This is done most simply by settingr5(h1 ,h2 ,...,hr). In fact xh1h2¯hr

k
5

(21)b11b21¯1br. Moreover, for anyS5S(x1 ,x2 ,...,xn) and j>1 we not only haveS ^ p j5p j

^ S but also

S~x1 ,x2 ,...,xn! ^ p j5S~x1
j ,x2

j ,...,xn
j !. ~2.12!

In what follows a rather general lemma on plethysms is of use, namely:
Lemma 2.1: Let X and Y be two series of S-functions all of whose terms are of even and of

odd weight, respectively, and let k be an arbitrary partition. If

~X1Y ! ^ $k%5(
m

pk
m$m%, ~2.13!

then
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~X82Y 8! ^ $k%5(
m

~21! umupk
m$m8%. ~2.14!

Proof: It should be noted from Lemma 5.3 of an earlier paper11 that Littlewood’s conjugacy
formula26 can be generalized to give in the present context

~X ^ $r%!85X8^ $r%, ~Y ^ $r%!85Y 8^ $r8%, ~2.15!

for any partitionr. Moreover, Littlewood’s algebra of plethysm13,26 is such that

~X1Y ! ^ $k%5(
s,t

cs,t
k ~X ^ $s%!~Y ^ $t%!5 (

m:umueven
pk

m$m%1 (
m:umuodd

pk
m$m%5(

m
pk

m$m%,

~2.16!

where the coefficientscs,t
k are the famous Littlewood–Richardson coefficients24,25 defining prod-

ucts of S-functions, and the second step involves evaluating further products of the various
S-functions appearing inX ^ $s% and Y ^ $t%, distinguishing between those of even and odd
weight. Furthermore, thanks again in the first step to Littlewood’s algebra of plethysm and in the
second to~2.15!, we have

~X82Y 8! ^ $k%5(
s,t

~21! utucs,t
k ~X8^ $s%!~Y 8^ $t8%!5(

s,t
~21! utucs,t

k ~X ^ $s%!8~Y ^ $t%!8

5(
s,t

~21! utucs,t
k ~~X ^ $s%!~Y ^ $t%!!85 (

m:umueven
pk

m$m8%2 (
m:umuodd

pk
m$m8%

5(
m

~21! umupk
m$m8%, ~2.17!

as required. The penultimate step depends on the fact that the only terms$m% appearing in~2.16!
of odd weight are those that arise from products of the necessarily even weight terms ofX
^ $s% with some odd weight term ofY ^ $t%. Such terms arise precisely whent has odd weight.h

As an application of Lemma 2.1 we may apply it directly to the fourS-function series denoted
in KWI by M , L, Q, andP, thereby obtaining:

Corollary 2.2: Let

M ^ $k%5S (
m50

`

$m% D ^ $k%5(
m

mk
m$m%, ~2.18a!

L ^ $k%5S (
m50

`

~21!m$1m% D ^ $k%5(
m

l k
m$m%, ~2.18b!

Q ^ $k%5S (
m50

`

$1m% D ^ $k%5(
m

qk
m$m%, ~2.18c!

P ^ $k%5S (
m50

`

~21!m$m% D ^ $k%5(
m

pk
m$m%, ~2.18d!

then

l k
m8

5~21! umumk
m and pk

m8
5~21! umuqk

m . ~2.19!
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Proof: If we write M5X1Y with X5$0%1$2%1¯ and Y5$1%1$3%1¯ , thenX85$0%
1$12%1¯ and Y 85$1%1$13%1¯ , so thatL5X82Y 8. The application of Lemma 2.1 then
leads immediately to the first part of~2.19!. Likewise, if we writeQ5X1Y with X5$0%1$12%
1¯ and Y5$1%1$13%1¯ , then X85$0%1$2%1¯ and Y 85$1%1$3%1¯ , so thatP5X8

2Y 8. The application of Lemma 2.1 then leads immediately to the second part of~2.19!. h

At least for reasonably small values ofk, the weight ofk, it is not difficult, although it is
certainly tedious, to evaluate the various coefficientsmk

m , l k
m , qk

m , and pk
m appearing in the

plethysms~2.18! up to any preassigned weightumu through the use, for example, of the software
packageSCHUR.27 However, it is well worth noting that the following proposition has been derived
by Scharf and Thibon17 as part of a Hopf algebra approach to inner plethysms:

Proposition 2.3: Let m be a partition which is U(k)-standard in the sense that l (m)5m18

<k and let the coefficients gk
m be defined by the U(k) to Sk branching rule:

U~k !→Sk : $m%→ (
k:k£k

gk
m~k !, ~2.20!

where the summation is over all partitions k of k, then

M ^ $k%5 (
m:l (m)<k

gk
m$m% and L ^ $k%5 (

m:l (m)<k
~21! umugk

m$m8%. ~2.21!

The validity of the crucial first part of~2.21! was established17 as a reciprocity theorem
linking characters of U(n) andSk . The second part of~2.21! is then a trivial consequence of the
conjugacy relation~2.19!. However, we can also offer an alternative proof of~2.21! using one of
Littlewood’s results28 on inner plethysms.

First it should be noted that the irreducible representation~k! of the symmetric groupsSk

specified by the partitionk of k, may also be specified in reduced notation by^n& where (k)
5(k2unu,n). With this notation we have:

Lemma 2.4: Let l be a partition of ulu with ulu<k, and let p5k2ulu. Then

^l/M &5~p•l !, ~2.22!

where / and • signify S-function quotients and products, respectively.
Proof: The reduced notation used on the left-hand side of~2.22! is such that in more conven-

tional standard notation we have

^l/M &5(
m

^l/m&5(
m

~k2ulu1m,l/m !. ~2.23!

However on the right-hand side of~2.22! the application of the special case of the Littlewood–
Richardson rule known as the Pieri rule gives

~p•l !5(
m

~p1m,l/m !. ~2.24!

Sincep5k2ulu, comparison of~2.23! and ~2.24! yields ~2.22!, as required. h

Now we can return to the proof of Proposition 2.3.
Proof: From the definition ofM and the algebra of plethysms13 it follows that
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M ^ $k%5~$0%1$1%1$2%1¯ ! ^ $k%5 (
p,r,s,...

cprs¯
k ~~$0% ^ $p%!•~$1% ^ $r%!•~$2% ^ $s%!¯ !

5 (
p,r,s,...

cprs¯
k ~~$1% ^ $r%!•~$2% ^ $s%!¯ !5 (

p,r,s,¯
cprs¯

k c ($1% ^ $r%)($2% ^ $s%)¯
m $m%,

~2.25!

where the coefficientscprs...
k are defined by theS-function product

$p%•$r%•$s%¯5(
k

cprs¯
k $k% ~2.26!

and use of the Littlewood–Richardson rule as many times as appropriate. Similarly, the coeffi-
cientsc ($1% ^ $r%)($2% ^ $s%)¯

m are defined by

~$1% ^ $r%!•~$2% ^ $s%!¯5(
m

c ($1% ^ $r%)($2% ^ $s%)¯
m $m%. ~2.27!

The second step of~2.25! makes use of the fact that$0% ^ $p%50 if p is not a one-part partition,
while in the case of a one-part partitionp we have$0% ^ $p%5$0%51.

Turning to ~2.20!, the branching rule for the restriction fromU(k) to U(k21) may be
expressed in the form

U~k !→U~k21!:$m%→$m/M %5(
a

$m%/$a%5(
a

$m%/~$1% ^ $a%!, ~2.28!

where, largely for aesthetic reasons in what follows, use has been made of the fact that$1%
^ $a%5$a%. Littlewood28 has provided the branching rule for the restriction from U(k21) to Sk

in his Theorem XI. This takes the following form:

U~k21!→Sk : $n%→ (
b,c,...,h,z,...

^~$h%•$z%¯ !•~$n%/~~$2% ^ $h%!•~$3% ^ $z%!¯

•~$2% ^ $b%!•~$3% ^ $c%!¯ !!&, ~2.29!

where the angular brackets^¯& have been used again to signify characters ofSk expressed in
reduced notation.

Combining ~2.28! and ~2.29!, and using the fact that$m%/X5(jcjX
m $j% for all X, with $j%

5$1% ^ $j%, we obtain
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U~k !→Sk :

$m%→ (
a,b,c,...,j,h,z,...

c ($1% ^ $j%)•($2% ^ $h%)•($3% ^ $z%)¯($1% ^ $a%)•($2% ^ $b%)•($3% ^ $c%)¯
m ^j•h•z¯&

5 (
a,b,c,...,j,h,z,...

c ($1% ^ ($a•j%))•($2% ^ ($b•h%))•($3% ^ ($c•z%)¯
m ^j•h•z¯&

5 (
a,b,c,...,r,s,t,...

c (($1% ^ $r%)•($2% ^ $s%)•($3% ^ $t%)¯)
m ^~r/a !•~h/b !•~z/c !¯&

5 (
m,r,s,t,...

c (($1% ^ $r%)•($2% ^ $s%)•($3% ^ $t%)¯)
m ^~r•s•t¯ !/m&

5 (
r,s,t,...

c (($1% ^ $r%)•($2% ^ $s%)•($3% ^ $t%)¯)
m ^~r•s•t¯ !/M &

5 (
r,s,t,...

c (($1% ^ $r%)•($2% ^ $s%)•($3% ^ $t%)¯)
m ~p•r•s•t¯ !

5 (
r,s,t,...

c (($1% ^ $r%)•($2% ^ $s%)•($3% ^ $t%)¯)
m cprst...

k ~k !, ~2.30!

where in the penultimate step use has been made of Lemma 2.4, extended by virtue of its linearity
in l to the case in whichl is replaced byr•s•t¯ andp5k2uru2usu2utu2¯ .

Comparison of~2.30! with ~2.25! then completes the proof of the first part of~2.21! and hence
of Proposition 2.3, since the second part follows, as we have seen, from~2.19!. h

III. EVALUATION OF THE PLETHYSMS D9‹ˆk‰ AND D̃‹ˆk‰
It follows from KWI Sec. II that

D5e1/2Q̄5e1/2)
i51

n

~11x i
21!, D95e1/2L̄5e1/2)

i51

n

~12x i
21!, ~3.1a!

D̃5e1/2M5e1/2)
i51

n

~12x i!
21, D̃95e1/2P5e1/2)

i51

n

~11x i!
21, ~3.1b!

where it has been convenient to introduce the S-function seriesQ̄ andL̄, which are contragredient
to Q andL, respectively. It follows that in order to evaluate the required SO(2n) and Sp(2n,R)
plethysms ofD, D9, D̃, andD̃9 at the level of U(n) it is only necessary to evaluate plethysms of
Q, L, M , andP, and take the contragredient where appropriate. However, general expressions for
these plethysms are only available through Proposition 2.3 forM ^ $k% and L ^ $k%. These are
related through~3.1! to the plethysms ofD̃ andD9.

Taking the caseD̃ first, we arrive at a result first enunciated without proof by Carvalho.8

Proposition 3.1: Let l be a partition which is O(k)-standard in the sense that l181l28<k and
let the coefficients bk

l be defined by the O(k) to Sk branching rule:

O~k !→Sk : @l#→ (
k:k£k

bk
l~k !, ~3.2!

where the summation is over all partitions k of k. Then for any partition k of k the corresponding

plethysm of the representation D̃ of Sp(2n,R) decomposes in accordance with the rule
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D̃ ^ $k%5 (
l:l181l28<k

bk
l^ 1

2k~l !&, ~3.3!

or, equivalently,

D̃ ^ $k%5H (
l:l (l),m

~bk
l^m~l !&1bk8

l
^m~l !&* !1 (

l:l (l)5m
bk

l^m~l !& if k52m

(
l:l (l)<m

~bk
l^D̃;m~l !&1bk8

l
^D̃;m~l !&* ! if k52m11,

~3.4!

where the asterisk ~* ! signifies an associate11 irreducible representation of Sp(2n,R), and it has

been convenient to denote ^ 1
21m(l)& by ^D̃;m(l)&.

Proof: From ~3.1c! and Proposition 2.3 we have

D̃ ^ $k%5~e1/2M ! ^ $k%5ek/2~M ^ $k%!5ek/2 (
m:l (m)<k

gk
m$m%, ~3.5!

where the coefficientsgk
m are defined by the U(k)→Sk branching rule~2.20!. We can refine this

branching rule by noting that O(k) is a subgroup of U(k) which itself containsSk as a subgroup.
For m such thatl (m)<k let the coefficientsRl

m be defined by the U(k) to O(k) branching rule:

U~k !→O~k !: $m%→ (
l:l181l28<k

Rl
m@l#. ~3.6!

Combining this with~3.2! gives

U~k !→O~k !→Sk : $m%→ (
l:l181l28<k

Rl
m@l#→ (

l:l181l28<k

k:k£k

Rl
mbk

l~k !. ~3.7!

Comparison with~2.20! reveals that

gk
m

5 (
l:l181l28<k

Rl
mbk

l for l ~m !<k and k£k. ~3.8!

However, it is also known that7

Sp~2n,R!→U~n !: ^ 1
2k~l !&→ek/2 (

m:l (m)<k
Rl

m$m% for l181l28<k, ~3.9!

where this expression serves to define the character^ 1
2k(l)& of Sp(2n,R) completely since

Sp(2n,R) and U(n) are of the same rank. It follows that the successive use of~3.8! and ~3.9! in
~3.5! leads directly to~3.3! as follows:

D̃ ^ $k%5ek/2 (
m:l (m)<k

l:l181l28<k

Rl
mbk

l$m%5 (
l:l181l28<k

bk
l^ 1

2k~l !& for k£k. ~3.10!

The passage from~3.3! to ~3.4! is effected by noting that the summation overl in ~3.3! yields
mutually associated pairs of irreducible representations of Sp(2n,R) together with self-associate
irreducible representations in the casek52m. Hence~3.3! can be rewritten in the form
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D̃ ^ $k%5H (
l:l (l),m

~bk
l^m~l !&1bk

l* ^m~l !&* !1 (
l:l (l)5m

bk
l^m~l !& if k52m

(
l:l (l)<m

~bk
l^D̃;m~l !&1bk

l* ^D̃;m~l !&* ! if k52m11.

~3.11!

The notation11 is such that̂ m(l)&* 5^m(l* )& and^D̃;m(l)&* 5^D̃;m(l* )&, wherel* is thek
associate of the partitionl for k52m and k52m11, respectively. However, in O(k) we have
@l* #5@l#* 5@0#* @l# and on restriction from O(k) to Sk we have@0#* →(1k). Moreover inSk

we have (1k)•(k)5(k8) for all k. It follows that bk
l*

5bk8

l . Using this in~3.11! gives ~3.4!, as
required to complete the proof of Proposition 3.1. h

Turning to the case ofD9, the analog of Proposition 3.1 takes the form:
Proposition 3.2: Let l be such that l181l28<k and let the coefficients bk

l be defined by the
O(k) to Sk branching rule (3.2). Then for any partition k of k the corresponding plethysm of the
difference character D9 of SO(2n) decomposes in accordance with the rule

D9^ $k%

5H (
l:l(l),m

(21)ulu(bk
l[ mn/l8)] 11bk8

l [ mn/l8] 2)1 (
l:l(l)5m

(21)ulubk
l[ mn/l8] if k52m

(
l:l (l)<m

(21)ulu(bk
l[D;mn/l8] 12bk8

l
@D;mn/l8] 2) if k52m11.

~3.12!

Proof: From ~3.1!, Proposition 2.3, and~3.8! we have

D9^ $k%5~e1/2L̄ ! ^ $k%5ek/2~ L̄ ^ $k%!5 (
m:l (m)<k

~21! umuek/2gk
m$m8%

5 (
m:l (m)<k

l:l181l28<k

~21! umuek/2Rl
mbk

l$m8%

5¦
(

m:l (m)<2m
l:l (l),m

~21! umuem~Rl
mbk

l$m8%1Rl*
m bk

l* $m8%!

1 (
m:l (m)<2m
l:l (l)5m

~21! umuemRl
mbk

l$m8% if k52m

(
m:l (m)<2m11

l:l (l)<m

~21! umuem11/2~Rl
mbk

l$m8%1Rl*
m bk

l* $m8%!

if k52m11.

~3.13!

This time it is necessary to convert the combination of characters of U(n) appearing on the
right-hand side of~3.13! into linear combinations of characters of SO(2n). To this end we require
an analog of~3.9!.

It will be recalled that~3.9! arises from a comparison of the branching rule6,7

Sp~2nk,R!→Sp~2n,R!3O~k !: D̃→ (
l:l181l28<k

^ 1
2k~l !&3@l#, ~3.14!
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with the sequence of branching rules associated with the group–subgroup chain

Sp~2nk,R!→U~nk !→U~n !3U~k !→U~n !3O~k !. ~3.15!

This chain is such that

D̃→e1/2M→ (
m:l (m)<k

ek/2$m%3en/2$m%→ (
m:l (m)<k

l:l181l28<k

ek/2Rl
m$m%3@l#. ~3.16!

In the last step of~3.16! use has been made of the U(k) to O(k) branching rule~3.6!. In addition
the k-independent factoren/2 with e561 has been dropped for convenience since its retention
would only involve various, but essentially equivalent, embeddings of O(k) in U(k). Now com-
parison of~3.14! and~3.16! leads directly to the required Sp(2n,R) to U(n) branching rule~3.9!.

Mimicking this procedure in the case ofD9 it is necessary to distinguish between the cases of
k even and odd. The branching rule of KWI for the restriction ofD9 from SO(2nk) to SO(2n)
3O(k) takes the form:

D9→5
(

l:l (l),m
~21! ulu~@mn/l8#13@l#1@mn/l8#23@l#* !1 (

l:l (l)5m
~21! ulu@mn/l8#3@l#

if k52m

(
l:l (l)<m

~21! ulu~@D;mn/l8#13@l#2@D;mn/l8#23@l#* ! if k52m11.

~3.17!

The analog of~3.15! is the group–subgroup chain

SO~2nk !→U~nk !→U~n !3U~k !→U~n !3O~k !, ~3.18!

for which we have

D9→e1/2L̄→ (
m:l (m)<k

~21! umuek/2$m 8̄%3en/2$m̄%→ (
m:l (m)<k

l:l181l28<k

~21! umuek/2Rl
m$m 8̄%3@l#.

~3.19!

In the last step use has been made of the U(k) to O(k) branching rule~3.6! together with the fact
that the restriction from U(k) to O(k) is such thatRl

m̄
5Rl

m . As before, thek-independent factor
en/2 with e561 has been dropped. Distinguishing in the usual way between even and odd values
of k and between irreducible representations of O(k) and their associates, this gives for the
branching from SO(2nk) to U(n)3O(k):
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D9→5
(

m:l (m)<2m
l:l (l),m

~21! umuem~Rl
m$m 8̄%3@l#1Rl*

m
$m 8̄%3@l#* !

1 (
m:l (m)<2m
l:l (l)5m

~21! umuemRl
m$m 8̄%3@l# if k52m

(
m:l (m)<2m11

l:l (l)<m

~21! umuem11/2~Rl
m$m 8̄%3@l#1Rl*

m
$m 8̄%3@l#* ! if k52m11.

~3.20!

Comparison of~3.17! and ~3.20! then yields the required branching rules for the restriction from
SO(2n) to U(n):

@mn/l8#1→ (
m:l (m)<2m

~21! umu2uluemRl
m$m 8̄% for l ~l !,m, ~3.21a!

@mn/l8#2→ (
m:l (m)<2m

~21! umu2uluemRl*
m

$m 8̄% for l ~l !,m, ~3.21b!

@mn/l8#→ (
m:l (m)<2m

~21! umu2uluemRl
m$m 8̄% for l ~l !5m, ~3.21c!

@D;mn/l8#1→ (
m:l (m)<2m11

~21! umu2uluem11/2Rl
m$m 8̄% for l ~l !<m, ~3.21d!

@D;mn/l8#2→ (
m:l (m)<2m11

~21! umu2ulu11em11/2Rl*
m

$m 8̄% for l ~l !<m. ~3.21e!

As in the case of~3.9!, these branching rules furnish identities expressing characters of irreducible
representations, in this case of SO(2n), in terms of those of U(n), a subgroup of the same rank.

Using these identities in~3.13! and recalling thatbk
l*

5bk8

l gives~3.12!, and thereby completes the
proof of Proposition 3.2. h

IV. THE FACTORIZATION OF PLETHYSMS OF D9 AND D̃

We are now in a position to derive the following:
Proposition 4.1: Let k be a partition of k of Frobenius rank r5r(k). Then

D9^ $k%5~D9!r(k)Pk , ~4.1!

with

Pk5 (
r£k,l (r)>r(k)

1

zr
xr

k~D9! l (r)2r(k))
j51

k

P j
m j , ~4.2!

where

P j5)
i51

n

~ x i
~ j21!/2

1x i
~ j23!/2

1¯1x i
2 ~ j21!/2! . ~4.3!

Proof: SettingS5D9 in ~2.12!, with D9 given by the character formula~1.1b!, immediately
gives
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D9^ p j5)
i51

n

~x i
j /2

2x i
2 j /2!5)

i51

n

~x i
1/2

2x i
2 1/2!~x i

~ j21!/2
1x i

~ j23!/2
1¯1x i

2 ~ j21!/2!5D9P j ,

~4.4!

with P j as defined in~4.3!. It then follows from~2.11! that

D9^ $k%5 (
r£k,l (r)>r(k)

1

zr
xr

k)
j51

k

~D9^ p j!
m j

5 (
r£k,l (r)>r(k)

1

zr
xr

k)
j51

k

~D9P j!
m j

5 (
r£k,l (r)>r(k)

1

zr
xr

k~D9! l (r))
j51

k

P j
m j , ~4.5!

where use has been made of~2.7!. As required, this gives~4.1! with Pk as defined in~4.2!. h

The factorization ofD9^ $k% spelt out in~4.1! and ~4.2! serves to both confirm and refine
~1.10!. In seeking to do the same for~1.11! the following result may be derived:

Corollary 4.2: Let k be a partition of k which in Frobenius notation takes the form

k5S a1 a2¯ar

b1 b2¯br
D

with r5r(k). Then D9^ $k%5(D9)r(k)Pk with

Pk5uP S as
b t

D ur3r ~4.6!

and

dim Pk5~21!b11b21¯1bru~as1b t11!n21ur3r , ~4.7!

where dimPk is the value of Pk at the identity, that is the value at x i51 for all i51,2,...,n.
Proof: SettingS5D9 in ~2.3! gives

D9^ $k%5UD9^ H as

b t
J U

r3r

5uD9P S as
b t

D ur3r5~D9!r(k)uP S as
b t

D ur3r . ~4.8!

Comparison with the definition ofPk in ~4.1! gives ~4.6!.
To derive~4.7! we first consider the special case wherek5(b

a)5(11a,1b) with k5uku5a
1b11 andr5r(k)51. Then, since dimD950, it follows that in~4.2! the only terms contribut-
ing to dimPk are those for whichl (r)5r(k)51. But there is only one such term and that

corresponds to the one part partitionr5(k) for which zr5zk5k. Moreover,xk
11a,1b

5(21)b.
Hence

dimPk5

1

zk
xk

11a,1b
dim Pk5

1

k
~21!bkn

5~21!b~a1b11!n21. ~4.9!

This confirms the validity of~4.7! in the casek51. Thanks to~4.6! we then have in the general
case

dimPk5udimP S as
b t

D ur3r5u~21!b t~as1b t11!n21ur3r , ~4.10!

giving ~4.7!, as required. h
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Plethysms ofD̃ can be dealt with in exactly the same way and one arrives at the general result:
Proposition 4.3: Let k be a partition of k of Frobenius rank r5r(k). Then

D̃ ^ $k%5~D̃ !r(k)P̃k , ~4.11!

with

P̃k5 (
r£k,l (r)>r(k)

1

zr
xr

k~D̃ ! l (r)2r(k))
j51

k

P j
2m j , ~4.12!

where

P̃ j5)
i51

n

~x i
~ j21!/2

1x i
~ j23!/2

1¯1x i
2 ~ j21!/2!21. ~4.13!

Moreover,

P̃k5uP̃ S as
b t

D ur3r . ~4.14!

Proof: Proceeding as before, we setS5D̃ in ~2.12! and use the character formula~1.2a! for D̃
to obtain instead of~4.4! the analogous formula

D̃ ^ p j5)
i51

n

~x i
2 j /2

2x i
j /2!21

5)
i51

n

~x i
2 1/2

2x i
1/2!21~x i

~ j21!/2
1x i

~ j23!/2
1¯1x i

2 ~ j21!/2!21

5D̃P j
21 . ~4.15!

Using this in~2.11! with S5D̃ then leads to the analog of~4.5!, namely:

D̃ ^ $k%5 (
r£k,l (r)>r(k)

1

zr
xr

k~D̃ ! l (r))
j51

k

P j
2m j . ~4.16!

Extracting the appropriate factors ofD̃ then gives~4.11! with P̃k as in ~4.12!.
This time because of the infinite-dimensional nature of bothD̃ and P j

21 there exists no
complete analog of Corollary 4.2. However, the use ofS5D̃ in ~2.3! leads, as in the derivation of
~4.6!, to the identity~4.14!. h

To close this section we provide some conjugacy rules for bothPk and P̃k . The outer
automorphism,* , of SO(2n) is such that16

~D9^ $k%!* 5~D9!* ^ $k%5~2D9! ^ $k%5~21!kD9^ $k8%, ~4.17!

where, as usual,k5uku. From the factorization formula~4.1! it follows that

~D9* !r(k)~Pk!* 5~21!r(k)~D9!r(k)~Pk!* 5~21!k~D9!r(k)Pk8
, ~4.18!

sincer(k8)5r(k). Hence

Pk8
5~21! uku1r(k)~Pk!* . ~4.19!

Similarly, the properties of associate irreducible representations of Sp(2n,R) are such that12

~D̃ ^ $k%!* 5D̃ ^ $k8%. ~4.20!

It thus follows from the factorization formula~4.11! that
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~D̃* !r(k)~P̃k!* 5~D̃ !r(k)~P̃k!* 5~D̃ !r(k)P̃k8
, ~4.21!

and hence

P̃k8
5~P̃k!* . ~4.22!

There remain several problems with Propositions 3.1 and 3.3. First, it is not at all clear
whether or notPk ~respectively,P̃k) can be expressed as linear combinations of characters of
irreducible representations of SO(2n) @respectively, Sp(2n,R)]. Second, if this is indeed true then
the explicit formulas we have given forPk andP̃k are not amenable to re-writing them in terms
of such characters. Third, even if this can be done it is by no means obvious that the resulting
coefficients of these characters are integers so thatPk ~respectively,P̃k) belongs to the rings of
the characters of SO(2n) @respectively, Sp(2n,R)# over the integersZ. These problems are ad-
dressed in the following sections wherePk andP̃k are evaluated.

V. THE EVALUATION OF Pk AND P̃k

Having established the factorization ofD9^ $k% and D̃ ^ $k% as in ~4.1! and ~4.11!, respec-
tively, the evaluation ofPk and P̃k can be accomplished in a number of different ways. In
principle one could proceed by exploiting~3.1! to express the required plethysms in the form
ek/2(L̄ ^ $k%) and ek/2(M ^ $k%), then evaluating (L̄ ^ $k%) and (M ^ $k%), factoring out the
r(k)th power ofL̄ andM , and finally re-expressing the resulting characters of U(n) as characters
of SO(2n) or Sp(2n,R), as appropriate.

In the case of SO(2n) this may indeed be accomplished16 at least for smallk andn since the
relevant series are finite. The extension to arbitraryn may be carried out inductively and checked
dimensionally using~4.7!. Some short cuts may be found using the algebra of plethysms. In this
way one arrives at the following results:

P151, ~5.1a!

P25D1 , ~5.1b!

P1252D2 , ~5.1c!

P35@1n#12 (
x50

`

~21!x@1n2323x#, ~5.1d!

P215 (
x50

`

~21!x~2@1n2123x#1@1n2223x# !, ~5.1e!

P135@1n#22 (
x50

`

~21!x@1n2323x#, ~5.1f!

P45 (
x,y50

`

~21!x~@D;1n23x24y#12@D;1n2623x24y#2!, ~5.1g!

P315 (
x,y50

`

~21!x~2@D;1n212x24y#11@D;1n232x24y#2!, ~5.1h!
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P2125 (
x,y50

`

~21!x~2@D;1n232x24y#11@D;1n212x24y#2!, ~5.1i!

P145 (
x,y50

`

~21!x~@D;1n2623x24y#12@D;1n23x24y#2!. ~5.1j!

The above partitions are all of Frobenius rank 1. The partitionk5(22) has Frobenius rank 2
and may be calculated in terms of the above rank 1 results by use of~4.6! of Corollary 4.2 as
follows:

D9^ $22%5D9^ H 1 0

1 0J 5UD9^ H1
1J D9^ H1

0J
D9^ H0

1J D9^ H0
0JU5~D9!2UP21 P2

P12 P1
U. ~5.2!

Hence

P225P21P12P2P125 (
x50

`

~21!x~2@1n2123x#1@1n2223x# !1 (
x50

`

@1n2122x#, ~5.3!

where use has been made of~5.1a!–~5.1c!, ~5.1e! and ~1.5!. The result~5.3! can be recast in the
simpler form:

P225 (
x50

`

~@1n2226x#1@1n2326x#1@1n2426x# !. ~5.4!

Proceeding in exactly the same way for other Frobenius rank 2 partitions one obtains, for example,

P325 (
x,y50

`

~21!x~@D;1n2223x24y#12@D;1n2423x24y#2!, ~5.5a!

P2215 (
x,y50

`

~21!x~@D;1n2423x24y#12@D;1n2223x24y#2!. ~5.5b!

It might be noted that these two results are in conformity, as they must be, with the conjugacy
formula ~4.19!. Before turning to alternative ways of identifying the multiplicities of the various
characters that appear inPk , it is worth pointing out that in all the examples of~5.1!, ~5.4!, and
~5.5! the multiplicities are integers. At first sight it would appear that the multiplicities we have
obtained are all61 but this is not the case. In~5.1g!, for example, the multiplicity of@D;1n212#
is 2, corresponding to the terms in the summation for whichx54, y50 andx50, y53. However
it is true that the multiplicities are indeed always integers.

In order to establish the general result it is helpful to consider the group–subgroup chain

O~k2r~k !!→¯→O~k2s !→¯→O~k21!→O~k !→Sk ~5.6!

and the corresponding branching and inverse branching rules which are such that

@l/M r(k)#→¯→@l/M s#→¯→@l/M #→@l#→ (
k:k£k

bk
l~k !. ~5.7!

For s50,1,...,r(k) this chain may be used to define coefficientsbk,s
m associated with the subchain

extending from O(k2s) to Sk through the rule
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@m#→¯→@m/Ls21#→@m/Ls#→ (
k:k£k

bk,s
m ~k !, ~5.8!

whereL is the inverse ofM . It follows from ~5.7! and ~5.8! that

bk,s
l/M s

5bk
l , bk,s

m
5bk

m/Ls
. ~5.9!

Consequently,

bk,s
n/M

5bk
n/MLs

5bk
n/Ls21

5bk,s21
n . ~5.10!

In addition, for all O(k2s) we have@m* #5@m#* 5@0#* @m# and under the restriction from
O(k2s) to Sk we have@0#* →(1k) with (1k)•(k)5(k8) for all partitionsk of k. It follows that

quite generallybk,s
m*

5bk8,s
m , while

bk,s
m

5bk,s
m*

5bk8,s
m if k2s52x and l ~m !5x. ~5.11!

With the use of these coefficientsbk,s
m we may interpolate betweenD9^ $k% andPk by means of

the following:
Definition 5.1: Let k be any partition of k with Frobenius rank r(k), and let the coefficients

bk,s
m be defined by (5.8) for s50,1,...,r(k). Then, let

Xk
(s)

55
(

m:l (m),x
(21)umu(bk,s

m [ xn/m8)] 11bk8,s
m [ xn/m8] 2)1 (

m:l (m)5x
(21)umubk,s

m [ xn/m8]

if k2s52x

(
m:l (m)<x

(21)umu(bk,s
m [D;xn/m8] 12bk8,s

m [D;xn/m8] 2) if k2s52x11.

~5.12!

With this notation we have
Lemma 5.2: Let k be any partition of k with Frobenius rank r(k), then

D9Xk
(s)

5Xk
(s21) for s51,2,...,r~k !. ~5.13!

Proof: In the casek2s52x with s>1, the product ofD9 with Xk
(s) may be evaluated as

follows:

D9Xk
(s)

5 (
m:l (m),x

~21! umu~bk,s
m @D;xn/m8L !#12bk8,s

m
@D;xn/m8L#2)

1 (
m:l (m)5x

~21! umubk,s
m ~@D;xn/m8L !#12@D;xn/m8L#2)

5 (
m:l (m)<x

~21! umu~bk,s
m @D;xn/m8L#12bk8,s

m
@D;xn/m8L#2!

5 (
m:l (m)<x

(
p50

`

~21! umu1p~bk,s
m @D;xn/~m•p !8#12bk8,s

m
@D;xn/~m•p !8#2!

5 (
m:l (m)<x

(
p50

`

(
n:l (n)<x

~21! unucmp
n ~bk,s

m @D;xn/n8#12bk8,s
m

@D;xn/~n !8#2!
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5 (
n:l (n)<x

(
p50

`

~21! unu~bk,s
n/p@D;xn/n8#12bk8,s

n/p
@D;xn/n8#2!

5 (
n:l (n)<x

~21! unu~bk,s
n/M@D;xn/n8#12bk8,s

n/M
@D;xn/n8#2!5Xk

(s21) . ~5.14!

The first step involves the use of the product rules enunciated in KWI. Thanks to~5.11! it is
possible to regroup all the terms into a single sum as in the second step. The next four steps
depend on the fact thatL5(p50

` (21)p$1p% andM5(p50
` $p%, while

$m•p%5(
n

cmp
n $n%, $n/p%5(

m
cmp

n $m%, ~5.15!

wherecmp
n are the usual Littlewood–Richardson coefficients. These are nonvanishing only ifunu

5umu1p and l (m)<l (n)<l (m)11. In fact, potential terms for whichl (n)5x11 all vanish
since they all involvexn/n8. The final step is then accomplished by the use of~5.10! and a
comparison of the resulting expression with the second case of~5.12! in which s is replaced by
s21 so thatk2(s21)52x11, as required.

Proceeding in the same way in the casek2s52x11, the product ofD9 with Xk
(s) gives

D9Xk
(s)

5 (
m:l (m)<x

~21! umu~bk,s
m @~x11!n/m8L !# (1)1bk8,s

m
@~x11!n/m8L# (2))

5 (
m:l (m)<x

(
p50

`

(
n:l (n)<x11

~21! umu1pcmp
n ~bk,s

m @~x11!n/n8# (1)1bk8,s
m

@~x11!n/n8# (2)!

5 (
n:l (n)<x

~21! unu~bk,s
n/M@~x11!n/n8#11bk8,s

n/M
@~x11!n/n8#2!

1 (
n:l (n)5x11

(
p50

`

(
m:l (m)5x

~21! unucmp
n ~bk,s

m
1bk8,s

m
!@~x11!n/n8#. ~5.16!

Thus far, the only new features are the use in the first step of the notation introduced in KWI
whereby, for characters of SO(2n), we have

@l# (6)5H @l# if l18,n

@l#6 if l185n,
~5.17!

and the occurrence in~5.16! of the final set of terms for whichl (n)5x11. These cannot be
discarded in this case as they now involve@(x11)n/n8# rather than@xn/n8#. However, for all
such terms withl (n)5x11 we have

bk,s
n/M

5 (
p50

`

(
l:x<l (l)<x11

clp
n bk,s

l
5 (

p50

`

(
m:l (m)5x

~cmp
n bk,s

m
1cm* p

n bk,s
m* !, ~5.18!

where it has been recognized that the only partitionsl with l (l)5x11 for which bk,s
l is

nonvanishing are those of the forml5m* with l (m)5x, wherem* 5(m,1) is the O(k2s)

5O(2x11)-associate ofm. For such terms we havebk,s
m*

5bk8,s
m as usual. Moreover, forl (n)

5x11 andl (m)5x we have

(
p50

`

cm* p
n

5cm* ,unu2umu21
n

5c (m,1),unu2umu21
n

5cm,unu2umu
n

5 (
p50

`

cmp
n , ~5.19!
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where the crucial third equality relies on the fact that the relevant coefficients are 1 or 0 according
to whether the skew Young diagramsFn/(m,1) and Fn/m either are or are not, respectively, hori-
zontal strips in the terminology of Macdonald.24 Such horizontal strips are indicated by the boxes
with an asterisk in the following illustrative diagrams appropriate to the casex53, n5(8663),
m5(763), andm* 5(7631):

~5.20!

It follows from the use of~5.19! in ~5.18! that

bk,s
n/M

5 (
p50

`

(
m:l (m)5x

cmp
n ~bk,s

m
1bk8,s

m
!. ~5.21!

Substituting this into~5.16! gives

D9Xk
(s)

5 (
n:l (n),x11

~21! unu~bk,s
n/M@~x11!n/n8#11bk8,s

n/M
@~x11!n/n8#2!

1 (
n:l (n)5x11

~21! unubk,s
n/M@~x11!n/n8#

5Xk
(s21) . ~5.22!

The final step involves the use of~5.10! and the observation that in this casek2(s21)52(x
11). This is necessary to make the connection with the first case of~5.12! with s replaced by
s21, andx by x11.

Taken together,~5.14! and ~5.22! imply the validity of ~5.13! for k2s both even and odd,
thereby completing the proof of Lemma 5.2. h

This leads directly to
Proposition 5.3: Let k be any partition, and letr(k) be its Frobenius rank. Then

D9^ $k%5~D9!sXk
(s) for s50,1,...,r~k !. ~5.23!

Proof: Comparing~3.12! with thes50 case of the definition~5.12!, and noting from~5.9! that
bk,0

m
5bk

m , shows that

D9^ $k%5Xk
(0) . ~5.24!

Then starting from this expression, factors ofD9 may be extracted one-by-one through the appli-
cation of Lemma 5.2 in the casess51,2,...,r(k) to give

D9^ $k%5Xk
(0)

5D9Xk
(1)

5~D9!2Xk
(2)

5¯5~D9!r(k)Xk
(r(k)) . ~5.25!

This completes the proof of Proposition 5.3 h

Recalling the definition ofPk given in ~4.1!, it follows immediately from~5.25! that Pk

5Xk
(r(k)) . Thanks to Definition 5.1 this then implies:
Corollary 5.4: For any partition k of k with Frobenius rank r(k),
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Pk55
(

m:l (m),x
(21)umu(bk,r(k)

m [ xn/m8)] 11bk8,r(k)
m [ xn/m8] 2)

1 (
m:l (m)5x

(21)umubk,r(k)
m [ xn/m8] if k2r(k)52x

(
m:l (m)<x

(21)umu(bk,r(k)
m [D;xn/m8] 12bk8,r(k)

m [D;xn/m8] 2) if k2r~k !52x11.

~5.26!

The procedure used to evaluatePk may now be used to evaluateP̃k . In fact, for technical
reasons that are largely a matter of notation and the absence of factors of21, the case of
Sp(2n,R) is slightly easier to deal with than that of SO(2k). This shows itself in the statement of
the analog of Definition 5.1, namely:

Definition 5.5: Let k be any partition of k with Frobenius rank r(k), and let the coefficients
bk,s

l be defined by (5.8) for s50,1,...,r(k). Then let

X̃k
(s)

5 (
m:m181m28<k2s

bk,s
m ^ 1

2~k2s !~m !&. ~5.27!

With this notation we have:
Lemma 5.6: Let k be any partition of k with Frobenius rank r(k), then

D̃X̃k
(s)

5X̃k
(s21) for s51,2,...,r~k !. ~5.28!

Proof: For s>1 we have

D̃X̃k
(s)

5 (
m:m181m28<k2s

bk,s
m D̃^ 1

2~k2s !~m !&

5 (
m:m181m28<k2s

bk,s
m ^ 1

2~k2s11!~m•M !&

5 (
n:n181n28<k2s12

bk,s
n/M^ 1

2~k2s11!~n !&

5 (
n:n181n28<k2s11

bk,s21
n ^ 1

2~k2s11!~n !&5X̃k
(s21) , ~5.29!

as required. The first step involves the use of the Sp(2n,R) product rule~5.8! of KWI. Then it
should be noted that multiplication ofm by M may give rise to termsn in which a box has been
added to each of the first two columns ofFm to form Fn. This is the origin of the condition onn

that n181n285k2s12. However, the fact that̂1
2(k2s11)(n)&50 if n181n285k2s12 allows

this condition to be relaxed ton181n285k2s115k2(s21), thereby leading to the identification
made in the final step. h

An immediate consequence of this Lemma is:
Proposition 5.7: Let k be any partition, and letr(k) be its Frobenius rank. Then

D̃ ^ $k%5~D̃ !sX̃k
(s) for s50,1,...,r~k !. ~5.30!

Proof: Comparing~3.10! with the s50 case of the definition~5.27!, and noting once again
that bk,0

m
5bk

m , shows that
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D̃ ^ $k%5X̃k
(0) . ~5.31!

Then starting from this expression~5.31! factors ofD̃ may be extracted one-by-one through the
application of Lemma 5.6 in the casess51,2,...,r(k) to give

D̃ ^ $k%5X̃k
(0)

5D̃X̃k
(1)

5~D̃ !2X̃k
(2)

5¯5~D̃ !r(k)X̃k
(r(k)) . ~5.32!

This completes the proof of Proposition 5.7. h

This, in turn, implies the following:
Corollary 5.8: For any partition k of k with Frobenius rank r(k),

P̃k5 (
m:m181m28<k2r(k)

bk,r(k)
m ^ 1

2~k2r~k !!~m !&. ~5.33!

or equivalently,

P̃k5H (
m:l (m),x

~bk,r(k)
m ^x~m !&1bk8,r(k)

m
^x~m !&* !1 (

m:l (m)5x
bk,r(k)

m ^x~m !& if k2r~k !52x

(
m:l (m)<x

~bk,r(k)
m ^D̃;x~m !&1bk8,r(k)

m
^D̃;x~m !&* ! if k2r~k !52x11.

~5.34!

Proof: The result~5.33! follows immediately from Proposition 5.7 and the definition ofP̃k

given in ~4.11! together imply thatP̃k5X̃k
(r(k)) . Finally, the passage from~5.33! to ~5.34! is a

straightforward consequence of the definition12 of associate irreducible representations of
Sp(2n,R). The form~5.34! is included merely to stress once again the analogy between Sp(2n,R)
and SO(2n), exemplified this time by the direct correspondence between~5.34! and ~5.26!. h

VI. EXAMPLES

Although the formulas~5.26! and ~5.34! may look formidable, they depend only on the
coefficientsbk,r(k)

m . These coefficients are themselves defined by~5.8!. Fortunately, the relevant
branching rules for restrictions from O(k21) and O(k) to Sk , as well as the inverse branching
rules from O(k2s) to O(k2s11), that are needed to exploit~5.8! to the full, are well under-
stood. The relevant coefficients may be found in a variety of ways18–23for both O(k21) and O(k)
to Sk , and for the inverse restriction29 from O(m) to O(m11). They are implemented, for
example, in the software packageSCHUR.27

For low values ofk even this level of sophistication is not really required. For example, in the
casek52 the only irreducible representations~k! of S2 are~2! and (12). Each of these is such that
r(k)51 andk2r(k)52x11 with x50. With these values ofk andr(k) the relevant coefficients
bk,r(k)

m are the branching rule coefficients associated with restriction from O(1) toS2 . The com-
plete set of such branchings consists merely of@0#→(2) and@0#* →(12). Using this information
in ~5.34! immediately yields

P̃25^ 1
2~0!&5D̃1 , P̃125^ 1

2~0!&* 5D̃2 . ~6.1!

Similarly, for k53 all irreducible representations~k! of S3 are such thatr(k)51, and the
relevant O(2)→S3 branching rules are@0#→(3), @0#* →(13) and

@m#→H ~3!1~13! if m50~mod 3!

~21! if m51,2~mod 3!.
~6.2!

This enables us to conclude that
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P̃35^1~0!&1 (
x50

`

^1~313x !&, ~6.3a!

P̃215 (
x50

`

~^1~113x !&1^1~213x !& !, ~6.3b!

P̃135^1~0!&* 1 (
x50

`

^1~313x !&. ~6.3c!

The casek54 is more difficult. In those cases for whichr(k)51 the relevant branching rules
are those for O(3)→S4 . These are such that@0#→(4), @13#5@0#* →(14) and if @r#→(k bk,1

r

~k!, then@r,1#5@r#* →(k bk8,1
r (k). The coefficientsbk,1

r are tabulated below:

@r#\(k) ~4! ~31! (22) (212) (14)

@0# 1
@1# 1
@2# 1 1
@3# 1 1 1
@4# 1 1 1 1
@5# 2 1 1
@6# 1 2 1 1 1 ~6.4!
@7# 1 2 1 2
@8# 1 2 2 2
@9# 1 3 1 2 1
@10# 1 3 2 2 1
@11# 1 3 2 3
@12# 2 3 2 3 1

Finally, it should be noted that

bks112t,15bks,11t f k, for s50,1,2,...,11 andt50,1,2,..., ~6.5!

where f k is the dimension of the irreducible representation~k! of S4 .
Using these results in~5.34!, with bk,r(k)

m
5bk,1

r andbk8,r(k)
m

5bk8,1
r for r50,1,..., oneobtains

the following results:

P̃45 (
x,y50

`

~^ 3
2~3x14y !&1^ 3

2~613x14y !&* !, ~6.6a!

P̃315 (
x,y50

`

~^ 3
2~11x14y !&1^ 3

2~31x14y !&* !, ~6.6b!

P̃2125 (
x,y50

`

~^ 3
2~31x14y !&1^ 3

2~11x14y !&* !, ~6.6c!

P̃145 (
x,y50

`

~^ 3
2~613x14y !&1^ 3

2~3x14y !&* !. ~6.6d!

The analogy between~6.1!, ~6.3!, and~6.6! and the corresponding results forPk in ~5.1! could
not be more striking. Of course, given the validity of~5.26! all the results~5.1! now follow from
the information obtained here on branching rule coefficients.
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Furthermore in direct analogy to~5.2! we have

D̃ ^ $22%5D̃ ^ H 1 0

1 0J 5U D̃ ^ H1
1J D̃ ^ H1

0J
D̃ ^ H0

1J D̃ ^ H0
0JU5~D̃ !2UP̃21 P̃2

P̃12 P̃1
U . ~6.7!

Hence,

P̃225P̃21P̃12P̃2P̃125 (
x50

`

~^1~113x !&1^1~213x !& !2 (
x50

`

^1~112x !&

5 (
x50

`

~^1~216x !&2^1~316x !&1^1~416x !& !. ~6.8!

Again the analogy to~5.4! is clear. It should be noted that negative coefficients may and indeed do
appear inP̃k for somek, as in this example~6.8!.

In this case for whichk54, (k)5(22), and r(k)52, the same result~6.8! may also be
obtained directly from~5.34! and a consideration of the chain O(2)→O(3)→S4 . Under the
restriction O(2)→O(3) we have@m#→@m/L#5@m#2@m21#. Combining this with the tabula-
tion ~6.4! of the branching rule multiplicities for O(3)→S4 it follows that we have@m#→(k

bk,1
r (k) with the coefficientsbk,1

r now given by

@r#\(k) ~4! ~31! (22) (212) (14)

@0# 1
@1# 21 1
@2# 1
@3# 1 21 1
@4# 1
@5# 21 1 ~6.9!
@6# 1 1
@7# 1 21
@8# 1
@9# 1 21 1
@10# 1
@11# 1 21
@12# 1 1

In addition @12#→(14) and

bk,1
s112t

5bk,1
s

1ds0mk
12

for s50,1,2,...,11 andt51,2,... . ~6.10!

It is then easy to see that~6.8! follows directly from ~6.9! and ~6.10!.
A more testing example of the use of Corollary 5.8 is provided by the calculation ofP̃33. In

this case we havek59, k5(33), and r(k)53 so that the relevant chain of groups is
O~6!→O~7!→O~8!→S9 and the relevant coefficients arebk,3

m . Consideration of this chain for the
branching of all irreducible representations@m# of O~6! of weight umu<10 leads to the following:

P̃335^3~322!&1^3~32!&1^3~32!&* 2^3~321!&2^3~322!&

1^3~33!&1^3~421!&22^3~422!&22^3~43!&22^3~43!&* 12^3~431!&

13^3~432!&23^3~432!&13^3~42!&13^3~42!&* 23^3~421!&22^3~422!&
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1^3~52!&1^3~52!&* 2^3~521!&12^3~522!&1^3~53!&

1^3~53!&* 22^3~532!&23^3~54!&23^3~54!&* 14^3~541!&14^3~52!&

14^3~52!&* 1^3~612!&2^3~62!&2^3~62!&* 1^3~621!&12^3~622!&13^3~63!&

13^3~63!&* 2^3~631!&2^3~64!&2^3~64!&* 1^3~71!&1^3~71!&* 22^3~712!&

1^3~72!&1^3~72!&* 13^3~721!&23^3~73!&23^3~73!&* 2^3~81!&2^3~81!&*

13^3~812!&12^3~82!&12^3~82!&* 1^3~9!&1^3~9!&* 22^3~10!&22^3~10!&* 1¯
~6.11!

for all n>6. In accordance with~5.34! the coefficients are just the multiplicities of (33) in the
branching from O~6! to S9 . In this case we havek2r(k)52x with x53, so that in~5.34! the
summation is carried out only over those partitionsm for which l (m)<3. In addition, the fact that
in this casek is self-conjugate, that isk5k8, implies that the multiplicity of an irreducible
representation̂3(m)& is the same as that of its associate11 ^3(m)&* . Thus the coefficients of
^3(pq)& and ^3(pq)&* 5^3(pq12)& are necessarily the same for allp>q>1, as are those of
^3(p)& and^3(p)&* 5^3(p14)& for all p>1. The irreducible representations^3(pqr)& for which
p>q>r>1 are self-associate.

This expression, when multiplied byD̃3 in the case Sp(2n,R) with n>8, yields up to weight
10 the following result:

D̃ ^ $33%5^D̃;4~322!&1^D̃;4~322!&* 13^D̃;4~3221!&13^D̃;4~3221!&* 15^D̃;4~323!&

15^D̃;4~323!&* 1^D̃;4~32!&1^D̃;4~32!&* 12^D̃;4~321!&12^D̃;4~321!&*

1^D̃;4~3212!&1^D̃;4~3212!&* 15^D̃;4~322!&15^D̃;4~322!&* 18^D̃;4~3221!&

18^D̃;4~3221!&* 111̂ D̃;4~3222!&111̂ D̃;4~3222!&* 15^D̃;4~33!&15^D̃;4~33!&*

16^D̃;4~331!&16^D̃;4~331!&* 1^D̃;4~421!&1^D̃;4~421!&* 13^D̃;4~4212!&

13^D̃;4~4212!&* 14^D̃;4~422!&14^D̃;4~422!&* 112̂ D̃;4~4221!&

112̂ D̃;4~4221!&* 113̂ D̃;4~423!&113̂ D̃;4~423!&* 1^D̃;4~43!&1^D̃;4~43!&*

15^D̃;4~431!&15^D̃;4~431!&* 110̂ D̃;4~4312!&110̂ D̃;4~4312!&* 115̂ D̃;4~432!&

115̂ D̃;4~432!&* 138̂ D̃;4~4321!&138̂ D̃;4~4321!&* 115̂ D̃;4~432!&

115̂ D̃;4~432!&* 16^D̃;4~421!&16^D̃;4~421!&* 118̂ D̃;4~4212!&

118̂ D̃;4~4212!&* 118̂ D̃;4~422!&118̂ D̃;4~422!&* 1^D̃;4~52!&1^D̃;4~52!&*

15^D̃;4~521!&15^D̃;4~521!&* 110̂ D̃;4~5212!&110̂ D̃;4~5212!&* 114̂ D̃;4~522!&

114̂ D̃;4~522!&* 135̂ D̃;4~5221!&135̂ D̃;4~5221!&* 14^D̃;4~53!&14^D̃;4~53!&*

118̂ D̃;4~531!&118̂ D̃;4~531!&* 134̂ D̃;4~5312!&134̂ D̃;4~5312!&*

149̂ D̃;4~532!&149̂ D̃;4~532!&* 15^D̃;4~54!&15^D̃;4~54!&* 132̂ D̃;4~541!&

132̂ D̃;4~541!&* 110̂ D̃;4~52!&110̂ D̃;4~52!&* 1^D̃;4~612!&1^D̃;4~612!&*

13^D̃;4~613!&13^D̃;4~613!&* 12^D̃;4~62!&12^D̃;4~62!&* 113̂ D̃;4~621!&
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113̂ D̃;4~621!&* 129̂ D̃;4~6212!&129̂ D̃;4~6212!&* 133̂ D̃;4~622!&

133̂ D̃;4~622!&* 110̂ D̃;4~63!&110̂ D̃;4~63!&* 149̂ D̃;4~631!&149̂ D̃;4~631!&*

117̂ D̃;4~64!&117̂ D̃;4~64!&* 1^D̃;4~71!&1^D̃;4~71!&* 14^D̃;4~712!&

14^D̃;4~712!&* 17^D̃;4~713!&17^D̃;4~713!&* 17^D̃;4~72!&17^D̃;4~72!&*

134̂ D̃;4~721!&134̂ D̃;4~721!&* 125̂ D̃;4~73!&125̂ D̃;4~73!&* 12^D̃;4~81!&

12^D̃;4~81!&* 19^D̃;4~812!&19^D̃;4~812!&* 115̂ D̃;4~82!&115̂ D̃;4~82!&*

1^D̃;4~9!&1^D̃;4~9!&* 16^D̃;4~91!&16^D̃;4~91!&* 1^D̃;4~10!&1^D̃;4~10!&*

1¯ . ~6.12!

Despite the fact that negative terms appear in~6.11!, the coefficients in~6.12! are all positive, as
required. The same result~6.12! can also be obtained directly from Proposition 3.1 using the
branching rules for O~9!→S9 to determine the relevant coefficientsbk

l .
As can be seen from~3.4! in any case for whichk is odd andk5k8, all the terms must appear

in mutually associate pairs that share the same multiplicity. This is indeed the case in~6.12! for all
Sp(2n,R) with n>8. However, more generally in the case Sp(2n,R) it is necessary to delete all
those terms of the form̂D̃;4(l)& for which l (l).n. Thanks to the modification rules of O~9!,

^D̃;4(p)&* 5^D̃;4(p17)&, ^D̃;4(pq)&* 5^D̃;4(pq15)&, ^D̃;4(pqr)&* 5^D̃;4(pqr13)& and

^D̃;4(pqrs)&* 5^D̃;4(pqrs1)&. It follows that in applying~6.12! to Sp(12,R), for example, it is
necessary to drop all the terms of the form^D̃;4(pq)&* and ^D̃;4(p)&* , but no others.

To give just one example of the calculation ofD9^ $k% for SO(2n) by means of the deter-
minantal expansion of Corollary 4.2, we consider the casek5(332). In Frobenius notation

$332%5S 2 1 0

3 2 0D , ~6.13!

so that

P (332)5UP (313) P (312) P (3)

P (213) P (212) P (2)

P (14) P (13) P (1)

U , ~6.14!

where it has been typographically convenient to write (b
a) in standard partition notation (a

11,1b). In the case of SO~8!, for example, evaluating the individualP (a11,1b) by means of
Corollary 5.4 withk5(a11,1b) and r(k)51 and the use of the branching rules for O(k21)
→Sk for k51,2,...,6 gives

P (313)52@D;23#21@D;221#21@D;213#21@D;212#122@D;212#22@D;21#1

1@D;21#212@D;2#122@D;2#22@D;14#222@D;13#113@D;13#2

12@D;12#123@D;12#223@D;1#114@D;1#212@D;0#122@D;0#2 ,

P (312)51@23#2@221#2@213#12@213#212@212#2@21#1@2#1@14#11@14#2

22@13#12@12#22@1#,

P (3)51@14#12@1#,
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P (213)52@231#21@2212#22@213#21@212#2@21#1@2#12@14#222@13#1@12#

2@1#1@0#,

P (212)51@D;13#22@D;12#22@D;1#11@D;1#21@D;0#12@D;0#2 , ~6.15!

P (2)51@D;0#1 ,

P (14)52@D;14#21@D;1#22@D;0#2 ,

P (13)51@14#22@1#,

P (1)51@0#.

Each of the above expansions ofP (a11,1b) may be set inSCHURas an rvar and the determinant

U rv1 rv2 rv3

rv4 rv5 rv6

rv7 rv8 rv9
U ~6.16!

evaluated inSCHUR to yield the result:

P33252@43#1@4212#11@4212#22@42#1@413#12@41#1@3212#22@321#2@32#2@323#2

2@322#1@3212#11@3212#21@321#23@32#12@313#11@313#22@312#22@31#2@24#2

2@231#212@2212#113@2212#22@22#1@213#11@213#21@212#23@21#1@2#1@14#2

22@13#2@12#1@1#12@0#. ~6.17!

The dimension is checked by noting that

U2216 125 27

2125 264 8

264 27 1
U53924. ~6.18!

Finally, sincek5(332) has Frobenius rankr(k)53, multiplication of~6.17! by (D9)3 gives

D9^ $332%52@D;5412#11@D;5412#213@D;541#123@D;541#225@D;54#115@D;54#2

1@D;5322#12@D;5322#223@D;5321#113@D;5321#214@D;532#124@D;532#2

18@D;5312#128@D;5312#2217@D;531#1117@D;531#2119@D;53#1

219@D;53#222@D;523#113@D;523#216@D;5221#129@D;5221#229@D;522#1

111@D;522#2213@D;5212#1119@D;5212#2128@D;521#1233@D;521#2

226@D;52#1129@D;52#216@D;513#1216@D;513#2217@D;512#1126@D;512#2

117@D;51#1224@D;51#226@D;5#1110@D;5#22@D;4222#22@D;4221#1

14@D;4221#214@D;422#126@D;422#215@D;4212#1211@D;4212#2

218@D;421#1123@D;421#2121@D;42#1224@D;42#21@D;433#223@D;4322#2

2@D;4321#114@D;4321#213@D;432#124@D;432#222@D;4322#1

111@D;4322#2113@D;4321#1230@D;4321#2232@D;432#1141@D;432#2
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233@D;4312#1157@D;4312#2194@D;431#12112@D;431#2292@D;43#1

1102@D;43#215@D;423#1220@D;423#2228@D;4221#1158@D;4221#2

164@D;422#1280@D;422#2166@D;4212#12111@D;4212#22178@D;421#1

1211@D;421#21160@D;42#12178@D;42#2248@D;413#1184@D;413#2

1136@D;412#12165@D;412#22137@D;41#11157@D;41#2152@D;4#1

261@D;4#222@D;34#217@D;332#213@D;331#1212@D;331#2210@D;33#1

114@D;33#212@D;3222#1224@D;3222#2224@D;3221#1170@D;3221#2

172@D;322#1298@D;322#2155@D;3212#12117@D;3212#22175@D;321#1

1222@D;321#21156@D;32#12181@D;32#228@D;323#1145@D;323#2

163@D;3221#12144@D;3221#22166@D;322#11212@D;322#22151@D;3212#1

1268@D;3212#21438@D;321#12525@D;321#22383@D;32#11428@D;32#2

1141@D;313#12209@D;313#22396@D;312#11448@D;312#21408@D;31#1

2438@D;31#22179@D;3#11186@D;3#219@D;24#1239@D;24#2264@D;231#1

1140@D;231#21168@D;23#12215@D;23#21156@D;2212#12273@D;2212#2

2453@D;221#11544@D;221#21395@D;22#12442@D;22#22192@D;213#1

1282@D;213#21547@D;212#12620@D;212#22585@D;21#11628@D;21#2

1302@D;2#12313@D;2#21109@D;14#12166@D;14#22323@D;13#1

1373@D;13#21376@D;12#12411@D;12#22262@D;1#11280@D;1#2198@D;0#1

2107@D;0#2 . ~6.19!

This may also be checked, or arrived at very tediously, through the use of Proposition 3.2 and the
branching rules for O(11)→S11.

VII. BASIC TENSOR DIFFERENCE CHARACTERS OF SO„2n… AND SP„2N,R…
Basic tensor sum,h, and difference,h9, characters of SO(2n) are specified most conve-

niently by writing16

h5h11h25@1n#11@1n#2 , ~7.1a!

h95h11h25@1n#12@1n#2 . ~7.1b!

Likewise, we may specify analogous basic tensor sumh̃ and differenceh̃9 characters of
Sp(2n,R) by writing

h̃5h̃11h̃25^1~0!&1^1~0!&* , ~7.2a!

h̃95h̃11h̃25^1~0!&2^1~0!&* . ~7.2b!

It follows from ~1.1! and ~1.5! that

h95@1n#12@1n#25~D1!2
2~D2!2

5DD9. ~7.3!

Similarly, it follows from ~1.2! and ~1.12! that
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h̃95^1~0!&2^1~0!&* 5~D̃1!2
2~D̃2!2

5D̃D̃9. ~7.4!

Hence, from~1.1! and ~1.2! we have

h95)
i51

n

~x i2x i
21! ~7.5!

and

h̃95)
i51

n

~x i
21

2x i!
21, ~7.6!

respectively.
Turning to plethysms of the basic tensor sum and difference characters, the results~8.10a! and

~8.10b! of Ref. 16 can be rewritten in the following form:

h1 ^ $2%5 (
x50

`

@2n/14x#11 (
x,y50

`

@2n/~22y1214x!#, ~7.7a!

h1 ^ $12%5 (
x50

`

@2n/14x12#11 (
x,y50

`

@2n/~22y1214x12!#, ~7.7b!

h2 ^ $2%5 (
x50

`

@2n/14x#21 (
x,y50

`

@2n/~22y1214x!#, ~7.7c!

h2 ^ $12%5 (
x50

`

@2n/14x12#21 (
x,y50

`

@2n/~22y1214x12!#. ~7.7d!

By the adaptation of a procedure30 developed for the evaluation of symmetrized products of
SO* (2n) to the case of Sp(2n,R) one obtains the following minor modification of the results
~6.2a! and ~6.2b! of Ref. 29:

^ 1
2k~0!& ^ $2%5^k~D1!N&, ~7.8a!

^ 1
2k~0!& ^ $12%5^k~D2!N&, ~7.8b!

whereN5min(k,n) and (D1)N is the infinite series of partitions with parts all even, of weight
0(mod 4) and number of parts<N while (D2)N is similar except that now the partitions are of
weight 2(mod 4). Specializing~7.8a! and ~7.8b! to the casek52 then leads to

^1~0!& ^ $2%5h̃1 ^ $2%5^2~D1!2&, ~7.9a!

^1~0!& ^ $12%5h̃1 ^ $12%5^2~D2!2&. ~7.9b!

Sinceh̃25^1(0)&* 5h̃
1
* we may use the conjugacy theorem~5.25! of Ref. 11 to write down the

corresponding symmetrized powers ofh̃2 . This allows us to summarize the results in a form
analogous to~7.7!, namely:

h̃1 ^ $2%5 (
x50

`

^2~4x !&1 (
x,y50

`

^2~4x12y12,4x !&, ~7.10a!
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h̃1 ^ $12%5 (
x50

`

^2~4x12!&1 (
x,y50

`

^2~4x12y14,4x12!&, ~7.10b!

h̃2 ^ $2%5 (
x50

`

^2~4x !&* 1 (
x,y50

`

^2~4x12y12,4x !&, ~7.10c!

h̃2 ^ $12%5 (
x50

`

^2~4x12!&* 1 (
x,y50

`

^2~4x12y14,4x12!&, ~7.10d!

where it should be recalled that the irreducible representations^2(pq)& of Sp(2nR) with p>q
>1 are self-associate, whilê2(p)&* 5^2(p12)& for p>1, and^2(0)&* 5^2(14)&.

All this suggests as a strong possibility the existence of analogies between symmetrized tensor

powers of the difference charactersh9 of SO(2n) with those ofh̃9 for Sp(2n,R) that are similar
to those found betweenD9 and D̃. Indeed, building on previously established results1,16 for
plethysms of SO(2n) and Sp(2n,R) it is not too difficult to show that

h9^ $2%5h9S h12 (
x50

~21!x@1n22x22# D , ~7.11a!

h9^ $12%5h9S 2h21 (
x50

~21!x@1n22x22# D ~7.11b!

and

h̃9^ $2%5h̃9S h̃12 (
x50

~21!x^1~2x12!& D , ~7.12a!

h̃9^ $12%5h̃9S 2h̃21 (
x50

~21!x^1~2x12!& D . ~7.12b!

Comparison of~7.11! with ~7.12! shows not only a striking analogy between the two pairs of

plethysms, but also the existence of explicit factorization of these plethysms ofh9 andh̃9 that
are analogous to the factorizations ofD9 and D̃ given in ~1.3! and ~1.4!. That this is not an
accident may be seen by noting more generally that the factorization of the plethysmsh9^ $k%

and h̃9^ $k% essentially parallels that given in Sec. IV by changingD9 to h9 and D̃ to h̃9

throughout and replacingx i
1/2 by x i for all i in ~4.3!, ~4.5!, ~4.13!, and ~4.15!. To present this

formally, we note from~2.12! and the various definitions~1.1b!, ~1.1a!, ~7.5!, and~7.6! that

h95D9^ p2 , h̃95D̃ ^ p2 , ~7.13!

wherep2 is the elementary power sum function of degree 2. It then follows from the algebra of
plethysm that

h9^ $k%5~D9^ p2! ^ $k%5D9^ ~p2^ $k%!5D9^ ~$k% ^ p2!5~D9^ $k%! ^ p2

5~~D9!r(k)Pk! ^ p25~D9^ p2!r(k)~Pk ^ p2!5~h9!r(k)~Pk ^ p2! ~7.14!

and
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h̃9^ $k%5~D̃ ^ p2! ^ $k%5D̃ ^ ~p2^ $k%!5D̃ ^ ~$k% ^ p2!5~D̃ ^ $k%! ^ p2

5~~D̃ !r(k)P̃k! ^ p25~D̃ ^ p2!r(k)~P̃k ^ p2!5~h̃9!r(k)~P̃k ^ p2!. ~7.15!

This gives

h9^ $k%5~h9!r(k)Sk , where Sk5Pk ^ p2 ~7.16!

and

h̃9^ $k%5~h̃9!r(k)S̃k , where S̃k5P̃k ^ p2 . ~7.17!

Finally, from ~4.6!, ~4.7!, and~4.14! we have the determinantal expansions

Sk5Pk ^ p25uP S as
b t

D ^ p2ur3r5uS S as
b t

D ur3r ~7.18!

and

S̃k5P̃k ^ p25uP̃ S as
b t

D ^ p2ur3r5uS̃ S as
b t

D ur3r , ~7.19!

with

dimSk5dimPk5~21!b11b21¯1bru~as1b t11!n21ur3r . ~7.20!

To illustrate the outcome of calculations ofS̃k we quote the following two results calculated
in the case of Sp(6,R) up to terms of weight 12 in the first example and weight 10 in the second:

S̃35^2~0!&2^2~2!&1^2~22!&2^2~32!&1^2~4!&2^2~51!&1^2~53!&2^2~52!&1^2~612!&

1^2~62!&2^2~73!&2^2~812!&1^2~82!&1^2~84!&2^2~86!&2^2~93!&1^2~10 12!&

2^2~11 1!&1^2~12!&1¯ , ~7.21!

and

S̃225^2~22!&2^2~31!&12^2~32!&1^2~4!&1^2~412!&22^2~42!&13^2~42!&1^2~51!&

23^2~53!&13^2~52!&22^2~6!&22^2~612!&14^2~62!&23^2~64!&2^2~71!&

12^2~73!&13^2~8!&13^2~812!&25^2~82!&1¯ . ~7.22!

From these, through multiplication byh̃9 and (h̃9)2, respectively, we can recover:
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h̃9^ $3%5^3~0!&2^3~12!&1^3~212!&1^3~22!&2^3~23!&2^3~31!&22^3~32!&1^3~322!&

1^3~4!&12^3~42!&2^3~431!&2^3~432!&13^3~42!&1^3~43!&22^3~51!&

22^3~53!&1^3~532!&24^3~52!&2^3~522!&1^3~6!&1^3~612!&12^3~62!&

2^3~622!&13^3~64!&2^3~642!&1^3~651!&14^3~62!&22^3~71!&23^3~73!&

25^3~75!&1^3~8!&1^3~812!&13^3~82!&14^3~84!&22^3~91!&23^3~93!&

1^3~10!&1^3~10 12!&13^3~10 2!&22^3~11 1!&1^3~12!&1¯ ~7.23!

and

h̃9^ $22%5^4~22!&1^4~23!&2^4~31!&22^4~32!&2^4~322!&1^4~4!&2^4~412!&12^4~42!&

12^4~422!&2^4~431!&2^4~432!&12^4~42!&1^4~422!&22^4~51!&23^4~53!&

2^4~532!&22^4~52!&13^4~62!&13^4~622!&14^4~64!&23^4~71!&24^4~73!&

2^4~8!&1^4~812!&2^4~82!&24^4~91!&22^4~10!&1¯. ~7.24!

VIII. CONCLUSION

In this pair of papers, KWI1 and the present one, an attempt has been made to establish
explicit analogies between character theoretic results for finite-dimensional irreducible represen-
tations of SO(2n) and infinite-dimensional irreducible representations of Sp(2n,R). This has
involved spelling out in detail a range of corresponding results for these two groups: on their
characters and products in part I, and on symmetrized powers or plethysms here in part II.

The most striking feature of these results is that the correspondence always involves, as in
Propositions 3.1 and 3.2, for example, an infinite sequence of terms of the form^m(l)& for
Sp(2n,R) and @mn/l8# for SO(2n). In both cases the terms are indexed by partitionsl whose
lengthl (l) is finite. In factl (l)<m, wherem may be as large as one likes but is determined by
the necessarily finite tensor power or degree of plethysm under consideration. However, their
breadthl (l8) is, in principle, unbounded in both cases. The fact that the SO(2n) case is rendered
finite dimensional, whereas the Sp(2n,R) case is infinite dimensional, is a consequence of the
dependence of the former onmn/l8 rather than justl. As a result all summations overl in the
SO(2n) case are finite. This trivial looking distinction places an effective upper bound ofn on
l (l8) in the case of SO(2n). Fortunately, the unified approach adopted here allows both Propo-
sitions to be treated on an equal footing.

In deriving Propositions 3.1 and 3.2 a noteworthy theorem from the pure mathematics litera-
ture, due to Scharf and Thibon,17 has been brought to bear in such a way as to provide a proof of
a result of considerable significance in the study of symplectic models of nuclei that was first
stated and indeed used by Carvalho.8 By exposing and exploiting the analogy between SO(2n)
and Sp(2n,R) the problem of decomposing tensor powers of bothD9 andD̃ has thus been reduced
to that of evaluating the branching rule multiplicities associated with the group–subgroup restric-
tion O(k)→Sk .

However, it has proved possible to go further. The factorizations of the plethysmsD9^ $k%

and D̃ ^ $k%, which have been identified in Propositions 4.1 and 4.3, were hitherto unexpected.
Although of interest in their own right, it is perhaps more important that they contribute to the
study in hand in two distinct ways. First, as indicated in~4.6! and~4.14!, the resulting factorsPk

and P̃k possess determinantal expansions which allow them to be calculated from special cases
involving only partitions of the form (a11,1b). Second, it has been shown not only that these
factorsPk andP̃k belong to the rings of characters of SO(2n) and Sp(2n,R), respectively, but
also that they possess explicit expansions in terms of such characters involving integer coefficients
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that are amenable to calculation through Corollaries 5.4 and 5.8. Both these properties ofPk and
P̃k serve to make tractable the evaluation of the plethysmsD9^ $k% and D̃ ^ $k% themselves, as
illustrated here through the presentation of some substantial examples.

It is hoped, therefore, that the present work will have gone a long way toward dispelling any
qualms researchers in the field might have quite naturally held regarding the difficulties of work-
ing with infinite-dimensional representations of the noncompact group Sp(2n,R). They are really
no more difficult to deal with than the finite-dimensional representations of SO(2n).
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