
Products and symmetrisedpowers of irreduciblerepresentations of Sp(2n;<) and their associatesR C Kingyx and B. G. Wybourney{y Mathematics Department, University of Southampton, Southampton, Englandy Instytut Fizyki, Uniwersytet Miko laja Kopernika, ul. Grudzi�adzka 5/7, 87-100Toru�n, Poland 21 May 1998Abstract. The calculation of Kronecker products and plethysms of the in�nite-dimensional harmonic series unitary irreducible representations of the non-compactgroup Sp(2n;<) is considered. The complementarity of Sp(2n;<) and O(k)is used to de�ne associate irreducible representations of Sp(2n;<). This leadsto simple relationships between Kronecker products and plethysms of irreduciblerepresentations of Sp(2n;<) and those of their corresponding associate irreduciblerepresentations. In the process of proving the validity of these previously conjecturedrelationships several new identities are found for plethysms involving in�nite series ofSchur functions. In addition, a general formula for plethysms of arbitrary irreduciblerepresentations of Sp(2n;<) is derived and its implementation is illustrated with adetailed example. A remarkable analogy is then observed between plethysms of thebasic harmonic irreducible representations of Sp(2n;<) and those of the basic spinirreducible representations of SO(2n).1. IntroductionThe symplectic group Sp(6;<) is well-known as the dynamical group for a singleparticle in an isotropic three-dimensional harmonic oscillator potential1. For N -noninteracting particles in an isotropic three-dimensional harmonic oscillator potentialthe group of interest2�6 is Sp(6N;<). In general the group Sp(2n;<) is of relevanceto symplectic models of nuclei4 and certain mesoscopic systems such as quantumdots5;6. The irreducible representations of Sp(2n;<) of interest in these problems arethe in�nite-dimensional harmonic series unitary irreducible representations7. Methodsof calculating their tensor or Kronecker products in terms of in�nite series of Schurfunctions8;9 (S-functions) have been developed earlier2;3. The corresponding problemof resolving symmetrised powers or plethysms of the irreducible representations hasalso been tackled through the use of in�nite series of Schur functions10�15. It hasbeen observed that explicit calculations16 of such plethysms seemed to imply somehitherto unnoticed conjugacy relationships14;15. The wish to prove these conjugacyrelationships was the principal motivation for developing the content of this paper.Central to their derivation is the use of the complementarity of Sp(2n;<) and O(k)which is used to de�ne associate irreducible representations of Sp(2n;<). It is thisx E-mail: rck@maths.soton.ac.uk{ E-mail: bgw@phys.uni.torun.pl 1



2 R C King and B G Wybournethat leads to the required conjugacy relationships between both Kronecker productsand plethysms of irreducible representations and their associates in Sp(2n;<). In theprocess of proving the most general possible form of these conjugacy relationships ithas been necessary to establish a number of new identities and lemmas relating toplethysms involving in�nite series of Schur functions. In addition a general formulafor the evaluation of plethysms of arbitrary harmonic series irreducible representationsof Sp(2n;<) is derived and illustrated with a detailed example. Finally detailedconsideration is given to the very striking analogy between basic spin irreduciblerepresentations of SO(2n) and the basic harmonic irreducible representations ofSp(2n;<). This leads to a simpli�cation of earlier analyses17 of the symmetrisedsquares and cubes of the basic harmonic irreducible representations of Sp(2n;<).The results obtained in this paper represent a further step towards the practicalimplementation of symplectic models of many-particle systems.2. Harmonic series unitary irreducible representations of Sp(2n;<)Following the terminology and notation of an earlier paper3 the harmonic seriesunitary irreducible representations7 of Sp(2n;<) are speci�ed by symbols h12k(�)iwhere � = (�1; �2; : : :) is a partition for which the conjugate partition �0 = (�01; �02; : : :)is such that �01 + �02 � k and �01 � n. The relationship between a partition and itsconjugate is such that the parts of � and �0 specify the row and column lengths,respectively, of the corresponding Young diagram F�. If � is a partition of m thenthe total number of boxes in F� is m, which is sometimes referred to as the weightof �. By the same token the number of boxes, �01, in the �rst column of F � and thenumber, �1, in the �rst row are referred to as the length and width, respectively, of �.The two basic harmonic series irreducible representations may be denoted by~�+ = h12(0)i and ~�� = h12 (1)i. Their direct sum~� = ~�+ + ~�� = h12 (0)i+ h12(1)i (2.1)is the restriction to Sp(2n;<) of the de�ning irreducible representation of themetaplectic group Mp(2n;<), the two-sheeted covering group of the symplectic groupSp(2n;<). As a representation of Sp(2n;<) the basic harmonic or metaplecticrepresentation ~� is an example of the unitary ray representations introduced forall Lie groups by Bargmann18. More precisely it is the in�nite-dimensional double-valued projective representation of Sp(2n;<) studied in the mathematics literature bySegal19, Shale20 and Weil21, and independently in the physics literature by Moshinskyand Quesne22. The connection with the metaplectic group Mp(2n;<) is made byWeil21, while both Shale20 andMoshinsky and Quesne22 point out that the metaplecticrepresentation ~� is the analogue for Sp(2n;<) of the basic spin representation ofO(2n). The wider class of harmonic series irreducible representations studied herewere �rst introduced by Kashiwara and Vergne7 as new unitary representations of themetaplectic group Mp(2n;<) arising as irreducible components of tensor powers of ~�.It is convenient to gather together some known facts about these harmonicseries irreducible representations: their behaviour on restriction from Sp(2n;<) tothe maximal compact subgroup U (n); the decomposition of their tensor products;the relationship between their symmetrised products and the branching rule for therestriction of O(k) to the symmetric group Sk.



Symmetrised powers of irreducible representations of Sp(2n;<) 3All of these facts can be deduced by exploiting the fact that the pair of groupsSp(2n;<) and O(k) are a dual pair with respect toMp(2nk;<) in the sense of Howe23or, equivalently, a complementary pair of subgroups of Sp(2nk;<) in the sense ofMoshinsky and Quesne22. This duality or complementarity is such that on restrictionfrom Sp(2nk;<) to Sp(2n;<)� O(k) we have the branching rule:~�!X� h12k(�)i � [�]; (2.2)where the summation is over all those � such that�01 + �02 � k and �01 � n: (2.3)Under restriction fromSp(2n;<) to its maximal compact subgroup U (n) we have2;3h12k(�)i !X� "k=2R�� f�g; (2.4)where the summation is over all those � such that�01 � min(k; n) (2.5)and " = f1ng is the 1-dimensional irreducible representation of U (n) in which eachgroup element is mapped to its determinant. The coe�cients R�� are de�ned by thebranching rule for the restriction from U (k) to O(k):f�g !X� R�� [�]: (2.6)The particular signi�cance of (2.4) is not just that it de�nes the decomposition ofthe restriction of the irreducible representation h12k(�)i of Sp(2n;<) into irreduciblerepresentations of U (n), but that it serves to de�ne completely the character of h12k(�)isince Sp(2n;<) and U (n) are of the same rank, n. Furthermore since every harmonicseries representation obtained by taking some arbitrary linear combination of productsof the unitary irreducible representations h12k(�)i is itself unitary, it is fully reducibleand its irreducible content is completely determined by its character. Since this maybe evaluated at the level of U (n), as on the right-hand side of (2.4), identities betweencharacters at the level of U (n) imply corresponding identities, up to equivalence,between representations at the level of Sp(2n;<). This is exploited in what follows.In order to evaluate explicitly the branching rule coe�cients in (2.6) it is convenientto note that it can be expressed in the form24f�g ! [�=D] (2.7)where D =X� f�g = f0g+ f2g+ f4g+ f22g+ � � � ; (2.8)in which the summation is over all partitions � having just even parts, and = signi�esan S-function quotient. This can then be used2;3 to rewrite the branching rule (2.4)in the form h12k(�)i ! "k=2 � f�sgk �D; (2.9)



4 R C King and B G Wybournewhere f�sgk is the signed sequence2;3f�sgk =X� ��� f�g; (2.10)with the summation extending over all � with �01 � k such that [�] = ���[�] underthe modi�cation rules24 of O(k). The non-vanishing coe�cients ��� are all �1. Thesymbol � in (2.8) signi�es an S-function product corresponding precisely to a tensoror Kronecker product in U (n). For given n it is only necessary to retain those termsf�g in the products (2.8) for which �01 � n.It should be noted that in the case k = 1 the restriction from Sp(2n;<) to U (n)is such that the basic harmonic irreducible representations decompose in accordancewith the rules:~�+ = h12 (0)i ! "1=2M+; (2.11a)~�� = h12 (1)i ! "1=2M�; (2.11b)where M+ = Xm:m evenfmg = f0g+ f2g+ f4g+ � � � ; (2.12a)M� = Xm:m oddfmg = f1g+ f3g+ f5g+ � � � : (2.12b)It has been shown2 that the tensor product of a pair of unitary harmonic seriesirreducible representations of Sp(2n;<) decomposes in accordance with the ruleh12k(�)i � h12`(�)i =X� K��� h12(k+̀ )(�)i; (2.13)where the coe�cients K��� are the branching rule coe�cients appropriate to therestriction O(k+̀ )! O(k)�O(`):[�]!X�� K��� [�]� [�]: (2.14)In general it is not so straightforward to decompose symmetrised powers orplethysms of irreducible representations of Sp(2n;<). Let � be a partition of k. Thenin the case of the metaplectic representation ~�, its corresponding k-fold symmetrisedpower decomposes in accordance with the rule10;11:~�
 f�g =X� b�� h12k(�)i; (2.15)where the coe�cients b�� are the branching rule coe�cients appropriate to therestriction O(k)! Sk:[�]!X� b�� (�); (2.16)



Symmetrised powers of irreducible representations of Sp(2n;<) 5where the summation is carried out over all partitions � of k. The coe�cients b�� maybe found by noting that25[�]! (k � 1; 1)
 f�=Gg; (2.17)where G =X� (�1)(e�r)=2 f"g= f0g+ f1g � f21g � f22g+ f312g+ f321g � � � � ; (2.18)in which the summation is over all self-conjugate partitions � with e equal to theweight of � and r equal to its Frobenius rank, that is the number of boxes on the maindiagonal of the corresponding Young diagram F "3. Associate irreducible representations of Sp(2n;<)It is well known8;24 that corresponding to each irreducible representation [�] ofthe full orthogonal group O(k) there exists an associate irreducible representation[�]�. The relationship between these irreducible representations is such that if [�] :A 7! [�](A) for each group element A of O(k), then [�]�:A 7! [�]�(A) = detA � [�](A).Since detA = �1 for all A 2 O(k) it follows that ([�]�)� = [�].In terms of the partitions used to label irreducible representations of O(k), ifthe partition � labelling [�] has conjugate �0 = (�01; �02; �03; : : :) then the partition�� labelling [�]�, which is referred to as the k-associate of �, has conjugate ��0 =(k��01; �02; �03; : : :). Equivalently, the k-associate �� of the partition � is de�ned by theYoung diagram F �� obtained from the Young diagram F � by taking the complementof the �rst column with respect to a column of length k.It should be noted that for each irreducible representation [�] of O(k) thecorresponding partition � is O(k)-standard in the sense that �01 + �02 � k. Thisis precisely what is required to guarantee that k � �01 � �02 so that �� is apartition. Similarly the fact that � is a partition guarantees that �01 � �02 so that��01 + ��02 = k � �01 + �02 � k. Thus �� is also O(k)-standard.As a special case of the above it should be noted that the associate of the identityirreducible representation [0] is just the irreducible representation [0]� = [1k] in whicheach group element A of O(k) is mapped to its determinant. More generally[�]� = [��] = [�] � [0]� = [�] � [1k]: (3.1)Returning to Sp(2n;<), it is natural thanks to (2.2) to associate with eachirreducible representation h12k(�)i of Sp(2n;<) an associate irreducible representationh12k(�)i�. The complementarity between Sp(2n;<) and O(k) embodied in (2.2) thenleads to:De�nition 3.1 For all k � n the associate h12k(�)i� of the irreducible representationh12k(�)i of Sp(2n;<) is de�ned byh12k(�)i� = h12k(��)i (3.2)where �� is the k-associate of �.



6 R C King and B G WybourneAs a special case of this with k = 1 it is clear that� ~�+�� = h12 (0)i� = h12(1)i = ~��; (3.3a)� ~���� = h12 (1)i� = h12(0)i = ~�+: (3.3b)With this notation and terminology it is not di�cult to establish the following:Proposition 3.2 If under the restriction from Sp(2n;<) ! U (n) each irreduciblerepresentation h12k(�)i decomposes in such a way thath12k(�)i !X� "k=2R��f�g; (3.3)then for k � n the associate irreducible representation h12k(�)�i decomposes inaccordance with the rule:h12k(�)i� !X� "k=2R��f�g=f1kg; (3.4)where = signi�es an S-function quotient.Proof In (3.3) it should be noted that R�� is de�ned by the U (k)! O(k) branchingrule (2.6). However, in U (k) for all � such that � 01 � k we have f�g � f1kg = f�g with�01 = k where F� is obtained from F � by adding a leftmost column of length k. Underthe restriction from U (k) to O(k) we havef�g = f�g � f1kg !X� R�� [�] � [1k] =X� R�� [��] =X� R��� [�]: (3.5)It then follows by comparison with (2.6) thatR��� = R�� where f�g = f�g � f1kg and f�g = f�g=f1kg: (3.6)Hence under restriction from Sp(2n;<) to U (n), provided that n � k, we haveh12k(�)i� = h12k(��)i ! X�:�01�k "k=2R���f�g = X�:�01=k "k=2R��f�g=f1kg= X�:�01�k "k=2R��f�g=f1kg;(3.7)where the last step follows from the fact that f�g=f1kg = 0 if �01 < k. This completesthe proof.The consistency of Proposition 3.2 with what we know of the branching rules(2.10) of the basic harmonic irreducible representations is easy to verify. In thiscase we have k = 1 and as we have seen ~�� ! "1=2M�. It then follows fromProposition 3.2 that � ~���� ! "1=2M�=f1g = "1=2M� as can be seen from (2.11)since fmg=f1g = fm � 1g for m > 0 and f0g=f1g = 0. This is in accord with (2.10)since � ~���� = ~�� ! "1=2M�.



Symmetrised powers of irreducible representations of Sp(2n;<) 74. Tensor products of harmonic series irreducible representations ofSp(2n;<) and their associatesAs in the previous section it is straightforward to exploit De�nition 3.1 and theSp(2n;<) tensor product rule (2.10) to establish:Proposition 4.1h12k(�)i� � h12`(�)i� = �h12k(�)i � h12`(�)i�� (4.1)where on the left-hand side the symbols � indicate k- and `-associates, and on theright-hand side (k+̀ )-associates.Proof It should �rst be noted that under the restriction from O(k+̀ ) to O(k)�O(`)we have in the notation of (2.11) and (3.1)[�]� = [��]!X�;� K���� [�]� [�]: (4.2)However, (2.11) and (3.1) also imply:[�]� = [�] � [1k+`]!X�;� K��� �[�]� [�]� � �[1k]� [1`]�=X�;� K��� �[�] � [1k]���[�] � [1`]�=X�;� K��� [�]� � [�]� =X�;� K����� [�]� [�]; (4.3)where in the �rst step advantage has been taken of the fact that [1k+`](A) = detA =detB detC = [1k](B) [1`](C) for any A = B � C in O(k)�O(`).Comparing (4.2) and (4.3), we haveK����� = K���� : (4.4)It then follows thath12k(�)i� � h12`(�)i� = h12k(��)i � h12`(��)i =X� K����� h12 (k+̀ )(�)i=X� K���� h12 (k+̀ )(�)i =X� K��� h12 (k+̀ )(��)i =X� K��� h12(k+̀ )(�)i�= �h12k(�)i � h12`(�)i��; (4.5)as required.



8 R C King and B G Wybourne5. Symmetrised powers of the basic harmonic irreducible representationsof Sp(2n;<)First of all it should be pointed out that for the harmonic or metaplecticrepresentation ~� of Sp(2n;<) we have:Proposition 5.1 The k-fold symmetrised powers of ~� are such that� ~�
 ��� = ~�
 �0 (5.1)for each partition � of k.Proof In the notation of (2.15), the branching rule for the restriction from O(k) toSk is such that[�]!X� b�� (� ) and [��]!X� b��� (�): (5.2)However [��] = [�]� = [�] � [0�] = [�] � [1k]!X� b�� (� � (1k)) =X� b�� (� 0) =X� b��0 (�): (5.3)Comparing (5.2) and (5.3) givesb��� = b��0 : (5.4)Using this and (2.14) we then have~�
 �0 =X� b��0 h12k(�)i =X� b��� h12k(�)i=X� b�� h12k(��)i =X� b�� h12k(�)i� = � ~�
 ���; (5.5)as required.This result (5.1) for the metaplectic representation ~� may be re�ned so as toprovide information on the symmetrised powers of the basic harmonic irreduciblerepresentations ~��. It has been conjectured14;15 on the basis of extensive calculationsof such symmetrised powers16 that:Proposition 5.2 The symmetrised k-fold powers of the basic harmonic irreduciblerepresentations ~�� of Sp(2n;<) are such that� ~�� 
 f�g�� = ~�� 
 f�0g; (5.6)for each partition � of k.In order to prove this result it is helpful �rst to establish two Lemmas. First ofall we need a generalisation of Littlewood's conjugacy formula26 which states that forany partition � of k we have�f�g 
 f�g�0 = � f�0g 
 f�g if k is even;f�0g 
 f�0g if k is odd. (5.7)



Symmetrised powers of irreducible representations of Sp(2n;<) 9The requisite generalisation of (5.7) takes the form:Lemma 5.3 Let S be an arbitrary representation of U (n) of the formS =X� f�g (5.8)where repetitions are allowed but each summand f�g has the same �xed parity �S inthe sense that if � is a partition of k then k � �S(mod2) with �S �xed to be either 0or 1. Then �S 
 f�g�0 = �S0 
 f�g if �S = 0;S0 
 f�0g if �S = 1, (5.9)where S0 is obtained from S by conjugating each summand.Proof The result is valid by virtue of Littlewood's conjugacy formula (5.7) if S hasone summand f�g. We assume that it is valid for all T with one fewer summand, sayf�g, than S. Writing S = T + f�g we then have�S 
 f�g�0 = �(T + f�g)
 f�g�0= �X�� c���(T 
 f�g)(f�g 
 f�g)�0=X�� c���(T 
 f�g)0(f�g 
 f�g)0= 8>><>>:X�� c���(T 0 
 f�g)(f�0g 
 f�g) if �T = 0;X�� c���(T 0 
 f�0g)(f�0g 
 f� 0g) if �T = 1,= 8>>><>>>:X�� c���(T 0 
 f�g)(f�0g 
 f�g) if �T = 0;X�0�0 c�0�0�0(T 0 
 f�0g)(f�0g 
 f� 0g) if �T = 1;= � (T 0 + f�0g)
 f�g) if �T = 0;(T 0 + f�0g)
 f�0g) if �T = 1,= �S0 
 f�g) if �S = 0;S0 
 f�0g) if �S = 1, (5.10)where use has been made of the fact that �S = �T . The coe�cients c��� are just theLittlewood-Richardson coe�cients8;9 determined by the tensor product rule for U (n):f�g � f�g =X� c���f�g (5.11)which satisfy the conjugacy relationc�0�0�0 = c��� (5.12):This completes the inductive proof of Lemma 5.3.



10 R C King and B G WybourneOur second Lemma takes the form:Lemma 5.4 For each partition � of k�M� 
 f�g�=f1kg = M� 
 f�0g: (5.13)Proof The branching rule for the restriction from U (n) to U (1)� U (n� 1) takes theform: f�g ! �1Xa=0 zaf�g=fag (5.14)where it has been convenient to denote the character f1g of U (1) simply by z, andfag by za. In the special case f�g = f1mg this givesf1mg ! 1Xa=0 zaf1mg=fag = f1mg+ zf1m�1g: (5.15)Taking the k-fold symmetrised power speci�ed by a partition � of k givesf1mg 
 f�g ! kXb=0 zb�f1mg 
 f�g�=fbg= �f1mg+ zf1m�1g)�
 f�g: (5.16)Equating the coe�cients of the terms in zk gives�f1mg 
 f�g�=fkg = f1m�1g 
 f�g: (5.17)Applying Littlewood's conjugacy formula (5.7) to both sides of (5.17) gives�fmg 
 f�g�=f1kg = fm � 1g 
 f�0g: (5.18)All this can be generalised. If we set Q� = M 0� so thatQ+ = Xm:m evenf1mg = f0g+ f12g+ f14g+ � � � ; (5.19a)Q� = Xm:m oddf1mg = f1g+ f13g+ f15g+ � � � ; (5.19b)then under the restriction U (n)! U (1)� U (n� 1)Q� ! 1Xa=0 zaQ�=fag = Q� + zQ� (5.20)and hence Q� 
 f�g ! kXb=0 zb�Q� 
 f�g�=fbg = �Q� + zQ�)� 
 f�g: (5.21)



Symmetrised powers of irreducible representations of Sp(2n;<) 11Once again equating the coe�cients of the terms in zk gives�Q� 
 f�g�=fkg = fQ� 
 f�g: (5.22)Our required result (5.13) then follows from our conjugacy Lemma 5.3 since the termsof Q+ are of parity �Q+ = 0 and those of Q� are of parity �Q� = 1, while Q0� =M�.Armed with Lemma 5.4 we are now in a position to prove Proposition 5.2:Proof For any partition � of k all the irreducible representations in the k-foldsymmetrised power ~�� 
 f�g are of the form h12k(�)i. It then follows from (2.10),Proposition 3.2 and Lemma 5.4 that� ~�� 
 f�g�� ! �("1=2M�)
 f�g�=f1kg= "k=2�M� 
 f�g�=f1kg = "k=2�M� 
 f�0g� (5.23)Comparing this with~�� 
 f�0g ! ("1=2M�)
 f�0g = "k=2�M� 
 f�0g� (5.24)su�ces to prove (5.6).Remarkably, as indicated through the calculation of numerous examples16.Proposition 5.2, may be generalised to give:Proposition 5.5 For any partition � of r, the corresponding r-fold symmetrisedpower of the associate irreducible representation h12k(�)i� of Sp(2n;<) is such thath12k(�)i� 
 f�g = ( �h12k(�)i 
 f�g�� if k is even;�h12k(�)i 
 f�0g�� if k is odd, (5.25)where the � on the left signi�es a k-associate, while those on the right signify kr-associates.To prove this Proposition the �rst task is to generalise Lemma 5.4:Lemma 5.6 Let S be an arbitrary representation of U (n) of the formS = X�:�01�k f�g (5.26)where repetitions are allowed but each summand f�g has the same �xed parity �S and�01 � k. Then for each partition � of r:(S=f1kg) 
 f�g = � (S 
 f�g)=f1krg if k is even;(S 
 f�0g)=f1krg if k is odd. (5.27)Proof Let f�g be an irreducible representation of U (n) with �1 � k and � a partitionof m. Then taking the r-fold symmetrised power of f�g speci�ed by � and restrictingfrom U (n) to U (1)� U (n � 1) as in (5.14) giveskrXb=0 zb�f�g 
 f�g�=fbg = � kXa=0 zaf�g=fag�
 f�g: (5.27)



12 R C King and B G WybourneComparing terms in zkr on both sides of this equation gives the identity(f�g=fkg)
 f�g = (f�g 
 f�g)=fkrg: (5.28)Taking the conjugate of the left hand side gives:�(f�g=fkg)
 f�g�0 = � (f�0g=f1kg)
 f�g if m � k is even;(f�0g=f1kg)
 f�0g if m � k is odd, (5.29)while the conjugate of the right hand side gives:�(f�g 
 f�g)=fkrg�0 = � (f�0g 
 f�g)=f1krg if m is even;(f�0g 
 f�0g)=f1krg if m is odd. (5.30)Comparing (5.29) and (5.30) and setting � = �0 gives the conjugate of (5.28), namely(f�g=f1kg)
 f�g = � (f�g 
 f�g)=f1krg if k is even;(f�g 
 f�0g)=f1krg if k is odd. (5.31)It should be recalled that this only applies if �01 = �1 � k. However, by hypothesisall the summands f�g of S in (5.26) are of this type. Moreover all the summands areof the same parity �S. This allows us to replace f�g = f�0g by S0 in both (5.27) and(5.28) to give krXb=0 zb�S0 
 f�g�=fbg = � kXa=0 zaS0=fag�
 f�g: (5.32)and (S0=fkg)
 f�g = (S0 
 f�g)=fkrg: (5.33)Setting T = S0=fkg so that �T = �S if k is even and �T = 1� �S if k is odd, it thenfollows from Lemma 5.3 that taking the conjugate of the left hand side of (5.33) gives:�(S0=fkg)
 f�g�0 = ( (S=f1kg)
 f�g if �T = 0;(S=f1kg)
 f�0g if �T = 1. (5.34)Similarly from Lemma 5.3 taking the conjugate of the right hand side of (5.33) gives:�(S0 
 f�g)=fkrg�0 = ( (S 
 f�g)=f1krg if �S = 0;(S 
 f�0g)=f1krg if �S = 1. (5.35)Comparing (5.34) and (5.35) gives the conjugate of (5.33), namely(S=f1kg) 
 f�g = � (S 
 f�g)=f1krg if k is even;(S 
 f�0g)=f1krg if k is odd, (5.36)as required in order to prove Lemma 5.6This now allows us to prove Proposition 5.5



Symmetrised powers of irreducible representations of Sp(2n;<) 13Proof First of all, under the restriction Sp(2n;<)! U (n) we have from (2.4)h12k(�)i !X� "k=2R��f�g = "k=2S (5.37)with S as in Lemma 5.6. It follows thath12k(�)i 
 f�g ! �"k=2S� 
 f�g = "kr=2S 
 f�g (5.38)Taking the k-associate of (5.37) and using Proposition 3.2 then gives under the samerestriction from Sp(2n;<)! U (n):h12k(�)i� !X� "k=2R��f�g=f1kg = "k=2S=f1kg: (5.39)Taking the r-fold symmetrised product of (5.39) speci�ed by the partition � and usingLemma 5.6 then givesh12k(�)i� 
 f�g !"kr=2�S=f1kg�
 f�g= ( "kr=2(S 
 f�g)=f1krg if k is even;"kr=2(S 
 f�0g)=f1krg if k is odd. (5.40)On the other hand taking the kr-associate of (5.38) and using Proposition 3.2 gives�h12k(�)i 
 f�g�� ! "kr=2(S 
 f�g)=f1krg: (5.41)Replacing � by �0 then gives�h12k(�)i 
 f�0g�� ! "kr=2(S 
 f�0g)=f1krg (5.42)Hence comparing (5.40) with (5.41) and (5.42) it follows thath12k(�)i� 
 f�g = ( �h12k(�)i 
 f�g�� if k is even;�h12k(�)i 
 f�0g�� if k is odd, (5.43)as required.6. Symmetrised powers of arbitrary harmonic series irreducible represen-tations of Sp(2n;<)It is possible to exploit the remarks following (2.6) and the branching rule (2.9)from Sp(2n;<) to U (n) to derive the following general formula for symmetrised powersor plethysms of arbitrary harmonic series irreducible representations of Sp(2n;<):Proposition 6.1 Let the partition � be such that �01 + �02 � k and �01 � n and let �be an arbitrary partition of r, thenh12k(�)i 
 f�g =X� x���h12kr(�)i; (6.1)



14 R C King and B G Wybournewhere the summation is over all partitions � satisfying the constraints �01 + �02 � krand �01 � n, and the coe�cients x��� are determined by the expansion��f�sgk �D� 
 f�g� �C =X� x���f�sgkr (6.2)with C = D�1.Proof Under the restriction from Sp(2n;<) to U (n) the branching rule (2.9) takesthe form: h12k(�)i ! "k=2 � f�sgk �D: (6.3)Hence, for each partition � of r, the corresponding r-fold symmetrised power of thisirreducible representation decomposes in accordance with the formulah12k(�)i 
 f�g ! �"k=2 � f�sgk �D�
 f�g= "kr=2 � ��f�sgk �D� 
 f�g�= "kr=2 � ��f�sgk �D� 
 f�g� �D�1D= "kr=2 � ���f�sgk �D� 
 f�g� �D�1� �D: (6.4)However, in the notation of (6.2), it follows once again from the branching rule (2.9)that h12k(�)i 
 f�g =X� x���h12kr(�)i ! "kr=2 X� x���f�sgkr! �D: (6.5)Comparison of (6.4) and (6.5) then completes the proof since, as noted following (2.6),identities at the level of their U (n) content is su�cient to imply identities betweenrepresentations of Sp(2n;<).In making use of the formula (6.2) to evaluate the plethysm coe�cients in (6.1) it ispossible to make one or two simpli�cations. While the product of the signed sequenceand D-series appearing in the branching rule (2.9) is a product of two in�nite series,all surviving terms f�g in the product will automatically be such that � 01 � k. Sincethe products are carried out in U (n) all the surviving terms are also automaticallysuch that � 01 � n. It follows that (2.9) is equivalent to3h12k(�)i ! "k=2 � �f�sgkN �DN �N (6.6)where N = min(n; k), with the various series and products all being evaluated inU (N ). In precisely the same way the plethysm and subsequent product with C in(6.2) may be evaluated in U (M ) where M = min(kr; n) so that (6.2) may be replacedby ���f�sgkN �DN �N 
 f�g�M �CM�M =X� x���f�sgkrM : (6.7)Finally, it should be noted that in order to read o� the required plethysm coe�cientsfrom the expansion (6.7) it is only necessary to look at the leading term f�g in each



Symmetrised powers of irreducible representations of Sp(2n;<) 15signed sequence f�sgkrM , since it is only the leading term of each signed sequence whichsatis�es the required O(kr)-standardness condition �01 + �02 � kr.We illustrate the diverse features of such calculations by the evaluation of theplethysm h2(21)i 
 f21g for Sp(24;<) as an explicit expansion in terms of irreduciblerepresentations of the form h6(�)i with the partition � restricted, for convenience,to have weight � 18 and width � 3. Here we have k = 4 and n = 12 so thatN = min(k; n) = 4. Hence the signed sequence, evaluated using the modi�cation rulesof O(4), but restricted to terms standard in U (4), has just the two termsf21sg44 = f21g � f231g; (6.8)both of which have width � 3. The terms in the D-series restricted to width � 3 andlength � 4 aref0g+ f2g+ f22g+ f23g+ f24g: (6.9)Evaluation, in U (4), of the tensor product of (6.8) with (6.9) yields the terms of width� 3 as A = f21g+ f221g+ f312g+ f32g+ f3212g+ f322g+ f321g+ f3221g: (6.10)The plethysm of A 
 f21g is now to be evaluated in the group U (12) since k = 4,r = 3 and n = 12 so that M = min(kr; n) = 12. Keeping all terms of width � 3 andof weight � 18 gives:f241g + f2413g + 2f251g + f2513g + 2f261g+ f271g + f3214g + 2f32212g + 3f32214g + f323g+ 9f32312g + 5f32314g + 6f324g + 15f32412g + 4f32414g+ 10f325g + 11f32512g + f32514g + 7f326g + 3f32612g+ 2f327g + f3213g + 2f3215g + 3f3221g + 12f32213g+ 7f32215g + 18f32221g + 33f322213g + 9f322215g + 45f32231g+ 40f322313g + 5f322315g + 54f32241g + 23f322413g + 31f32251g+ 12f3312g + 20f3314g + 5f3316g + 10f332g + 60f33212g+ 51f33214g + 7f33216g + 40f3322g + 117f332212g + 51f332214g+ 71f3323g + 111f332312g + 67f3324g + 32f341g + 70f3413g+ 31f3415g + 120f3421g + 137f34213g + 181f34221g + 28f35g+ 116f3512g + 92f352g (6.11)We now form the tensor product, in U (12), of the above terms with the followingterms of width � 3 of the C-series:f0g � f2g+ f31g � f32g: (6.12)Keeping only terms in the tensor product up to width 3 and weight 18 yieldsf241g + f2413g + f251g � f2613g � f271g� f281g + f3214g + 2f32212g + 2f32214g + f323g+ 6f32312g + f32314g + 4f324g + 4f32412g � f32414g+ 3f325g � 4f32512g � 2f32514g � 3f326g � 6f32612g� 4f327g + f3213g + f3215g + 3f3221g + 8f32213g+ 3f32215g + 12f32221g + 12f322213g + 16f32231g � 3f322315g� 12f322413g � 16f32251g + 8f3312g + 8f3314g + 7f332g+ 24f33212g + 7f33214g + 16f3322g + 16f332212g � 7f332214g+ 9f3323g � 16f332312g � 9f3324g + 13f341g + 13f3413g+ 25f3421g + 6f35g + 6f3512g + 6f352g (6.13)



16 R C King and B G WybourneThe terms may now be grouped together into sets of O(12) signed sequences. Thus,for example, f241sg1212 = f241g � f281g. Alternatively, bearing in mind that for thepurposes of determining plethysm coe�cients it is only necessary to retain the leadingO(12)-standard term in each such signed sequence, (6.13) may simply be restricted tothose terms f�g for which �01 + �02 � 12. The surviving terms aref241g + f2413g + f251g + f3214g + 2f32212g+ 2f32214g + f323g + 6f32312g + f32314g + 4f324g+ 4f32412g + 3f325g + f3213g + f3215g + 3f3221g+ 8f32213g + 3f32215g + 12f32221g + 12f322213g + 16f32231g+ 8f3312g + 8f3314g + 7f332g + 24f33212g + 7f33214g+ 16f3322g + 16f332212g + 9f3323g + 13f341g + 13f3413g+ 25f3421g + 6f35g + 6f3512g + 6f352g (6.14)These irreducible representations of U (12) can now be converted back into theirreducible representations of Sp(24;<), to which they correspond in a one-to-onemanner, by the simple insertion of a 6 and a change to Sp(24;<) notation to give< 6(241) > + < 6(2413) > + < 6(251) > + < 6(3214) >+ 2 < 6(32212) > + 2 < 6(32214) > + < 6(323) > + 6 < 6(32312) >+ < 6(32314) > + 4 < 6(324) > + 4 < 6(32412) > + 3 < 6(325) >+ < 6(3213) > + < 6(3215) > + 3 < 6(3221) > + 8 < 6(32213) >+ 3 < 6(32215) > + 12 < 6(32221) > + 12 < 6(322213) > + 16 < 6(32231) >+ 8 < 6(3312) > + 8 < 6(3314) > + 7 < 6(332) > + 24 < 6(33212) >+ 7 < 6(33214) > + 16 < 6(3322) > + 16 < 6(332212) > + 9 < 6(3323) >+ 13 < 6(341) > + 13 < 6(3413) > + 25 < 6(3421) > + 6 < 6(35) >+ 6 < 6(3512) > + 6 < 6(352) > (6.15)It follows that up to weight 18 and width 3 the required plethysm takes the form:h2(21)i 
 f21g= < 6(241) > + < 6(241)� > + < 6(251) > + < 6(3214) >+ 2 < 6(32212) > + 2 < 6(32212)� > + < 6(323) > + < 6(323)� >+ 6 < 6(32312) > + 4 < 6(324) > + 4 < 6(324)� > + 3 < 6(325) >+ < 6(3213) > + < 6(3213)� > + 3 < 6(3221) > + 3 < 6(3221)� >+ 8 < 6(32213) > + 12 < 6(32221) > + 12 < 6(32221)� > + 16 < 6(32231) >+ 8 < 6(3312) > + 8 < 6(3312)� > + 7 < 6(332) > + 7 < 6(332)� >+ 24 < 6(33212) > + 16 < 6(3322) > + 16 < 6(3322)� > + 9 < 6(3323) >+ 13 < 6(341) > + 13 < 6(341)� > + 25 < 6(3421) > + 6 < 6(35) >+ 6 < 6(35)� > + 6 < 6(352) > + � � � (6.16)where the terms have now been arranged in mutually associated pairs of irreduciblerepresentations together with self-associate irreducible representations, so as toillustrate in accordance with Proposition 5.5 the self-associate nature of this particularplethysm.7. The analogy between Sp(2n;<) and SO(2n)In SO(2n) there exists the basic spin representation � = �+ + �� which is adirect sum of the two irreducible representations �+ and �� whose branchings from



Symmetrised powers of irreducible representations of Sp(2n;<) 17SO(2n) to U (n) take the form�+ ! "�1=2Xx=0f1n�2xg; (7.1a)�� ! "�1=2Xx=0f1n�1�2xg: (7.1b)As we have seen for Sp(2n;<) there exists the basic harmonic representation ~� =~�++ ~�� which is a direct sum of the two irreps ~�+ and ~�� whose branchings (2.10)from Sp(2n;<) to U (n) can be written in a form strikingly similar to (7.1):~�+ ! "1=2Xx=0f2xg; (7.2a)~�� ! "1=2Xx=0f2x+ 1g: (7.2b)Moving to symmetrised squares, for SO(2n) we have27:�+ 
 f2g = [1n]+ +Xx=0[1n�4�4x]; (7.3a)�+ 
 f12g =Xx=0[1n�2�4x]; (7.3b)�� 
 f2g = [1n]� +Xx=0[1n�4�4x]; (7.3c)�� 
 f12g =Xx=0[1n�2�4x]; (7.3d)while for Sp(2n;<) the analogous symmetrised squares take the form14:~�+ 
 f2g = h1(0)i+Xx=0h1(4 + 4x)i; (7.4a)~�+ 
 f12g =Xx=0h1(2 + 4xi; (7.4b)~�� 
 f2g =Xx=0h1(2 + 4xi; (7.4c)~�� 
 f12g = h1(1)i+Xx=0h1(4 + 4x)i: (7.4d)Moving to symmetrised cubes for SO(2n) it is straightforward to show frompreviously published results27 that we have�+ 
 f3g =Xx=0 11Xy=0(my+x)[�; 1n�y�12x](�)y with m = (100010101110); (7.5a)�+ 
 f21g =Xx=0 5Xy=0(my+x)[�; 1n�y�6x](�)y with m = (0010111); (7.5b)
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 f13g =Xx=0 11Xy=0(my+x)[�; 1n�y�12x](�)y with m = (000100110111); (7.5c)�� 
 f3g =Xx=0 11Xy=0(my+x)[�; 1n�y�12x]�(�)y with m = (100010101110); (7.5d)�� 
 f21g =Xx=0 5Xy=0(my+x)[�; 1n�y�6x]�(�)y with m = (0010111); (7.5e)�� 
 f13g =Xx=0 11Xy=0(my+x)[�; 1n�y�12x]�(�)y with m = (000100110111): (7.5f)Encouraged by the analogy between (7.1) and (7.2), and that between (7.3) and (7.4),it seems appropriate to ask if there is a corresponding Sp(2n;<) analogue of (7.5).The existence of such an analogue appears to be borne out by recent calculations17.As a warming up exercise we consider the symmetrised squares of the metaplecticrepresentation ~�. It follows from (2.14) with k = 2 that:~�
 f�g =X� b�� h1(�)i (7.6)where � = (2) or (12) and � is necessarily constrained to be either (0), (12) = (0)�, or(m) = (m)� for m � 1, where � signi�es 2-associates so that (m) is self-associate. TheCoe�cients b�� are determined by the branching rule (2.16) applied to O(2)! S2:[0]! (2); [0]�! (12); and [m]! (2) + (12); (7.7)where these branchings can be obtained by noting from (2.17) that:[m]! (12)
 fm=Gg = (12)
 �fmg+ fm � 1g� = (12)m + (12)m�1(7.8)and the fact that (12)n = (0) for n even and (12)n = (12) = (0)� for n odd.It then follows from (2.14) that~�
 f2g = h1(0)i+ Xm=1h1(m)i; (7.9a)~�
 f12g = h1(0)i� + Xm=1h1(m):i (7.9b)The problem of evaluating symmetrised cubes of ~�may be tackled in the same way.For this case k = 3 and it is only necessary to consider only the O(3) irreps [�] = [0],[13] = [0]� and [m] and [m; 1] = [m]� = [m][0]� with m = 1; 2; : : : and their branchingto S3. Under the restriction O(3) ! S3 we have [0] ! (0) and [0]� = [13] ! (13),while the analogue of (7.8) is[m]! (21)
 fm=Gg = (21)
 �fmg+ fm� 1g�= (21)
 fmg+ (21)
 fm � 1g (7.10)



Symmetrised powers of irreducible representations of Sp(2n;<) 19However (21)
 fng =8>>>>>>>><>>>>>>>>: (1+x):(3) + 2x:(21) + x:(13) for n=0+6xx:(3) + (1+2x):(21) + x:(13) for n=1+6x(1+x):(3) + (1+2x):(21) + x:(13) for n=2+6x(1+x):(3) + (1+2x):(21) + (1+x):(13) for n=3+6x(1+x):(3) + (2+2x):(21) + x:(13) for n=4+6x(1+x):(3) + (2+2x):(21) + (1+x):(13) for n=5+6x,so that(21)
 (fmg + fm � 1g) = 8>>>>>>>><>>>>>>>>: (1+2x):(3) + 4x:(21) + 2x:(13) m=0+6x(1+2x):(3) + (1+4x):(21) + 2x:(13) m=1+6x(1+2x):(3) + (2+4x):(21) + 2x:(13) m=2+6x(2+2x):(3) + (2+4x):(21) + (1+2x):(13) m=3+6x(2+2x):(3) + (3+4x):(21) + (1+2x):(13) m=4+6x(2+2x):(3) + (4+4x):(21) + (1+2x):(13) m=5+6x. (7.11)Hence: [m]! (1 + [m3 ])(3) + (m � [m3 ])(21) + ([m3 ])(13): (7.12)Since [0]� ! (13) and multiplication by (13) in S3 simply involves conjugation, wehave [m]� ! ([m3 ])(3) + (m � [m3 ])(21) + (1 + [m3 ])(13): (7.13)This completes the derivation of the O(3) � S3 branching rules:[0] ! (3); (7.14a)[0]� ! (13); (7.14b)[m] ! (1 + [m3 ])(3) + (m � [m3 ])(21) + ([m3 ])(13); (7.14c)[m]� ! ([m3 ])(3) + (m � [m3 ])(21) + (1 + [m3 ])(13): (7.14d)It then follows from (2.14) that~�
 f3g = Xm=0(1 + [m3 ])h32(m)i + ([m3 ])h32(m)i�; (7.15a)~�
 f21g = Xm=0(m � [m3 ])h32 (m)i + (m � [m3 ])h32(m)i�; (7.15b)~�
 f13g = Xm=0([m3 ])h32 (m)i + (1 + [m3 ])h32(m)i�: (7.15c)
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 f3g = �~�+ 
 f3g+ ~�+( ~�� 
 f2g)�+� ~�� 
 f3g+ ( ~�+ 
 f2g) ~���; (7.16a)~�
 f21g = �~�+ 
 f21g+ ~�+( ~�� 
 f2g) + ~�+( ~�� 
 f12g)�+� ~�� 
 f21g+ ( ~�+ 
 f2g)�~��+ ( ~�+ 
 f12g) ~��; (7.16b)~�
 f13g = �~�+ 
 f13g+ ~�+( ~�� 
 f12g)�+� ~�� 
 f13g+ ( ~�+ 
 f12g) ~���: (7.16c)where each expression has been separated into the sum of two parts, the �rst of whichconsists of even weight terms and the second of odd weight terms. Moreover~�+( ~�� 
 f2g) = Xi�0;j�0h32(2 + 2i+ 4j)i+ h32 (3 + 2i+ 4j)i�; (7.17a)~�+( ~�� 
 f12g) = Xi�0;j�0h32(4 + 2i+ 4j)i+ h32 (1 + 2i+ 4j)i�; (7.17b)~��( ~�� 
 f2g) = Xi�0;j�0h32(1 + 2i+ 4j)i+ h32 (4 + 2i+ 4j)i�; (7.17c)~��( ~�� 
 f12g) = Xi�0;j�0h32(3 + 2i+ 4j)i+ h32 (2 + 2i+ 4j)i�: (7.17d)Since Xi�0;j�0h32 (a+ 2i + 4j)i = Xm�a;m�amod2�m+ 4� a4 �h32(m)i (7.18)it then follows that~�+( ~�� 
 f2g) = Xmeven�m + 24 �h32(m)i + Xmodd�m+ 14 �h32(m)i�;(7.19a)~�+( ~�� 
 f12g) = Xmeven�m4 �h32 (m)i + Xmodd�m + 34 �h32 (m)i�; (7.19b)~��( ~�+ 
 f2g) = Xmodd�m + 34 �h32 (m)i + Xmeven�m4 �h32 (m)i�; (7.19c)~��( ~�+ 
 f12g) = Xmeven�m + 14 �h32(m)i + Xmodd�m+ 24 �h32(m)i�:(7.19d)



Symmetrised powers of irreducible representations of Sp(2n;<) 21Combining the results (7.16), (7.17) and (7.19) and taking care to distinguish evenand odd weight terms (7.16) we then have~�+ 
 f3g = Xmeven(1 + [m3 ]� [m + 24 ])h32(m)i+ Xmodd([m3 ]� [m+ 14 ])h32 (m)i�; (7.20a)~�� 
 f3g = Xmodd(1 + [m3 ]� [m+ 34 ])h32 (m)i+ Xmeven([m3 ]� [m4 ])h32 (m)i�; (7.20b)~�+ 
 f21g = Xmeven(m� [m3 ]� [m4 ]� [m + 24 ])h32(m)i+ Xmodd(m � [m3 ]� [m+ 14 ]� [m+ 34 ])h32 (m)i�; (7.20c)~�� 
 f21g = Xmodd(m � [m3 ]� [m+ 14 ]� [m+ 34 ])h32(m)i+ Xmeven(m � [m3 ]� [m4 ]� [m+ 24 ])h32 (m)i�; (7.20d)~�+ 
 f13g = Xmeven([m3 ]� [m4 ])h32(m)i+ Xmodd(1 + [m3 ]� [m+ 34 ])h32(m)i�; (7.20e)~�� 
 f13g = Xmodd([m3 ]� [m+ 14 ])h32(m)i+ Xmeven(1 + [m3 ]� [m+ 24 ])h32 (m)i�: (7.20f)Since [ (y + 12x)3 ]� [y + 12x+ a4 ] = 1 + [y3 ]� [y + a4 ] (7.21a)and (y + 12x)� [ (y + 12x)3 ]� [y + 12x+ a4 ]� [y + 12x+ b4 ]= 2y + [y3]� [y + a4 ]� [y + b4 ]; (7.21b)for 0 � y � 11 these results (7.20) can be rewritten in the form~�+ 
 f3g =Xx=0 11Xy=0(my+x)h32(y+12x)i(�)y with m = (100010101110); (7.22a)
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 f3g =Xx=0 11Xy=0(my+x)h32(y+12x)i(�)y+1 with m = (000100110111); (7.22b)~�+ 
 f21g =Xx=0 11Xy=0(my+2x)h32(y+12x)i(�)y with m = (001011112122); (7.22c)~�� 
 f21g =Xx=0 11Xy=0(my+2x)h32(y+12x)i(�)y+1 with m = (001011112122); (7.22d)~�+ 
 f13g =Xx=0 11Xy=0(my+x)h32(y+12x)i(�)y with m = (000100110111); (7.22e)~�� 
 f13g =Xx=0 11Xy=0(my+x)h32(y+12x)i(�)y+1 with m = (100010101110): (7.22f)where (�)z is to be ignored if z is even and set to be � if z is odd.Clearly, just as (7.4) is analogous to (7.3), so the results (7.22) for Sp(2n;<) areanalogous to the results (7.5) for SO(2n). However, the analogy may not be quitewhat one might have expected. For � any partition of k � 3 the correspondence takesthe form: �+ 
 f�g () ~�+ 
 f�g; (7.23a)�� 
 f�g () ~�� 
 f�0g: (7.23b)To be more precise all our results support the validity of the following closingconjecture:Conjecture 7.1 Let � be an arbitrary partition of k and let t take values in the setf�1; 0; 1g. For SO(2n) let�+ 
 f�g = 8>>><>>>:X�;t p��;t [mn=�0]�(t) for k = 2m even;X�;t p��;t [�;mn=�0]�(t) for k = 2m+1 odd, (7.24)where if k = 2m and �01 = m then t = 0 and �(0) is to be omitted, while otherwiset = �1 with �(1) = + and �(�1) = �. Similarly, for Sp(2n;<) let~�+ 
 f�g = 8>>>><>>>>:X�;t q��;t h12k(�)i�(t) for k = 2m even;X�;t q��;t h12k(�)i�(t) for k = 2m+1 odd, (7.25)where if h12k(�)i is self-associate so that k = 2m and �01 = m then t = 0 and �(0) isto be omitted, while otherwise t = �1 and �(1) is to be omitted while �(�1) is set tobe �. Then p��;t = q��;t: (7.26)



Symmetrised powers of irreducible representations of Sp(2n;<) 23It should be stressed that the non-zero terms of (7.24) are necessarily �nite innumber by virtue of the requirement that fmn=�0g be non-vanishing. The same is nottrue of (7.25) which, as in (7.4) and (7.20), is expected to always involve an in�nitenumber of terms.While the corresponding formula for �� 
 f�g is obtained from (7.24) merely byreplacing every surviving �(�1) = � by �, the corresponding formula for ~�� 
 f�gis obtained from (7.25) through the use of the conjugacy formula (5.6) of Proposition5.2: ~�� 
 f�g = � ~�+ 
 f�0g��: (7.27)This is well illustrated not only by (7.4) but also by (7.20).8. Concluding remarksIn deriving the results obtained in this paper we have had two objectives in mind.Firstly, to gain further understanding of the properties of the unitary irreduciblerepresentations of the non-compact group Sp(2n;<) and in particular their Kroneckerproducts and plethysms. Secondly, to produce results and techniques aimed ateventual application in symplectic models of many-particle systems. The �rst objectivehas been achieved through an understanding, and proof, of hitherto conjecturedproperties of Kronecker products and plethysms of irreducible representations ofSp(2n;<). That process has also generated a number of new identities involvingplethysms of in�nite series of S-functions. Progress with respect to the secondobjective has been advanced not only through the derivation of a highly e�cientgeneral formula for the evaluation of arbitrary plethysms, as well as speci�c resultspertaining to symmetrised squares and cubes, but also through the introductionof associate irreducible representations of Sp(2n;<) which allow one to computeKronecker products and plethysms for particular irreducible representations and thento obtain additional results for the associate irreducible representations by a simplereplacement process, at far less computational cost than that involved in repeatingthe entire calculations.AcknowledgmentsThe work of BGW has been supported by a Polish KBN Grant. We appreciatedthe receipt of two prior independent proofs of Lemma 5.4 from Jean-Yves Thibon(Universit�e de Marne-la-Vall�ee) and Thomas Scharf (Universit�at Bayreuth).References[1] Wybourne B G 1974 Classical Groups for Physicists (New York: Wiley)[2] Rowe D J, Wybourne B G and Butler P H 1985 J. Phys. A: Math. Gen. 18 939[3] King R C and Wybourne B G 1985 J. Phys. A: Math. Gen. 18 3113[4] Rowe D J 1985 Rep. Prog. Phys. 48 1419[5] Haase R W and Johnson N F 1993 Phys. Rev. B48 1583
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