Products and plethysms for the fundamental harmonic series representations of $U(p, q)$

Jean-Yves Thibon \dagger, Frédéric Toumazet \dagger and Brian G Wybourne $\ddagger \S$
†Institut Gaspard Monge, Université de Marne-la-Vallée, 2 rue de la Butte-Verte, 93166
Noisy-le-Grand cedex, France
\ddagger Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul Grudziądzka 5/7, 87-100 Toruń, Poland

Abstract

We give the decomposition of the Kronecker products and the symmetrized Kronecker squares of all the fundamental representations of the harmonic series of unitary irreducible representations of $U(p, q)$. The results for $U(2,2)$ are relevant to two-electron hydrogenic like atoms.

1. Introduction

Bohr, in his very first paper [3], on what has become known as "The Bohr-model" of the atom, made the surprising discovery that the energies of levels of the non-relativistic hydrogen atom could be expressed (in appropriate units) as simply

$$
E_{n}=-\frac{1}{n^{2}} \quad \text { with } \quad n=1,2, \ldots
$$

With the advent of the Schrödinger equation for the H -atom it became apparent that each value of n could be associated with orbital angular momenta of

$$
\ell=1,2, \ldots, n-1
$$

and associated with each value of ℓ there were $(2 \ell+1)$ values of the angular momentum projection eigenvalues m_{ℓ} leading to each energy level E_{n} being associated with $(n-1)^{2}$ eigenfunctions. Initially such a high degeneracy appeared surprising. Pauli [7] noted that in a purely Coulombic central field there was an additional constant of the motion associated with the Runge-Lenz vector and from there was led to the realisation that the observed degeneracies were precisely the dimensions of certain of the irreducible
§ Supported by a Polish KBN Grant
representations of the group $S O(4) \sim S U(2) \times S U(2)$, in particular those commonly designated as $[n-1,0] \sim\{n-1\} \times\{n-1\}$.

Much later, Barut and Kleinert [2] observed that all the discrete levels of a Hatom spanned a single infinite dimensional irreducible representation of the non-compact group $S O(4,2) \sim S U(2,2)$ with the group being referred to as the dynamical group of the H-atom [2, 9]. The Runge-Lenz vector ceases to be a constant of the motion for two or more electrons in a central Coulomb field $[2,9,10,4]$ and the $S O(4)$ symmetry is broken. Nevertheless, it can be useful to consider the n-electron states starting with the single irreducible representation of $S U(2,2)$, or more simply $U(2,2)$, and then forming symmetrized n-fold tensor products which will be the central problem considered here. For greater generality we shall initially consider the group $U(p, q)$ as previously studied $[6]$ by King and Wybourne. After a brief sketch of the relevant properties of $U(p, q)$ we tackle the problem of resolving the Kronecker powers of the relevant irreducible representation into its relevant symmetrized powers, namely the problem of plethysms in $U(p, q)$. In the process we are able to give closed results for the second powers of the fundamental harmonic series irreducible representations of $U(p, q)$ which thus yields, in the case of two electrons, the appropriate spin triplet and singlet states.

2. The fundamental harmonic series irreducible representations of $U(p, q)$

Following [6], we may embed the non-compact group $U(p, q)$ in $S p(2 p+2 q, R)$ whose harmonic representation $\tilde{\Delta}$ decomposes as

$$
\begin{equation*}
\tilde{\Delta} \rightarrow H=H_{0}+\sum_{m=1}^{\infty}\left(H_{m}+H_{-m}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{rll}
H_{0} & =\{1(\overline{0} ; 0)\} & \\
H_{m} & =\{1(\overline{0} ; m)\} & m=1,2, \ldots \\
H_{-m} & =\{1(\bar{m} ; 0)\} & m=1,2, \ldots \tag{2c}
\end{array}
$$

Upon restriction to the maximal compact subgroup $U(q) \times U(p)$ we have

$$
\begin{align*}
& H_{0}=\left\{1(\overline{0} ; 0\} \quad \rightarrow(0 \times \varepsilon) \cdot\left(\sum_{k=0}^{\infty}\{\bar{k}\} \times\{k\}\right)\right. \tag{3a}\\
& H_{m}=\{1(\overline{0} ; m)\} \rightarrow(0 \times \varepsilon) \cdot\left(\sum_{k=0}^{\infty}\{\bar{k}\} \times\{m+k\}\right) \tag{3b}\\
& H_{-m}=\{1(\bar{m} ; 0)\} \rightarrow(0 \times \varepsilon) \cdot\left(\sum_{k=0}^{\infty}\{\overline{m+k}\} \times\{k\}\right) \tag{3c}
\end{align*}
$$

The harmonic series unirreps $\{k(\bar{\nu} ; \mu)\}$ of $U(p, q)$ are generated by considering powers [5] H^{k} of H. Under restriction from $U(p k, q k)$ to $U(p, q) \times U(k)$

$$
\begin{equation*}
H \rightarrow \sum_{\nu, \mu}\{k(\bar{\nu} ; \mu)\} \times\{\bar{\nu} ; \mu\} \tag{4}
\end{equation*}
$$

where the partition (μ) has not more than p parts and (ν) not more than q parts and their conjugate partitions ($\tilde{\nu}$) and $(\tilde{\mu})$ satisfy the constraints [5]

$$
\begin{align*}
& \tilde{\mu}_{1}+\tilde{\nu}_{1} \leq k \tag{5a}\\
& \tilde{\mu}_{1} \quad \leq p \quad \text { and } \quad \tilde{\nu}_{1} \leq q \tag{5b}
\end{align*}
$$

3. Kronecker products for all of the fundamental harmonic series unirreps

The Kronecker product of two arbitrary unirreps of $U(p, q)$ may be evaluated following [6] to give

$$
\begin{equation*}
\{k(\bar{\nu} ; \mu)\} \times\{\ell(\bar{\tau} ; \sigma)\}=\sum_{\zeta}\left\{k+\ell\left(\left(\left\{\bar{\nu}_{s}\right\}^{k} \cdot\left\{\bar{\tau}_{s}\right\}^{\ell} \cdot\{\bar{\zeta}\} ;\left\{\mu_{s}\right\}^{k} \cdot\left\{\sigma_{s}\right\}^{\ell} \cdot\{\zeta\}\right)\right)\right\} \tag{6}
\end{equation*}
$$

where the notation is as in [6] and it is understood that

$$
((\bar{\rho} ; \lambda))_{k+\ell, p, q}=\left\{\begin{array}{c}
(\bar{\rho} ; \lambda) \text { if } \tilde{\lambda}_{1} \leq p, \tilde{\rho}_{1} \leq q \text { and } \tilde{\lambda}_{1}+\tilde{\rho}_{1} \leq k+\ell \tag{7}\\
0 \text { otherwise }
\end{array}\right.
$$

Specialization of (6) to the fundamental harmonic series of $U(p, q)$ yields the following cases

$$
\begin{align*}
& H_{0}^{2}=\sum_{n=0}^{\infty}\{2(\bar{n} ; n)\} \tag{8a}\\
&=\sum_{n=0}^{\infty}\{2(\bar{n} ; n+2 m)\}+\sum_{p=1}^{m}\{2(\overline{0} ; 2 m-p, p)\} \quad m>0 \tag{8b}\\
& H_{m}^{2}=\sum_{n=0}^{\infty}\{2(\overline{n+2 m} ; n)\}+\sum_{p=1}^{m}\{2(\overline{2 m-p, p} ; 0)\} \tag{8c}\\
& H_{-m}^{2} \tag{8d}\\
& H_{m} \times H_{-m}=\sum_{k=0}^{\infty}\{2(\overline{m+k} ; m+k)\} \tag{8e}\\
& H_{r} \times H_{s}=\sum_{x=0}^{\min (r, s)}\{2(\overline{0} ; r+s-x, x)\}+\sum_{k=1}^{\infty}\{2(\bar{k} ; r+s+k)\} \tag{8f}\\
& H_{-r} \times H_{-s}=\sum_{x=0}^{\min (r, s)}\{2(\overline{r+s-x, x} ; 0)\}+\sum_{k=1}^{\infty}\{2(\overline{r+s+k} ; k)\} \tag{8g}\\
& H_{-r} \times H_{s}=\{2(\bar{r} ; s)\}+\sum_{k=1}^{\infty}\{2(\overline{r+k} ; s+k)\} \quad r, s>0
\end{align*}
$$

$$
\begin{align*}
& H_{0} \times H_{m}=\{2(\overline{0} ; m)\}+\sum_{k=1}^{\infty}\{2(\bar{k} ; m+k)\} \tag{8h}\\
& H_{0} \times H_{-m}=\{2(\bar{m} ; 0)\}+\sum_{k=1}^{\infty}\{2(\overline{m+k} ; k)\} \tag{8i}
\end{align*}
$$

4. Symmetrized squares of the fundamental harmonic representations

To separate the Kronecker squares of the representations H_{m} of $U(p, q)$ into its symmetric and antisymmetric parts, we first solve the corresponding problem for the complete harmonic representation H. This is done by restricting the H of $U(2 p, 2 q)$ through the chain

$$
\begin{equation*}
U(2 p, 2 q) \supset U(p, q) \times U(2) \supset U(p, q) \times S_{2} \supset U(p, q) . \tag{9}
\end{equation*}
$$

Under $U(2 p, 2 q) \downarrow U(p, q) \times U(2)$, we know that

$$
\begin{equation*}
H \rightarrow \sum_{\tilde{\nu_{1}+\tilde{\mu_{1}} \leq 2}}\{2(\bar{\nu} ; \mu)\} \times\{\bar{\nu} ; \mu\} . \tag{10}
\end{equation*}
$$

Therefore, we just have to determine the restriction to S_{2} of the $U(2)$ representations $\{\bar{\nu} ; \mu\}$.

It is known ([1], see also [8]) that the Frobenius characteristic of the decomposition of $\{m\}$ under $U(k) \downarrow S_{k}$ is the coefficient of z^{m} in the series

$$
\begin{equation*}
h_{k}\left(\frac{X}{1-z}\right)=\prod_{j=1}^{k} \frac{1}{1-z^{j}} \cdot \sum_{\lambda \vdash k} \tilde{K}_{\lambda, 1^{k}}(z) s_{\lambda} \tag{11}
\end{equation*}
$$

where $\tilde{K}_{\lambda, 1^{k}}(z)$ are the (cocharge) Kostka-Foulkes polynomials. In particular for $k=2$, $\{m\} \downarrow S_{2}$ is the coefficient of z^{m} in

$$
\begin{equation*}
\frac{1}{(1-z)\left(1-z^{2}\right)}[(2)+z(11)] \tag{12}
\end{equation*}
$$

so that

$$
\begin{equation*}
\{m\} \rightarrow p_{2}(m)(2)+p_{2}(m-1)(11) \tag{13}
\end{equation*}
$$

where $p_{2}(m)$ is the number of partitions of m into parts not greater that 2 , that is, $p_{2}(m)=\left\lceil\frac{m+1}{2}\right\rceil$.

Taking into account the $U(2)$ equivalences $\left\{\overline{0} ; \mu_{1} \mu_{2}\right\} \equiv \epsilon^{\mu_{2}}\left\{\mu_{1}-\mu_{2}\right\},\{\bar{m} ; n\} \equiv$ $\epsilon^{-m}\{n+m\}$ and $\left\{\overline{\nu_{1} \nu_{2}} ; 0\right\} \equiv \epsilon^{-\nu_{1}}\left\{\nu_{1}-\nu_{2}\right\}$, we obtain

$$
\begin{align*}
& \left\{\overline{0} ; \mu_{1} \mu_{2}\right\} \rightarrow\left\{\begin{array}{lll}
p_{2}\left(\mu_{1}-\mu_{2}\right)(2)+p_{2}\left(\mu_{1}-\mu_{2}-1\right)(11) & \text { for } \mu_{2} \text { even } \\
p_{2}\left(\mu_{1}-\mu_{2}-1\right)(2)+p_{2}\left(\mu_{1}-\mu_{2}\right)(11) & \text { for } \mu_{2} \text { odd }
\end{array}\right. \tag{14a}\\
& \{\bar{m} ; n\} \rightarrow\left\{\begin{array}{lll}
p_{2}(m+n)(2)+p_{2}(m+n-1)(11) & \text { for } & m \text { even } \\
p_{2}(m+n-1)(2)+p_{2}(m+n)(11) & \text { for } & m \text { odd }
\end{array}\right. \tag{14b}\\
& \left\{\overline{\nu_{1} \nu_{2}} ; 0\right\} \rightarrow\left\{\begin{array}{lll}
p_{2}\left(\nu_{1}-\nu_{2}\right)(2)+p_{2}\left(\nu_{1}-\nu_{2}-1\right)(11) & \text { for } & \nu_{1} \text { even } \\
p_{2}\left(\nu_{1}-\nu_{2}-1\right)(2)+p_{2}\left(\nu_{1}-\nu_{2}\right)(11) & \text { for } & \nu_{1} \text { odd }
\end{array}\right. \tag{14c}
\end{align*}
$$

Now, we have

$$
\begin{aligned}
H \otimes\{2\}= & \left(H_{0}+\sum_{m \geq 1}\left(H_{m}+H_{-m}\right)\right) \otimes\{2\} \\
= & H_{0} \otimes\{2\}+H_{0} \times \sum_{m \geq 1}\left(H_{m}+H_{-m}\right)+\left(\sum_{m \geq 1} H_{m}\right) \otimes\{2\} \\
& +\sum_{r, s \geq 1} H_{r} \times H_{-s}+\left(\sum_{m \geq 1} H_{-m}\right) \otimes\{2\} \\
& =H_{0} \otimes\{2\}+\sum_{m \geq 1} H_{m} \times H_{-m}+R .
\end{aligned}
$$

To extract $H_{0} \otimes\{2\}$ from $H \otimes\{2\}$, we remark that since under $U(p, q) \downarrow U(p) \times U(q)$

$$
H_{0} \rightarrow(0 \times \epsilon) \sum_{m \geq 0}\{\bar{m}\} \times\{m\}
$$

the Kronecker square of H_{0} can only contain terms whose restriction to $U(p) \times U(q)$ is a sum of representations $\left(0 \times \epsilon^{2}\right)\{\bar{\nu} ; \mu\}$ such that $|\nu|=|\mu|$. Clearly, the terms in R are not of this form, and to obtain $H_{0} \otimes\{2\}$, we just need to compute the terms of the form $\{2(\bar{m} ; m)\}$ in $H \otimes\{2\}$ and to remove the contribution of $\sum_{m \geq 1} H_{m} \times H_{-m}$.

We know from the above discussion that the multiplicity of $\{2(\bar{m} ; m)\}$ in $H \otimes\{2\}$ is equal to $p_{2}(m+m)=m+1$ for m even, and to $p_{2}(m+m-1)=m$ for m odd. On the other hand,

$$
H_{m} \times H_{-m}=\sum_{k \geq 0}\{2(\overline{m+k} ; m+k)\}
$$

so that a given $\{2(\bar{m} ; m)\}$ occurs exactly m times in $\sum_{k \geq 1} H_{k} \times H_{-k}$. Removing this contribution, we are left with

$$
\begin{equation*}
H_{0} \otimes\{2\}=\sum_{k \geq 0}\{2(\overline{2 k} ; 2 k)\} . \tag{15}
\end{equation*}
$$

Since $H_{0}^{2}=\sum_{m \geq 0}\{2(\bar{m} ; m)\}$, we also have

$$
\begin{equation*}
H_{0} \otimes\left\{1^{2}\right\}=\sum_{k \geq 0}\{2(\overline{2 k+1} ; 2 k+1)\} . \tag{16}
\end{equation*}
$$

To split the square of $H_{m}(m \geq 1)$, we first observe that under restriction to $U(p) \times U(q)$, it yields a sum of representations of the form $\left(0 \times \epsilon^{2}\right)\{\bar{\nu}\} \times\{\mu\}$ such that $|\mu|=|\nu|+2 m$. Next, we proceed as above to extract it from $H \otimes\{2\}$. We have

$$
H \otimes\{2\}=\left(H_{m}+\sum_{j \neq m} H_{j}\right) \otimes\{2\}
$$

$$
=H_{m} \otimes\{2\}+H_{m} \times \sum_{j \neq m} H_{j}+\left(\sum_{j \geq 1} H_{m-j}\right) \otimes\{2\}
$$

$$
+\left(\sum_{j \geq 1} H_{m-j}\right) \times\left(\sum_{k \geq 1} H_{m+k}\right)+\left(\sum_{j \geq 1} H_{m+j}\right) \otimes\{2\}
$$

Therefore, to extract $H_{m} \otimes\{2\}$, we just have to select from $H \otimes\{2\}$ the terms having the correct restriction property to $U(p) \times U(q)$ and to subtract the contribution of the crossed products $H_{m-j} \times H_{m+j}(j \geq 1)$. Suppose first that $m \geq 1$. Then,

$$
\begin{equation*}
\sum_{j \geq 1} H_{m-j} \times H_{m+j}=H_{0} \times H_{2 m}+\sum_{r=1}^{m-1} H_{r} \times H_{2 m-r}+\sum_{r \geq 1} H_{-r} \times H_{2 m+r} \tag{17}
\end{equation*}
$$

The terms of this sum are

$$
\begin{align*}
& H_{0} \times H_{2 m}=\sum_{k \geq 0}\{2(\bar{k} ; 2 m+k)\} \tag{18a}\\
& H_{r} \times H_{2 m-r}=\sum_{i=1}^{r}\{2(\overline{0} ; 2 m-i, i)\}+\sum_{k \geq 0}\{2(\bar{k} ; 2 m+k)\}, \tag{18b}\\
& H_{-r} \times H_{2 m+r}=\sum_{k \geq 0}\{2(\overline{r+k}, 2 m+r+k)\} \tag{18c}
\end{align*}
$$

so that
$\sum_{j \geq 1} H_{m-j} \times H_{m+j}=\sum_{i=1}^{m-1}(m-i)\{2(\overline{0} ; 2 m-i, i)\}+\sum_{k \geq 0}(m+k)\{2(\bar{k} ; 2 m+k)\}$.
Now, the multiplicity of $\{2(\overline{0} ; 2 m-i, i)\}$ in $H \otimes\{2\}$ is $p_{2}(2 m-2 i)=m-i+1$ for i even, and $p_{2}(2 m-2 i-1)=m-i$ for i odd. Similarly, the multiplicity of $\{2(\bar{k} ; 2 m+k)\}$ in $H \otimes\{2\}$ is equal to $p_{2}(2 m+2 k)=m+k+1$ for k even, and to $p_{2}(2 m+2 k-1)=m+k$ for k odd. Finally, we are left with

$$
\begin{equation*}
H_{m} \otimes\{2\}=\sum_{i=1}^{\lfloor m / 2\rfloor}\{2(\overline{0} ; 2 m-2 i, 2 i)\}+\sum_{k \geq 0}\{2(\overline{2 k} ; 2 m+2 k)\} \tag{20a}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
H_{m} \otimes\left\{1^{2}\right\}=\sum_{i=0}^{\lfloor(m-1) / 2\rfloor}\{2(\overline{0} ; 2 m-2 i-1,2 i+1)\}+\sum_{k \geq 0}\{2(\overline{2 k+1} ; 2 m+2 k+1)\} \tag{20b}
\end{equation*}
$$

Likewise,

$$
\begin{align*}
& H_{-m} \otimes\{2\}=\sum_{i=1}^{\lfloor m / 2\rfloor}\{2(\overline{2 m-2 i, 2 i} ; 0)\}+\sum_{k \geq 0}\{2(\overline{2 m+2 k} ; 2 k)\} \tag{20c}\\
& H_{-m} \otimes\left\{1^{2}\right\}=\sum_{i=0}^{\lfloor(m-1) / 2\rfloor}\{2(\overline{2 m-2 i-1,2 i+1} ; 0)\}+\sum_{k \geq 0}\{2(\overline{2 m+2 k+1} ; 2 k+1)\} \tag{20d}
\end{align*}
$$

5. Conclusion

We have been able to obtain complete results for all the Kronecker products, and their symmetrized squares, for all the fundamental harmonic unirreps of $U(p, q)$ expressing them in a compact closed form. The plethysms of the square of the unirrep H_{0} for $U(2,2)$ give the complete set of $U(2,2)$ unirreps that arise in a two-electron hydrogenic-like atom with the symmetric part describing the spin singlets $(S=0)$ and the antisymmetric part the spin triplets $(S=1)$. The groundstate $1 s^{2}\left({ }^{1} S\right)$ is the first level of an infinite tower of states associated with the $\{2(\overline{0} ; 0)\}$ unirrep while the lowest ${ }^{3} S P$ level is the first level of an infinite tower associated with the $\{2(\overline{1} ; 1)\}$ unirrep. A complete account of the twoelectron hydrogen like states remains to be considered but knowing the relevant $U(2,2)$ unirepps is a significant beginning. For an n-electron hydrogen-like atom $(n>2)$ the resolution of plethysms of the type $H_{0} \otimes\{\lambda\} \quad(\lambda \vdash n)$ is a formidable task and complete results of the type considered herein cannot be expected.

References

[1] Aitken A C 1946 Proc. Edinburgh Math. Soc. (2) 7196
[2] Barut A O and Kleinert H 1967 Phys. Rev. 1561541
[3] Bohr N 1913 Phil. Mag. 476
[4] Butler P H and Wybourne B G 1970 J. Math. Phys. 112519
[5] Kashiwara M and Vergne M 1978 Inventiones Math. 311
[6] King R C and Wybourne B G 1985 J. Phys. A: Math. Gen. 183113
[7] Pauli W 1926 Z. Phys. 36336
[8] Scharf T, Thibon J-Y and Wybourne B G 1993 J. Phys. A: Math. Gen. 267461
[9] Wybourne B G 1974 Classical groups for physicists (New-York: Wiley)
[10] Wulfman C E 1971 Group theory and its applications Vol II E M Loebl Ed (New York: Academic Press) pp 145-147

