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Abstract. We give the decomposition of the Kronecker products and the
symmetrized Kronecker squares of all the fundamental representations of the harmonic
series of unitary irreducible representations of U(p,q). The results for U(2,2) are

relevant to two-electron hydrogenic like atoms.

1. Introduction

Bohr, in his very first paper [3], on what has become known as “The Bohr-model” of
the atom, made the surprising discovery that the energies of levels of the non-relativistic

hydrogen atom could be expressed (in appropriate units) as simply

1
E, = 0 with n=1,2,...
With the advent of the Schrodinger equation for the H-atom it became apparent that

each value of n could be associated with orbital angular momenta of

and associated with each value of ¢ there were (204 1) values of the angular momentum
projection eigenvalues m, leading to each energy level E,, being associated with (n —1)?
eigenfunctions. Initially such a high degeneracy appeared surprising. Pauli [7] noted
that in a purely Coulombic central field there was an additional constant of the motion
associated with the Runge-Lenz vector and from there was led to the realisation that

the observed degeneracies were precisely the dimensions of certain of the irreducible
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representations of the group SO(4) ~ SU(2) x SU(2), in particular those commonly
designated as [n — 1,0] ~ {n — 1} x {n —1}.

Much later, Barut and Kleinert [2] observed that all the discrete levels of a H-
atom spanned a single infinite dimensional irreducible representation of the non-compact
group SO(4,2) ~ SU(2,2) with the group being referred to as the dynamical group of
the H-atom [2, 9]. The Runge-Lenz vector ceases to be a constant of the motion for two
or more electrons in a central Coulomb field [2, 9, 10, 4] and the SO(4) symmetry is
broken. Nevertheless, it can be useful to consider the n—electron states starting with the
single irreducible representation of SU(2,2), or more simply U(2,2), and then forming
symmetrized n—fold tensor products which will be the central problem considered here.
For greater generality we shall initially consider the group U(p, q) as previously studied
[6] by King and Wybourne. After a brief sketch of the relevant properties of U(p, ¢)
we tackle the problem of resolving the Kronecker powers of the relevant irreducible
representation into its relevant symmetrized powers, namely the problem of plethysms
in U(p,q). In the process we are able to give closed results for the second powers of the
fundamental harmonic series irreducible representations of U(p, ¢) which thus yields, in

the case of two electrons, the appropriate spin triplet and singlet states.

2. The fundamental harmonic series irreducible representations of U(p, ¢)

Following [6], we may embed the non-compact group U(p,¢) in Sp(2p + 2¢, R) whose

harmonic representation A decomposes as

A—>H:H0—|—§:(Hm—|—H_m) (1)
where

Hy = {1(0:0)} (2a)

H, ={1(0;m)} m=1,2,. (20)

H_,, ={l(m;0)} m=1,2,.. (2¢)

Upon restriction to the maximal compact subgroup U(q) x U(p) we have

Ho={1(0;0) = (0 x2)- (L 4k} x (k) (3a)

k=0

H,, ={1(0;m)} — (0 xe¢) Z{k} X {m + k}) (30)

H_p = {1(m;0)} — (0 x ) Z{m+k}><{k}) (3¢)
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The harmonic series unirreps {k(v;pu)} of U(p, q) are generated by considering powers

[5] H* of H. Under restriction from U(pk, ¢k) to U(p,q) x U(k)
H— Y {k(r;p)} < {w; ) (4)
v,

where the partition (x) has not more than p parts and () not more than ¢ parts and

their conjugate partitions (7) and (f) satisfy the constraints [5]

,&1 + 171 S k (5@)
ju <p and 7 <gq (50)

3. Kronecker products for all of the fundamental harmonic series unirreps

The Kronecker product of two arbitrary unirreps of U(p, ¢) may be evaluated following
[6] to give

{k(ﬁ; ,u)} X {ﬁ(f; 0')} = ZC:{k‘Fg(({Vs}k {%s}g' {5}7 {:us}k {Us}g' {C}))}(6)

where the notation is as in [6] and it is understood that

(5 M) st = {

(pA) if M<ppr<qand M +p <k+L

0 otherwise

(7)

Specialization of (6) to the fundamental harmonic series of U(p, ¢) yields the following

cases

2 = > ()} (s4)
H =Rt 2m) 4 pz:{a(o; 2m—pp)} m>0  (SH
. =L RETIme) gwm; 0) (8¢
H, x H_, = é{Q(W; m+ k)} (84)
H, % H, :m;nZ::S){Q(O;r—I—S—:1;,:1;)}—|—]§:1{2(k;r—|—5—|—k)} (8¢)
o, I = mjizs)m(m; Db RFSERDE ()
H_, x H, ={2(r;s)}+ i{Q(r—l——k; s+ k;} r,s >0 (89)

k=1



Hox Hy = {205m)} + Yo {2(km + b)) (sh)
Ho % H.p = 1200} + Y {200 F; )} (8i)

4. Symmetrized squares of the fundamental harmonic representations

To separate the Kronecker squares of the representations H, of U(p,q) into its
symmetric and antisymmetric parts, we first solve the corresponding problem for the
complete harmonic representation H. This is done by restricting the H of U(2p,2q)
through the chain

U(2p,2q) 5 Ulp,q) x U(2) D U(p,q) x 52 5 U(p,q) - (9)
Under U(2p,2q) | U(p,q) x U(2), we know that

H— 3 {25p0)} < {pip} . (10)

Vi i <2
Therefore, we just have to determine the restriction to Sy of the U(2) representations
{v;n}.
It is known ([1], see also [8]) that the Frobenius characteristic of the decomposition

of {m} under U(k) | S is the coefficient of z™ in the series

b (1%) 1 1 _12j S Ko (2)sn (11)

j=1 ARk

where R/\Jk(Z) are the (cocharge) Kostka-Foulkes polynomials. In particular for k = 2,
{m} | Sy is the coefficient of 2™ in
1

2 11 12
T 2 ) (12)
so that
{m} — p2(m)(2) + p2(m — 1)(11) (13)
where py(m) is the number of partitions of m into parts not greater that 2, that is,
_ [m+1
pa(m) = [#5].

Taking into account the U(2) equivalences {0;pip2} = €2{puy — po}, {m;n} =

¢"™{n +m} and {7773;0} = ¢ {11 — 11}, we obtain

- pa(pin — p2)(2) + pa(pr — p2 — 1)(11)  for  py even

O pnapiz) = {pz(,ul — 2 — 1)(2) + pa(pn — p2)(11)  for  py odd (144
- pa(m +n)(2) + p2(m+n—1)(11) for m even

{min} — {pz(m—l—n—l)(Z) + pa(m +n)(11) for m odd (148)

T ) pa(vn — 12)(2) + pa(hn —v2 — 1)(11) for vy even .
{772: 0} {pg(l/l — vy — 1)(2) + pa(rhn — v2)(11) for vy odd (14¢)



Now, we have

He{2} = (Ho + 2 (Hy, +H—m)) ® {2}

m>1

=Ho@ {2} + Ho x > (Hn + H_,,) + (Z Hm) @ {2}

m>1

+ > H,x H_ + (Z H_m) ® {2}

r,52>1 m>1
=Ho@ {2} + > HyxH_,,+R.

m>1

To extract Hy @ {2} from H @ {2}, we remark that since under U(p,q) | U(p) x U(q)

Hy — (0 x €) > {m} x {m}
m>0
the Kronecker square of Hy can only contain terms whose restriction to U(p) x U(q) is
a sum of representations (0 x €*){r; u} such that |v| = |u|. Clearly, the terms in R are
not of this form, and to obtain Hy @ {2}, we just need to compute the terms of the form
{2(m;m)} in H @ {2} and to remove the contribution of 3, <1 Hy, X H_pp.

We know from the above discussion that the multiplicity of {2(m;m)} in H® {2}
is equal to pa(m + m) =m + 1 for m even, and to pay(m + m — 1) = m for m odd. On
the other hand,

H, xH_, = Z{Z(W,m +k)}
k>0
so that a given {2(m;m)} occurs exactly m times in 35,5 Hy x H_;. Removing this

contribution, we are left with

Ho @ {2} = S {2(2k; 2)} . (15)

k>0
Since H§ = °,,5012(m;m)}, we also have
Ho@ {1’} =Y {22k + 1;2k + 1)} . (16)
k>0

To split the square of H,, (m > 1), we first observe that under restriction to
U(p) x U(q), it yields a sum of representations of the form (0 x €*){r} x {u} such
that |p| = |v| + 2m. Next, we proceed as above to extract it from H @ {2}. We have

H® {2} = (Hm+ZHj)®{2}

i#m

=H,2{2} +H, x> H;+ (ZHm—j) ® {2}

i#m i>1



+ (Z Hm—j) X (Z Hm+k) + (Z Hmﬂ') © {2}

i>1 k>1 i>1

Therefore, to extract H,, @ {2}, we just have to select from H @ {2} the terms having
the correct restriction property to U(p) x U(q) and to subtract the contribution of the
crossed products H,,—; X Hpqj (7 > 1). Suppose first that m > 1. Then,

m—1

ZHm—] X Hm—l—] = HO X H2m + Z HT X HQm—r + ZH—T X HQm—I—T . (17)
i>1 r=1 r>1
The terms of this sum are

Ho x Hoyp = _{2(k;2m +k)} (18a)

k>0
Hy X Hypor = {2(0;2m —2,0)} + > _{2(k;2m + k)} (180)
=1 k>0
H_, x Hypyr = Z{Z(r—l—k,Zm—l—r—l—k)} (18¢)
k>0
so that
m—1

S Hpoy X Hygy = > (m = ){2(0;2m — 4,0} + 3 (m + k){2(k;2m + &)} (19)
i>1 i=1 k>0

Now, the multiplicity of {2(0;2m —1,i)} in H®@ {2} is py(2m —2i) = m—i+1 for i even,
and pa(2m — 2i — 1) = m — 1 for i odd. Similarly, the multiplicity of {2(k;2m + k)} in
H @ {2} is equal to p2(2m +2k) = m+ k+1 for k even, and to p2(2m+2k—1) =m+k
for k£ odd. Finally, we are left with

[m/2]
Hﬁ@{%::Z:Q@ﬂmfﬂﬁ%ﬂ+§:ﬁéﬁ2m+2@}. (20a)

Similarly, we obtain

[(m=1)/2]
Hy, {1’} = > {200;2m—2i— 1,204 1)} + > {22k + L;2m+2k + 1)} (200)
=0 k>0
Likewise,
[m/2]
H_, @{2} = Y {22m —2:,25;0)} + >_{2(2m + 2k; 2k)} , (20¢)
=1 k>0
[(m=1)/2]

H,o{1*}= Y {20m—2—12+150)}+ 3 {2@m + 2k + [;2k + 1)} (20d)

1=0 k>0



5. Conclusion

We have been able to obtain complete results for all the Kronecker products, and their
symmetrized squares, for all the fundamental harmonic unirreps of U(p, q) expressing
them in a compact closed form. The plethysms of the square of the unirrep Hy for U(2, 2)
give the complete set of U(2,2) unirreps that arise in a two-electron hydrogenic-like atom
with the symmetric part describing the spin singlets (S = 0) and the antisymmetric part
the spin triplets (S = 1). The groundstate 1s*(1.9) is the first level of an infinite tower of
states associated with the {2(0;0)} unirrep while the lowest 3S P level is the first level of
an infinite tower associated with the {2(1;1)} unirrep. A complete account of the two-
electron hydrogen like states remains to be considered but knowing the relevant U(2, 2)
unirepps is a significant beginning. For an n—electron hydrogen-like atom (n > 2) the
resolution of plethysms of the type Hy@{A} (A F n)is a formidable task and complete

results of the type considered herein cannot be expected.
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