
Products and plethysms for the fundamentalharmonic series representations of U(p; q)Jean-Yves Thibony , Fr�ed�eric Toumazety and Brian G Wybournez xyInstitut Gaspard Monge, Universit�e de Marne-la-Vall�ee, 2 rue de la Butte-Verte, 93166Noisy-le-Grand cedex, FrancezInstytut Fizyki, Uniwersytet Miko laja Kopernika, ul Grudzi�adzka 5/7, 87-100 Toru�n,PolandAbstract. We give the decomposition of the Kronecker products and thesymmetrized Kronecker squares of all the fundamental representations of the harmonicseries of unitary irreducible representations of U (p; q). The results for U (2; 2) arerelevant to two-electron hydrogenic like atoms.1. IntroductionBohr, in his very �rst paper [3], on what has become known as \The Bohr-model" ofthe atom, made the surprising discovery that the energies of levels of the non-relativistichydrogen atom could be expressed (in appropriate units) as simplyEn = � 1n2 with n = 1; 2; : : :With the advent of the Schr�odinger equation for the H-atom it became apparent thateach value of n could be associated with orbital angular momenta of` = 1; 2; : : : ; n� 1and associated with each value of ` there were (2`+1) values of the angular momentumprojection eigenvalues m` leading to each energy level En being associated with (n�1)2eigenfunctions. Initially such a high degeneracy appeared surprising. Pauli [7] notedthat in a purely Coulombic central �eld there was an additional constant of the motionassociated with the Runge-Lenz vector and from there was led to the realisation thatthe observed degeneracies were precisely the dimensions of certain of the irreduciblex Supported by a Polish KBN Grant



2representations of the group SO(4) � SU(2) � SU(2), in particular those commonlydesignated as [n� 1; 0] � fn � 1g � fn� 1g.Much later, Barut and Kleinert [2] observed that all the discrete levels of a H-atom spanned a single in�nite dimensional irreducible representation of the non-compactgroup SO(4; 2) � SU(2; 2) with the group being referred to as the dynamical group ofthe H-atom [2, 9]. The Runge-Lenz vector ceases to be a constant of the motion for twoor more electrons in a central Coulomb �eld [2, 9, 10, 4] and the SO(4) symmetry isbroken. Nevertheless, it can be useful to consider the n�electron states starting with thesingle irreducible representation of SU(2; 2), or more simply U(2; 2), and then formingsymmetrized n�fold tensor products which will be the central problem considered here.For greater generality we shall initially consider the group U(p; q) as previously studied[6] by King and Wybourne. After a brief sketch of the relevant properties of U(p; q)we tackle the problem of resolving the Kronecker powers of the relevant irreduciblerepresentation into its relevant symmetrized powers, namely the problem of plethysmsin U(p; q). In the process we are able to give closed results for the second powers of thefundamental harmonic series irreducible representations of U(p; q) which thus yields, inthe case of two electrons, the appropriate spin triplet and singlet states.2. The fundamental harmonic series irreducible representations of U(p; q)Following [6], we may embed the non-compact group U(p; q) in Sp(2p + 2q;R) whoseharmonic representation ~� decomposes as~�! H = H0 + 1Xm=1(Hm +H�m) (1)where H0 = f1(�0; 0)g (2a)Hm = f1(�0;m)g m = 1; 2; : : : (2b)H�m = f1( �m; 0)g m = 1; 2; : : : (2c)Upon restriction to the maximal compact subgroup U(q)� U(p) we haveH0 = f1(�0; 0g ! (0 � ") � ( 1Xk=0f�kg � fkg) (3a)Hm = f1(�0;m)g ! (0 � ") � ( 1Xk=0f�kg � fm+ kg) (3b)H�m = f1( �m; 0)g ! (0 � ") � ( 1Xk=0fm+ kg � fkg) (3c)



3The harmonic series unirreps fk(��;�)g of U(p; q) are generated by considering powers[5] Hk of H. Under restriction from U(pk; qk) to U(p; q)� U(k)H !X�;�fk(��;�)g � f��;�g (4)where the partition (�) has not more than p parts and (�) not more than q parts andtheir conjugate partitions (~�) and (~�) satisfy the constraints [5]~�1 + ~�1 � k (5a)~�1 � p and ~�1 � q (5b)3. Kronecker products for all of the fundamental harmonic series unirrepsThe Kronecker product of two arbitrary unirreps of U(p; q) may be evaluated following[6] to give fk(��;�)g�f`(�� ;�)g =X� fk+`((f��sgk �f��sg` �f��g; f�sgk �f�sg` �f�g))g(6)where the notation is as in [6] and it is understood that((��;�))k+`;p;q = ( (��;�) if ~�1 � p; ~�1 � q and ~�1 + ~�1 � k + `0 otherwise (7)Specialization of (6) to the fundamental harmonic series of U(p; q) yields the followingcases H20 = 1Xn=0f2(�n;n)g (8a)H2m = 1Xn=0f2(�n;n+ 2m)g+ mXp=1f2(�0; 2m� p; p)g m > 0 (8b)H2�m = 1Xn=0f2(n+ 2m;n)g+ mXp=1f2(2m� p; p; 0)g (8c)Hm �H�m = 1Xk=0f2(m+ k;m+ k)g (8d)Hr �Hs = min(r;s)Xx=0 f2(�0; r + s� x; x)g+ 1Xk=1f2(�k; r + s+ k)g (8e)H�r �H�s = min(r;s)Xx=0 f2(r + s� x; x; 0)g + 1Xk=1f2(r + s+ k; k)g (8f)H�r �Hs = f2(�r; s)g+ 1Xk=1f2(r + k; s+ k)g r; s > 0 (8g)



4 H0 �Hm = f2(�0;m)g+ 1Xk=1f2(�k;m+ k)g (8h)H0 �H�m = f2(m; 0)g+ 1Xk=1f2(m+ k; k)g (8i)4. Symmetrized squares of the fundamental harmonic representationsTo separate the Kronecker squares of the representations Hm of U(p; q) into itssymmetric and antisymmetric parts, we �rst solve the corresponding problem for thecomplete harmonic representation H. This is done by restricting the H of U(2p; 2q)through the chainU(2p; 2q) � U(p; q)� U(2) � U(p; q)� S2 � U(p; q) : (9)Under U(2p; 2q) # U(p; q)� U(2), we know thatH ! X~�1+ ~�1�2f2(��;�)g � f��;�g : (10)Therefore, we just have to determine the restriction to S2 of the U(2) representationsf��;�g.It is known ([1], see also [8]) that the Frobenius characteristic of the decompositionof fmg under U(k) # Sk is the coe�cient of zm in the serieshk � X1 � z� = kYj=1 11� zj �X�`k ~K�;1k(z)s� (11)where ~K�;1k(z) are the (cocharge) Kostka-Foulkes polynomials. In particular for k = 2,fmg # S2 is the coe�cient of zm in1(1� z)(1� z2) [(2) + z(11)] (12)so that fmg ! p2(m)(2) + p2(m� 1)(11) (13)where p2(m) is the number of partitions of m into parts not greater that 2, that is,p2(m) = dm+12 e.Taking into account the U(2) equivalences f�0;�1�2g � ��2f�1 � �2g, f �m;ng ���mfn +mg and f�1�2; 0g � ���1f�1 � �2g, we obtainf�0;�1�2g ! ( p2(�1 � �2)(2) + p2(�1 � �2 � 1)(11) for �2 evenp2(�1 � �2 � 1)(2) + p2(�1 � �2)(11) for �2 odd (14a)f �m;ng ! ( p2(m+ n)(2) + p2(m+ n� 1)(11) for m evenp2(m+ n � 1)(2) + p2(m+ n)(11) for m odd (14b)f�1�2; 0g ! ( p2(�1 � �2)(2) + p2(�1 � �2 � 1)(11) for �1 evenp2(�1 � �2 � 1)(2) + p2(�1 � �2)(11) for �1 odd (14c)



5Now, we haveH 
 f2g = 0@H0 + Xm�1(Hm +H�m)1A
 f2g= H0 
 f2g+H0 � Xm�1(Hm +H�m) + 0@Xm�1Hm1A
 f2g+ Xr;s�1Hr �H�s + 0@Xm�1H�m1A 
 f2g= H0 
 f2g+ Xm�1Hm �H�m +R :To extract H0 
 f2g from H 
 f2g, we remark that since under U(p; q) # U(p)� U(q)H0 ! (0� �)Xm�0f �mg � fmgthe Kronecker square of H0 can only contain terms whose restriction to U(p)� U(q) isa sum of representations (0 � �2)f��;�g such that j�j = j�j. Clearly, the terms in R arenot of this form, and to obtain H0
f2g, we just need to compute the terms of the formf2( �m;m)g in H 
 f2g and to remove the contribution of Pm�1Hm �H�m.We know from the above discussion that the multiplicity of f2( �m;m)g in H 
 f2gis equal to p2(m+m) = m+ 1 for m even, and to p2(m+m� 1) = m for m odd. Onthe other hand, Hm �H�m =Xk�0f2(m+ k;m+ k)gso that a given f2( �m;m)g occurs exactly m times in Pk�1Hk �H�k . Removing thiscontribution, we are left withH0 
 f2g =Xk�0f2(2k; 2k)g : (15)Since H20 = Pm�0f2( �m;m)g, we also haveH0 
 f12g =Xk�0f2(2k + 1; 2k + 1)g : (16)To split the square of Hm (m � 1), we �rst observe that under restriction toU(p) � U(q), it yields a sum of representations of the form (0 � �2)f��g � f�g suchthat j�j = j�j+ 2m. Next, we proceed as above to extract it from H 
 f2g. We haveH 
 f2g = 0@Hm + Xj 6=mHj1A
 f2g= Hm 
 f2g +Hm � Xj 6=mHj + 0@Xj�1Hm�j1A 
 f2g



6 +0@Xj�1Hm�j1A � 0@Xk�1Hm+k1A+ 0@Xj�1Hm+j1A
 f2gTherefore, to extract Hm 
 f2g, we just have to select from H 
 f2g the terms havingthe correct restriction property to U(p) � U(q) and to subtract the contribution of thecrossed products Hm�j �Hm+j (j � 1). Suppose �rst that m � 1. Then,Xj�1Hm�j �Hm+j = H0 �H2m + m�1Xr=1 Hr �H2m�r +Xr�1H�r �H2m+r : (17)The terms of this sum areH0 �H2m =Xk�0f2(�k; 2m+ k)g ; (18a)Hr �H2m�r = rXi=1f2(�0; 2m� i; i)g+Xk�0f2(�k; 2m+ k)g ; (18b)H�r �H2m+r =Xk�0f2(r + k; 2m+ r + k)g (18c)so thatXj�1Hm�j �Hm+j = m�1Xi=1 (m� i)f2(�0; 2m� i; i)g+Xk�0(m+ k)f2(�k; 2m+ k)g : (19)Now, the multiplicity of f2(�0; 2m�i; i)g in H
f2g is p2(2m�2i) = m�i+1 for i even,and p2(2m � 2i� 1) = m� i for i odd. Similarly, the multiplicity of f2(�k; 2m + k)g inH
f2g is equal to p2(2m+2k) = m+k+1 for k even, and to p2(2m+2k�1) = m+kfor k odd. Finally, we are left withHm 
 f2g = bm=2cXi=1 f2(�0; 2m� 2i; 2i)g+Xk�0f2(2k; 2m+ 2k)g : (20a)Similarly, we obtainHm 
 f12g = b(m�1)=2cXi=0 f2(�0; 2m� 2i� 1; 2i+ 1)g +Xk�0f2(2k + 1; 2m+ 2k + 1)g (20b)Likewise,H�m 
 f2g = bm=2cXi=1 f2(2m� 2i; 2i; 0)g+Xk�0f2(2m + 2k; 2k)g ; (20c)H�m 
 f12g = b(m�1)=2cXi=0 f2(2m� 2i� 1; 2i+ 1; 0)g+Xk�0f2(2m + 2k + 1; 2k + 1)g (20d)



75. ConclusionWe have been able to obtain complete results for all the Kronecker products, and theirsymmetrized squares, for all the fundamental harmonic unirreps of U(p; q) expressingthem in a compact closed form. The plethysms of the square of the unirrepH0 for U(2; 2)give the complete set of U(2; 2) unirreps that arise in a two-electron hydrogenic-like atomwith the symmetric part describing the spin singlets (S = 0) and the antisymmetric partthe spin triplets (S = 1). The groundstate 1s2(1S) is the �rst level of an in�nite tower ofstates associated with the f2(�0; 0)g unirrep while the lowest 3SP level is the �rst level ofan in�nite tower associated with the f2(�1; 1)g unirrep. A complete account of the two-electron hydrogen like states remains to be considered but knowing the relevant U(2; 2)unirepps is a signi�cant beginning. For an n�electron hydrogen-like atom (n > 2) theresolution of plethysms of the type H0
f�g (� ` n) is a formidable task and completeresults of the type considered herein cannot be expected.References[1] Aitken A C 1946 Proc. Edinburgh Math. Soc. (2) 7 196[2] Barut A O and Kleinert H 1967 Phys. Rev. 156 1541[3] Bohr N 1913 Phil. Mag. 476[4] Butler P H and Wybourne B G 1970 J. Math. Phys. 11 2519[5] Kashiwara M and Vergne M 1978 Inventiones Math. 31 1[6] King R C and Wybourne B G 1985 J. Phys. A: Math. Gen. 18 3113[7] Pauli W 1926 Z. Phys. 36 336[8] Scharf T, Thibon J-Y and Wybourne B G 1993 J. Phys. A: Math. Gen. 26 7461[9] Wybourne B G 1974 Classical groups for physicists (New-York: Wiley)[10] Wulfman C E 1971 Group theory and its applications Vol II E M Loebl Ed (New York: AcademicPress) pp 145-147


