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The role of the exceptional Lie groups in physics is reviewed. Methods of calculat-
ing properties of exceptional Lie groups are considered and illustrated by a number

of examples.
1. INTRODUCTION

The exceptional Lie groups first appeared, just over 100 years ago, in the Theses of Elie
Cartan'. Cartan successfully obtained a complete classification of the complex semisimple

Lie groups and their associated Lie algebras*.

Cartan found four series of Lie algebras which he designated as A,, B,, C, and
D, which he associated with the classical Lie groups SU, 1, SOgpy1, Spye and SOy,. The
letter ¢ was used to designate the rank of the Lie algebra which was the dimension of the
maximal Abelian subalgebra. Cartan cast the commutation relations for semisimple Lie

algebras into the standard form

[H;, H;]=0 (i,k=1,...,¢) (l.a)
[Hi, Fo) = a;E, (1.b)
[Eq,Egl = NogEoys (ifa+80) (L.c)
[Ea, E_o] = o' H; (1.d)

* Tt is interesting to note that even before Cartan’s classification two English lawyers and two Russians independently
established what is today known as the F/g root lattice. Such lattices are relevant to various aspects of coding theory. For

a popular account see N. A. Sloane, Sci. Amer. 250,(11), 116 (1984)



There is a Lie algebra for each of the four series of classical Lie algebras for each value of
the positive integer ¢. In addition Cartan found five Lie algebras that occurred for only
five special ranks 2,4,6,7 and 8. These he termed exceptional Lie algebras and designated

them by the letter labels Gq, Fy, Fs, Fr and FEs.
It is interesting to note that even before

The exceptional groups appeared to be of little, it any, interest to physicists for some 55
years after Cartan’s thesis when Guilio Racah? introduced physicists to the exceptional
group Go in his analysis of the f—shell where he recognised the existence of Gy as a
subgroup of SO7 and exploited it in both the classification of states and giving an elegant
account of the Coulomb and spin-orbit interactions. In doing this Racah was mindful of
the importance of his analysis for the interpretation of the very complex spectra of the
rare earths. Indeed he titled his series of four papers ”"The Theory of Complex Spectra”.
His work initially made little impact on the atomic physics community who were by and
large satisfied with the book of Condon and Shortley® which required no knowledge of
the theory of Lie groups. The subject of Racah algebra was taken up intensely by nuclear
physicists such as Jahn* (of the Jahn-Teller effect) and Flowers®, the latter using the
group Go in his analysis of the nuclear f—shell. The development in the late 1950’s of the
experimental study of the electronic properties of rare earths in crystalline environments
by optical spectroscopy and electron spin resonance techniques finally stimulated the
application of Racah’s theory of complex spectra to its original purpose. The seminal
paper of Elliott, Judd and Runciman® followed by Judd’s book” brought to a much wider
group of atomic physicists the basic ideas of Racah’s theory and its use of the exceptional
group Gy. The same year, 1963, as the publication of Judd’s book saw the publication of
complete computer produced tables of matrix elements for calculations of properties of

the electronic f—shell.

The group G5 was used by Racah? simply as a mathematical device to simplify otherwise

complex calculations — no physical significance was attached to the use of 5. Nevertheless,



one remarkable result arose from Racah’s analysis of the Coulomb interaction for states
of maximum multiplicity, independently of the values of the Slater radial integrals, their
relative energies depended on a single parameter E5 and furthermore the 1S and *F terms
in f? were degenerate as were also the term pair °S° F in f*. Racah also realised that
his treatment was much simpler than might reasonably been expected, commenting that
"The values of ¢(WW’(200)) are given in Table XII but the results are much simpler than

could be expected from that table.”

There was a considerable revival of interest in the possibilities of the exceptional groups in
the construction of grand-unified theories of the fundamental interaction forces as typified
by the review of Gell-Mann, Ramond and Slansky® in 1978. A storm of interest in the
exceptional group Eg was created in 1984 by Green and Schwarz® dramatic development of
superstring theories. The role of the exceptional groups Eg and G5 in describing extensions
of the interacting boson model (IBM) of nuclei to sdgi bosons has been considered!® much

in the style of Racah’s original analysis for the f—shell.

Along side the development of applications of the exceptional groups has been the need
to develop methods for calculating the properties of representations of the exceptional
groups and their relevant subgroups and it is to this area we devote the remainder of this

article.
2. LABELLING REPRESENTATIONS

The unitary representations of the compact Lie groups may be uniquely labelled by giving
there maximal weight vector. The irreducible representations of the classical Lie groups
SU,, SO, and Sps, may be equivalently labelled by partitions of integers. Littlewood!! has
give such a systematic labelling encasing the relevant partitions in {,} brackets for SU,,
[,] for SO —n and (,) for Sps, with all zeroes omitted except for the case of the trivial
representation. Wybourne and Bowick!? made a systematic study of the basic properties
of the exceptional Lie groups and suggested that their irreducible representations could be

uniquely labelled in terms of the partitions used to label the irreducible representations



of one of their maximal subgroups and in particular to the partition label of the subgroup
corresponding to the highest weight irreducible representation contained in the relevant
group-subgroup decomposition. The relevant group-subgroup pairs they considered for
labelling purposes were Gy D SUs, Fy D SOg, Eg¢ D SUs x SUg, E7 D SUg and FEg D SUg. Thus
every irreducible representation was uniquely labelled by a constrained partition enclosed
in (,). The whole question of providing natural labels for the irreducible representations
of the exceptional groups was clearly spelt out by King and Al-Qubanchi'®1* who, while
largely cohering with the labelling advocated by Wybourne and Bowick, chose in the
case of the exceptional groups Eg, E; and Eg to take the partition label as that of the
irreducible representation of the appropriate maximal subgroup contragredient to the
highest weight irreducible representation contained in the group-subgroup decomposition,
a practice this author recommends. Thus whereas Wybourne and Bowick labelled the
fundamental representation of 7 as (18) King and Al-Qubanchi used the label (12). It is
important to note that in the case of the group Gs Racah’s (ug,us) labels are related to

the corresponding SUs based labels (A1, \3) by
/\1 — U —|— U9 /\2 — U (2)

In this article we use the SU3 based labels. King and Al-Qubanchi give detailed tables
of the relationship of the natural labels to those of Dynkin 16 and of the modification

rules required to convert non-standard partition labels into standard labels.
3. KRONECKER PRODUCTS AND BRANCHING RULES

The choice of an appropriate labelling scheme for the irreducible representations of the ex-
ceptional groups can lead to simplifications in the computation of Kronecker products and
branching rules. Much effort has been put into the development of results for the classical
Lie groups in terms of the properties of Schur functions or S—functions for brevity, (for

a general review see Littlewood' or Wybourne!”

. Modern mathematical presentations
have been given by Macdonald!® and by Sagan!?). These methods make extensive use of

the Littlewood-Richardson rule for resolving products of S—functions and making use of



Young tableaux. King?' emphasised the importance of the role of certain infinite series
of S—functions which allowed a succint description of many branching rules involving the
classical groups. King et al?? went on to apply those methods to the problem of resolving
symmetrised powers of rotation groups which was later to prove useful in handling the
corresponding problem of resolving symmetrised powers of exceptional group representa-
tions. Central to the computation of Kronecker products for exceptional group irreducible
representations was King’s?® observation that if one knew the decomposition of a given
irreducible representation to those of the maximal subgroup H defining the labelling of
the irreducible representations then the Kronecker product of any other irreducible repre-
sentation with the given irreducible representation could be found by computing for the
group H the Kronecker product of the decomposed irreducible representation s with that
of H corresponding to the labelling of the other exceptional group irreducible representa-
tion followed by simple application of modification rules for the subgroup H followed by
those for the exceptional group. Black et al*® went on to give general S-function methods
for handling the Kronecker products Of all the classical Lie groups and to systematise

their evaluation for the exceptional groups.

The development of the above techniques allowed their implementation into the computer
programme SCHUR?*?% which has permited the rapid evaluation of many properties of
both the classical and exceptional Lie groups as well as some information on the properties
of the infinite dimensional unitary representations of the non-compact groups Mp(n) and
Sp(2n, R) which are relevant to many-particle harmonic oscillator problems such as arise
in the theory of quantum dots?®. A very early version of SCHUR constructed by P. H.
Butler, was used to construct extensive tables'” that have received wide application to

problems relating to the f—shell. The modern version has vastly greater possibilities.
4. VANISHING MATRIX ELEMENTS

As a young Ph.D. student in the late 1950’s [ was endeavouring to apply Racah’s methods

to the interpretation of spectra of rare earths in crystals and was involved in extensive



hand calculations of spin-orbit matrix elements each often involving two or three pages
of calculation only to find the matrix element vanished even though it satisfied all the
common angular momentum selection rules. Alister McLellan, then HOD of Physics at
Canterbury remarked "There must be a group-theoretical explanation for the vanishing
of the spin-orbit matrix elements - selection rules tell you what you will not get not
what you will get”. McLellan?” noted that the spin-orbit interaction transformed under
Racah’s SO7 5 G2 D SO5 group scheme used to classify the f—shell states as [12](11) and
constructed two tables, the first gave the number, ¢(WW'[12]), of times the irreducible
representation [12] of SO(7) occurred in the Kronecker products W x W’ where W, W’ were
pairs of irreducible representations of SO;. The second table gave the corresponding
numbers ¢(U,U’,(21)) for the group Gz. One had then simply to check these tables and
if the number was null then the matrix elements of the spin-orbit interaction involving
states described by the relevant labels associated with SO; > G5 were necessarily null.

This immediately explained many of the observed null matrix elements, but not all.

Over many years, Judd has attempted to expose the hidden simplicities of the f—shell
that Racah hinted at in his 1949 paper?. Of particular interest has been the exposing of
unsuspected symmetries behind the vanishing of various matrix elements that appear to
satisfy the usual selection rules and of suprising proportionalities between sets of matrix
elements. The initial studies®® involved extensions of the method introduced by McLel-
lan observing, for example??, that if an operator @ transformed with respect to some
group-subgroup G O H according to the irrep pair WUy then the reduced matrix element
(WU|[WaUg||WaUg) would be necessarily null if W appeared in the symmetric part of
the Kronecker square of the irrep W while U appeared in the antisymmetric part of the
Kronecker square of the irrep Up, or vice versa. This became known as the explanation
by conflicting symmetries. It was this observation that led us®%3! to look at the general
problem of resolving Kronecker powers of irreducible representations into their symmetry

components using Littlewood’s!! method of plethysm!?. Even with the introduction of



the method of conflicting symmetries many null matrix elements defied explanation. This
was particularly apparent when effective three-body operators were introduced3?33 and

their matrix elements calculated for the f—shell34.
5. JUDD’S QUARK MODEL OF THE f-SHELL AND S0s

It was with that background that Judd and his associates®*~%* developed and entirely new
model of the f—shell which they have named ”"the quark model” by allusion to the well
known quark model of the hadrons*®. Basically, Judd’s model stems from his observation
that the states of the electronic f—shell can be regarded as arising from the combinations
of eight "quarks” that span the basic spinor irreducible representation A of SO;. A pair
of "quarks” are coupled together to form states of either odd (ungerade) or even (gerade)

parity and belong to a particular representation W of SO; occurring in
A x A =[0]4[1] 4+ [12] 4 [1?] (3)
Thus the spin-up ket states may be written as
((AA),W | 7LML) (4)

where p is the parity label. Such kets have a well defined particle number N and spin 5.
Thus these kets give a complete description of states of maximum multiplicity. A general
state can be formed by combining kets associated with separate spin-up and spin-down

spaces, namely

[(AA), Wy, (AA), Wy WrLMp) (5)

Crucial to the "quark” model and much of its subsequent development is the observation
that the spinor irreducible representation A of SO; can be embedded irreducibly into
the vector irreducible representation [1] of the group SOs. Furthermore, the three-fold

11,4647 of the irreducible representations of SOg makes possible three distinct

automorphism
group structures for the description of the states of the f—shell. The various mappings

between these different structures can lead to considerable insights into the properties of

matrix operators of interactions within the f—shell. The automorphisms of SO — 8 play



an important role in establishing the relevant branching rules and plethysms for resolving
symmetrised powers of SOg irreducible representations®®. The irreducible representations
of SOg can labelled by ordered partition labels [a, b, ¢, d| where a,b, ¢, d are either all integers

or all half-integers. If
a=b+c and d=0 (6)
the irreducible representation is said to have null triality meaning that it is unchanged

by the automorphism. All other irreducible representations of SOs have triality. The

automorphism is such that!!22:49

[a,b,c,d]
(a+b+c+d) (a+b—c—d) (a—b+c—d) (a+b+c+d)
- 2 ! 2 ! 2 ! 2
(a+b+c—d) (a+b—c+d) (a—b+c+d) (a—b—c—d)
- 2 ! 2 ! 2 ! 2
— [a,b,c, d] (7)

The automorphisms of SOs irreducible representations can often greatly simplify calcu-
lations such as symmetrised powers. For example, consider the evaluation of the SOs
plethysm [A;1%]_ ® {21} which at first sight appears formidable. But carrying out the
automorphism twice we see [A;12]_ — [21]. It is not difficult to evaluate [21] ® {21} in the
group Og to obtain
21] @ {21} = [621] + [61] + [54] + 2[531] + [522] + 2[5212]
+ 4[52] + [BLA# 4+ 4[517] + 2[5] + [421] + 3[432]
+ 3[431%]  + 5[43] + 3[4221] 4 2[421)# 4+ 12[421] + 6[417]
+ 10[41] + 3[3221] 4 [3%1]#  + 8[3?1] + [323] + 2[322]#
+ 8[327] + 12[321%2] 4 [32]# + 14[32] + 4[312]# + 16[312]
+ 6[3] + 5[231] + 4[221]#  + 14[221] 4+ 10[213] 4 [21]#
+ 15[21] + 2[13]# 4 6[17] + 4[1]

where the hash sign, #, is used to distinguish conjugate pairs of Og irreducible represen-



tations. Now standardise the resultant irreducible representations as for SOg to yield
21] @ {21} = [621] + [61] + [54] + 2[531] + [52?] + 2[5212]_
+ 2[521%];  + 4[52] + 5[517] + 2[5] + [4%1] + 3[432]
+ 3[431%2]_  + 3[431%]; + 5[43] + 3[4221]_ 4+ 3[42%1]4 + 14[421]
+ 6[413] 4+ 6[41%]+  + 10[41] + 3[3221]_  + 3[3%221]+ + 9[321]

322 4+ [32%]y 4+ 10[322]  + 12[3212]_ + 12[3212]4 + 15[32]
+20[312] 4+ 6[3] 45281 +5[2%1])4 4+ 18[221]  + 10[21%]_
+10[218]L 4+ 16[21]  + 8[17] + 4[1]

Applying the automorphism to the above result finally yields

(A 124 @ {21} = [A;4%] 4+ [As4321]+ + 2[A;431]  + [As43]. + [Aj427,
F2[A4212), + 3[A421) + 3[A42]y  + 3[Aj412)1  + 3[A41]-
+ [As 4]+ + [A;3%222] L 4 2[A;322]y 4 4[A;321%]4 4 3[A;3%1)-
O5[A;32). + B[A;3221]4 + 3[A;322) + 3[A;3212]_ + 14[A;321],
+9[A;32]. 4 6[A;313):  + 10[A;312_ + 12[A;31]4  + 5[A;3]-
(A2 4 [A1) 4 6[A2%). + 10[A;2212] 4 + 12[A;221]_
FOI5[A;22), + B[A;21%). 4+ 20[A;212), + I8[A;21]- + 10[A;2]4
+6[A 14+ I0[A 1] 4+ 16[A 1%, 4 8[A 1] + 4[A;0]4

Such an exercise becomes trivial using SCHUR but does illustrate one of the many

simplifications that arise in exploiting the automorphisms of SOs.
6. RETURN OF THE EXCEPTIONAL GROUPS

Racah’s successful exploitation of the exceptional group G5 might lead one to conclude
that that is the end of the appearance of the exceptional groups in atomic physics and
there is no role for the still more exotic exceptional groups, such as Fy and FEg, in atomic
physics. Such a conclusion is perhaps too hasty. We have already noted the use of Eg

in the interacting boson model of nuclei'®

. In that case there was a natural embedding
of the relevant angular momentum states s, d,g,i into the fundamental 27—dimensional

irreducible representation (1 : 1) of Fg. Furthermore, the 27—dimensional irreducible



10

representation (2) of Gy can be irreducibly embedded in the fundamental irreducible

representation of Fg and thus there are no spurious states.

In 1969 Wadzinski®® considered the group Fy in the classification of the states of an
N—electron configuration (s +d+ g+ h)N. While a mathematically interesting structure
it is largely irrelevant to atomic physics though perhaps not outside of the province of
the interacting boson model of nuclei. Judd?®!5? has considered the applicability of the
Lie group Fy4 to the atomic f—shell by associating his s and f quarks with pseudo-spins of
I =2 and 1 respectively to permit the embedding of SOL x G5 in Fy. In this way he has
been able to shed further light on the unusual structure of the f—shell as reflected in the
various relationships that are found to exist for atomic operators acting among f—shell

states. Two group chains are of particular relevance for the orbital states L of the f—shell
Fy D SO D SO7 D [G2 D SOY] (7)

and
Fy D SOL < [Gy 5 50L] (8)

where the [G2 D SO%] part of the two chains are identical. A given irreducible representa-
tion of Fy may be decomposed following either chain. While the beginning and end of the
two chains are identical the intermediate portions of the two chains will, in general, be
quite distinct. Thus a matrix element that satisfies the selection rules for one chain may
not satisfy those arising in the other chain. Judd has further noted that since Eg D SU3 x Gy
and Fg D Fy possibilities involving Fg can be considered. Much work remains to be done
but it is clear that efficient means of handling the properties of the exceptional groups and
their subgroups are an essential prerequisite to detailed investigations. To that end one
needs to be able to evaluate branching rules, Kronecker products and resolve symmetrised

powers of irreducible representations for all the relevant groups and subgroups.

Relatively few general results are known for the exceptional groups. However, we

give below some results we have recently established:-
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E6 —>U1 X 5010

(n:0) = 3 {2a—b—de) [2LEL L0 LS

(a—l—b—l—c:n) (9)

(a,b,c)
+264+d a+20+d a+d a+d a—d
(201 0) —{3(a—d)} x [ EESEE AT8 08 400
Fe —Fy

= (n/M)
(271 : 0) —>(n,n)—|—(n,n—1) —I—...—I—(n)
= (n,n/M)
Fy —S0g
<n>e(azbc)[2“;b%§§] (atb+c=n)
T

(a+b+c+d=n)(10)

(11)

(12)

(13)

(14)

(18)

(19)
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The programme SCHUR has been used to generate much relevant information for specific
representations of the exceptional groups and their subgroups. This information is too
voluminous to include here but may be obtained as a TEX file from the author by e-
mail. As an example, we give in Table 1 a shortened table of the decompositions of some
irreducible representations of Fy under Fy — SO3 x G5. If one knows the decompositions
for one group chain it is often a comparatively simple task to obtain the decompositions
for an alternative chain involving the same initial and final groups. Thus suppose one

knows the decompositions for the chain
Eg D 5016 D 509 x SOT D S0g x G (20)

and wishes to obtain the decompositions for Eg > Fy x G3. These may be found by

comparison of

E83F4><G23509><G2 (21)

with the decompositions obtained from Eq (20). Thus the decomposition of the 248—di-

mensional irreducible representation (217) under Eq (20) to SOy x G5 yields
(217) — ([11] 4 [5;0]) = (0) 4 [[1] + [5; 0] + [0]] x (1) + [0] x (21) (22)

But under 74y — SO we have

leading immediately to the Fg — Fy x G5 branching rule
(217) — (11) x (0) 4+ (1) x (1) 4+ (0) x (21)

Proceeding in that way we readily establish the decompositions shown in Table 2 which

go beyond those currently in the literature.

8. BACK TO THE FUTURE
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It is now possible to calculate many of the properties of the exceptional groups
and their subgroups with relative ease. As a consequence it becomes possible to explore
new avenues of applications of exceptional groups in physics. At the time of writing it is
by no means clear the directions such studies will take. It is intriguing to see the group
S0g emerging as a significant group in the f—shell and to see hints of still wider structures
involving the exceptional groups with SOs and Gq as significant subgroups. Perhaps the
largest exceptional group, Eg, will yet make an appearance in atomic physics, along with
its maximal subgroup SO which in turn contains naturally the subgroup SOs x SOg or
alternatively with Fg’s doubly exceptional subgroup Fy x G3. The exceptional groups,
along with SUs may all be given constructions in terms of octonions. Perhaps these are

part of the never-ending story of atomic structure.
9. A PERSONAL NOTE

As this volume is dedicated to the memory of Professor Adolfas Jucys I would like
to conclude on a personal note. I became aware of the work of Jucys and his collaborators
in the early 1960’s and decided to travel to Vilnius to meet him in 1968. Travel was not
easy to arrange but I finally reached Vilnius by train through Warsaw and there was Jucys,
with car to meet us, but the Intourist representative had also arrived and insisted we travel
to the hotel in the Intourist car with Jucys in pursuit from the rear. It was a memorable
visit with great hospitality from Professor Jucys and his charming wife. It was great to
overcome the barriers of separation that existed in those times. During that time I also
met Vladas Vanagas who was well ahead of his time in his mathematical comprehension
of atomic and nuclear structures, alas also no longer with us. There were the keen young
students including Rudzikas, Savukynas, Glembockis and Alisauskas. Jucys saw clearly
that computers would play an increasingly more significant part in future developments

and I do not believe he would be surprised by these developments.
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Table 1. Branching Rules for ry; — SO3; x G

The representations of SO3; are enclosed in square brackets and those of G5 in

curved brackets. The labels (A1);) for G2 are based on the maximal SUs subgroup. The

corresponding Racah labels (ujuz)may be found by the relationship

(21)

(212)

(22)

up = A1 — A2, Uz = Ay

503 X G2

[21(0) + [1](1)

[21(1) + [1](0) + [0](21)

B1(1) + [3](0) + [2](21) + [2](1) + [1](2) + [1](1) + [1](0) + [0](1)

[41(0) + [3](1) + [21(2) + [2](1) + [2](0) + [1}(21) + [1](1) + [0](2) + [0](0)

[41(1) + [3](21) + [3](2) + B](1) + [3](0) + [21(21) + [2](2) + 2[2](1) + [2](0)
BT + 1) + [1(2) + 201(1) + [1](0) + [0](1)

[51(1) + [5](0) + [4](21) + [4](2) + 2[4](1) + [4)(0) + [3](31) + 23](21) + 2[3](2)
+3[3](1) + 31(0) + [2](31) + [21(3) + 2[2](21) + 3[2](2) + 4[2](1) + 2[2](0) + [1](31)
HH3) + 201(21) + 3[1](2) + 3[1)(1) + [1](0) + [0](31) + [0](21) + [0](2) + [0](1)
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(21) —

(31%) —

(427) —

Table 2. Some Ez — Fy x G Decompositions

(s:2) x (1)

+ (s:1) < (1)
+(0) x (0)

+(12)x(21) + (1) x(2)

T @)% +2)x0)
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