
1 Exceptional Lie groups in physicsB.G.WybourneInstytut Fizyki, Uniwersytet Miko laja Kopernikaul. Grudzi�adzka 5/787-100 Toru�nPoland(e-mail:bgw@phys.uni.torun.pl)The role of the exceptional Lie groups in physics is reviewed. Methods of calculat-ing properties of exceptional Lie groups are considered and illustrated by a numberof examples.1. INTRODUCTIONThe exceptional Lie groups �rst appeared, just over 100 years ago, in the Theses of ElieCartan1. Cartan successfully obtained a complete classi�cation of the complex semisimpleLie groups and their associated Lie algebras�.Cartan found four series of Lie algebras which he designated as A`, B`, C` andD` which he associated with the classical Lie groups SU`+1, SO2`+1, Sp2` and SO2`. Theletter ` was used to designate the rank of the Lie algebra which was the dimension of themaximal Abelian subalgebra. Cartan cast the commutation relations for semisimple Liealgebras into the standard form[Hi;Hj] = 0 (i; k = 1; : : : ; `) (1:a)[Hi; E�] = �iE� (1:b)[E�; E�] = N��E�+� (if �+ � 6 0) (1:c)[E�; E��] = �iHi (1:d)� It is interesting to note that even beforeCartan's classi�cationtwo English lawyers and two Russians independentlyestablished what is today known as the E8 root lattice. Such lattices are relevant to various aspects of coding theory. Fora popular account see N. A. Sloane, Sci. Amer. 250,(11), 116 (1984)



2 There is a Lie algebra for each of the four series of classical Lie algebras for each value ofthe positive integer `. In addition Cartan found �ve Lie algebras that occurred for only�ve special ranks 2,4,6,7 and 8. These he termed exceptional Lie algebras and designatedthem by the letter labels G2, F4, E6, E7 and E8.It is interesting to note that even beforeThe exceptional groups appeared to be of little, if any, interest to physicists for some 55years after Cartan's thesis when Guilio Racah2 introduced physicists to the exceptionalgroup G2 in his analysis of the f�shell where he recognised the existence of G2 as asubgroup of SO7 and exploited it in both the classi�cation of states and giving an elegantaccount of the Coulomb and spin-orbit interactions. In doing this Racah was mindful ofthe importance of his analysis for the interpretation of the very complex spectra of therare earths. Indeed he titled his series of four papers "The Theory of Complex Spectra".His work initially made little impact on the atomic physics community who were by andlarge satis�ed with the book of Condon and Shortley3 which required no knowledge ofthe theory of Lie groups. The subject of Racah algebra was taken up intensely by nuclearphysicists such as Jahn4 (of the Jahn-Teller e�ect) and Flowers5, the latter using thegroup G2 in his analysis of the nuclear f�shell. The development in the late 1950's of theexperimental study of the electronic properties of rare earths in crystalline environmentsby optical spectroscopy and electron spin resonance techniques �nally stimulated theapplication of Racah's theory of complex spectra to its original purpose. The seminalpaper of Elliott, Judd and Runciman6 followed by Judd's book7 brought to a much widergroup of atomic physicists the basic ideas of Racah's theory and its use of the exceptionalgroup G2. The same year, 1963, as the publication of Judd's book saw the publication ofcomplete computer produced tables of matrix elements for calculations of properties ofthe electronic f�shell.The group G2 was used by Racah2 simply as a mathematical device to simplify otherwisecomplex calculations { no physical signi�cance was attached to the use of G2. Nevertheless,



3 one remarkable result arose from Racah's analysis of the Coulomb interaction for statesof maximum multiplicity, independently of the values of the Slater radial integrals, theirrelative energies depended on a single parameter E3 and furthermore the 4S and 4F termsin f3 were degenerate as were also the term pair 5S;5 F in f4. Racah also realised thathis treatment was much simpler than might reasonably been expected, commenting that"The values of c(WW 0(200)) are given in Table XII but the results are much simpler thancould be expected from that table."There was a considerable revival of interest in the possibilities of the exceptional groups inthe construction of grand-uni�ed theories of the fundamental interaction forces as typi�edby the review of Gell-Mann, Ramond and Slansky8 in 1978. A storm of interest in theexceptional group E8 was created in 1984 by Green and Schwarz9 dramatic development ofsuperstring theories. The role of the exceptional groups E6 and G2 in describing extensionsof the interacting boson model (IBM) of nuclei to sdgi bosons has been considered10 muchin the style of Racah's original analysis for the f�shell.Along side the development of applications of the exceptional groups has been the needto develop methods for calculating the properties of representations of the exceptionalgroups and their relevant subgroups and it is to this area we devote the remainder of thisarticle.2. LABELLING REPRESENTATIONSThe unitary representations of the compact Lie groups may be uniquely labelled by givingthere maximal weight vector. The irreducible representations of the classical Lie groupsSUn ; SOn and Sp2n may be equivalently labelled by partitions of integers. Littlewood11 hasgive such a systematic labelling encasing the relevant partitions in f; g brackets for SUn,[; ] for SO � n and h; i for Sp2n with all zeroes omitted except for the case of the trivialrepresentation. Wybourne and Bowick12 made a systematic study of the basic propertiesof the exceptional Lie groups and suggested that their irreducible representations could beuniquely labelled in terms of the partitions used to label the irreducible representations



4 of one of their maximal subgroups and in particular to the partition label of the subgroupcorresponding to the highest weight irreducible representation contained in the relevantgroup-subgroup decomposition. The relevant group-subgroup pairs they considered forlabelling purposes were G2 � SU3, F4 � SO9, E6 � SU2 � SU6, E7 � SU8 and E8 � SU9. Thusevery irreducible representation was uniquely labelled by a constrained partition enclosedin (; ). The whole question of providing natural labels for the irreducible representationsof the exceptional groups was clearly spelt out by King and Al-Qubanchi13;14 who, whilelargely cohering with the labelling advocated by Wybourne and Bowick, chose in thecase of the exceptional groups E6, E7 and E8 to take the partition label as that of theirreducible representation of the appropriate maximal subgroup contragredient to thehighest weight irreducible representation contained in the group-subgroup decomposition,a practice this author recommends. Thus whereas Wybourne and Bowick labelled thefundamental representation of E7 as (16) King and Al-Qubanchi used the label (12). It isimportant to note that in the case of the group G2 Racah's (u1; u2) labels are related tothe corresponding SU3 based labels (�1; �2) by�1 = u1 + u2 �2 = u2 (2)In this article we use the SU3 based labels. King and Al-Qubanchi give detailed tablesof the relationship of the natural labels to those of Dynkin 15;16 and of the modi�cationrules required to convert non-standard partition labels into standard labels.3. KRONECKER PRODUCTS AND BRANCHING RULESThe choice of an appropriate labelling scheme for the irreducible representations of the ex-ceptional groups can lead to simpli�cations in the computation of Kronecker products andbranching rules. Much e�ort has been put into the development of results for the classicalLie groups in terms of the properties of Schur functions or S�functions for brevity, (fora general review see Littlewood11 or Wybourne17. Modern mathematical presentationshave been given by Macdonald18 and by Sagan19). These methods make extensive use ofthe Littlewood-Richardson rule for resolving products of S�functions and making use of



5 Young tableaux. King21 emphasised the importance of the role of certain in�nite seriesof S�functions which allowed a succint description of many branching rules involving theclassical groups. King et al22 went on to apply those methods to the problem of resolvingsymmetrised powers of rotation groups which was later to prove useful in handling thecorresponding problem of resolving symmetrised powers of exceptional group representa-tions. Central to the computation of Kronecker products for exceptional group irreduciblerepresentations was King's23 observation that if one knew the decomposition of a givenirreducible representation to those of the maximal subgroup H de�ning the labelling ofthe irreducible representations then the Kronecker product of any other irreducible repre-sentation with the given irreducible representation could be found by computing for thegroup H the Kronecker product of the decomposed irreducible representation s with thatof H corresponding to the labelling of the other exceptional group irreducible representa-tion followed by simple application of modi�cation rules for the subgroup H followed bythose for the exceptional group. Black et al23 went on to give general S-function methodsfor handling the Kronecker products Of all the classical Lie groups and to systematisetheir evaluation for the exceptional groups.The development of the above techniques allowed their implementation into the computerprogramme SCHUR24;25 which has permited the rapid evaluation of many properties ofboth the classical and exceptional Lie groups as well as some information on the propertiesof the in�nite dimensional unitary representations of the non-compact groups Mp(n) andSp(2n;R) which are relevant to many-particle harmonic oscillator problems such as arisein the theory of quantum dots26. A very early version of SCHUR constructed by P. H.Butler, was used to construct extensive tables17 that have received wide application toproblems relating to the f�shell. The modern version has vastly greater possibilities.4. VANISHING MATRIX ELEMENTSAs a young Ph.D. student in the late 1950's I was endeavouring to apply Racah's methodsto the interpretation of spectra of rare earths in crystals and was involved in extensive



6 hand calculations of spin-orbit matrix elements each often involving two or three pagesof calculation only to �nd the matrix element vanished even though it satis�ed all thecommon angular momentum selection rules. Alister McLellan, then HOD of Physics atCanterbury remarked "There must be a group-theoretical explanation for the vanishingof the spin-orbit matrix elements - selection rules tell you what you will not get notwhat you will get". McLellan27 noted that the spin-orbit interaction transformed underRacah's SO7 � G2 � SO3 group scheme used to classify the f�shell states as [12](11) andconstructed two tables, the �rst gave the number, c(WW 0[12]), of times the irreduciblerepresentation [12] of SO(7) occurred in the Kronecker products W �W 0 where W;W 0 werepairs of irreducible representations of SO7. The second table gave the correspondingnumbers c(U;U 0; (21)) for the group G2. One had then simply to check these tables andif the number was null then the matrix elements of the spin-orbit interaction involvingstates described by the relevant labels associated with SO7 � G2 were necessarily null.This immediately explained many of the observed null matrix elements, but not all.Over many years, Judd has attempted to expose the hidden simplicities of the f�shellthat Racah hinted at in his 1949 paper2. Of particular interest has been the exposing ofunsuspected symmetries behind the vanishing of various matrix elements that appear tosatisfy the usual selection rules and of suprising proportionalities between sets of matrixelements. The initial studies28 involved extensions of the method introduced by McLel-lan observing, for example29, that if an operator O transformed with respect to somegroup-subgroup G � H according to the irrep pair WGUH then the reduced matrix elementhWUkWGUHkWGUH i would be necessarily null if W appeared in the symmetric part ofthe Kronecker square of the irrep WG while U appeared in the antisymmetric part of theKronecker square of the irrep UH , or vice versa. This became known as the explanationby conicting symmetries. It was this observation that led us30;31 to look at the generalproblem of resolving Kronecker powers of irreducible representations into their symmetrycomponents using Littlewood's11 method of plethysm17. Even with the introduction of



7 the method of conicting symmetries many null matrix elements de�ed explanation. Thiswas particularly apparent when e�ective three-body operators were introduced32;33 andtheir matrix elements calculated for the f�shell34.5. JUDD'S QUARK MODEL OF THE f�SHELL AND SO8It was with that background that Judd and his associates35�44 developed and entirely newmodel of the f�shell which they have named "the quark model" by allusion to the wellknown quark model of the hadrons45. Basically, Judd's model stems from his observationthat the states of the electronic f�shell can be regarded as arising from the combinationsof eight "quarks" that span the basic spinor irreducible representation � of SO7. A pairof "quarks" are coupled together to form states of either odd (ungerade) or even (gerade)parity and belong to a particular representation W of SO7 occurring in��� = [0] + [1] + [12] + [13] (3)Thus the spin-up ket states may be written asj(��)pW " �LMLi (4)where p is the parity label. Such kets have a well de�ned particle number N and spin S.Thus these kets give a complete description of states of maximum multiplicity. A generalstate can be formed by combining kets associated with separate spin-up and spin-downspaces, namely j(��)pW"; (��)pW#;W�LMLi (5)Crucial to the "quark" model and much of its subsequent development is the observationthat the spinor irreducible representation � of SO7 can be embedded irreducibly intothe vector irreducible representation [1] of the group SO8. Furthermore, the three-foldautomorphism11;46;47 of the irreducible representations of SO8 makes possible three distinctgroup structures for the description of the states of the f�shell. The various mappingsbetween these di�erent structures can lead to considerable insights into the properties ofmatrix operators of interactions within the f�shell. The automorphisms of SO � 8 play



8 an important role in establishing the relevant branching rules and plethysms for resolvingsymmetrised powers of SO8 irreducible representations48. The irreducible representationsof SO8 can labelled by ordered partition labels [a; b; c; d] where a; b; c; d are either all integersor all half-integers. If a = b+ c and d = 0 (6)the irreducible representation is said to have null triality meaning that it is unchangedby the automorphism. All other irreducible representations of SO8 have triality. Theautomorphism is such that11;22;49[a; b; c; d]! "(a+ b+ c + d)2 ; (a+ b� c� d)2 ; (a� b+ c� d)2 ; (a+ b+ c+ d)2 #! "(a+ b+ c � d)2 ; (a+ b� c+ d)2 ; (a� b+ c+ d)2 ; (a � b� c� d)2 #! [a; b; c; d] (7)The automorphisms of SO8 irreducible representations can often greatly simplify calcu-lations such as symmetrised powers. For example, consider the evaluation of the SO8plethysm [�;12]� 
 f21g which at �rst sight appears formidable. But carrying out theautomorphism twice we see [�; 12]� ! [21]. It is not di�cult to evaluate [21]
f21g in thegroup O8 to obtain[21]
 f21g = [621] + [61] + [54] + 2[531] + [522] + 2[5212]+ 4[52] + [512]# + 4[512] + 2[5] + [421] + 3[432]+ 3[4312] + 5[43] + 3[4221] + 2[421]# + 12[421] + 6[413]+ 10[41] + 3[3221] + [321]# + 8[321] + [323] + 2[322]#+ 8[322] + 12[3212] + [32]# + 14[32] + 4[312]# + 16[312]+ 6[3] + 5[231] + 4[221]# + 14[221] + 10[213] + [21]#+ 15[21] + 2[13]# + 6[13] + 4[1]where the hash sign, #, is used to distinguish conjugate pairs of O8 irreducible represen-



9 tations. Now standardise the resultant irreducible representations as for SO8 to yield[21]
 f21g = [621] + [61] + [54] + 2[531] + [522] + 2[5212]�+ 2[5212]+ + 4[52] + 5[512] + 2[5] + [421] + 3[432]+ 3[4312]� + 3[4312]+ + 5[43] + 3[4221]� + 3[4221]+ + 14[421]+ 6[413]� + 6[413]+ + 10[41] + 3[3221]� + 3[3221]+ + 9[321]+ [323]� + [323]+ + 10[322] + 12[3212]� + 12[3212]+ + 15[32]+ 20[312] + 6[3] + 5[231]� + 5[231]+ + 18[221] + 10[213]�+ 10[213]+ + 16[21] + 8[13] + 4[1]Applying the automorphism to the above result �nally yields[�; 12]+ 
 f21g = [�;42]+ + [�;4321]+ + 2[�;431]+ + [�;43]� + [�;422]++ 2[�; 4212]+ + 3[�;421]� + 3[�;42]+ + 3[�;412]+ + 3[�;41]�+ [�;4]+ + [�;3222]+ + 2[�;322]+ + 4[�;3212]+ + 3[�;321]�+ 5[�; 32]+ + 5[�;3221]+ + 3[�;322]� + 3[�;3212]� + 14[�; 321]++ 9[�; 32]� + 6[�;313]+ + 10[�; 312]� + 12[�; 31]+ + 5[�;3]�+ 2[�; 24]+ + [�;231]� + 6[�;23]+ + 10[�; 2212]++ 12[�; 221]�+ 15[�; 22]+ + 5[�;213]� + 20[�; 212]+ + 18[�; 21]� + 10[�; 2]++ 6[�; 14]+ + 10[�; 13]� + 16[�; 12]+ + 8[�;1]� + 4[�;0]+Such an exercise becomes trivial using SCHUR but does illustrate one of the manysimpli�cations that arise in exploiting the automorphisms of SO8.6. RETURN OF THE EXCEPTIONAL GROUPSRacah's successful exploitation of the exceptional group G2 might lead one to concludethat that is the end of the appearance of the exceptional groups in atomic physics andthere is no role for the still more exotic exceptional groups, such as F4 and E6, in atomicphysics. Such a conclusion is perhaps too hasty. We have already noted the use of E6in the interacting boson model of nuclei10. In that case there was a natural embeddingof the relevant angular momentum states s; d; g; i into the fundamental 27�dimensionalirreducible representation (1 : 1) of E6. Furthermore, the 27�dimensional irreducible



10 representation (2) of G2 can be irreducibly embedded in the fundamental irreduciblerepresentation of E6 and thus there are no spurious states.In 1969 Wadzinski50 considered the group F4 in the classi�cation of the states of anN�electron con�guration (s + d+ g + h)N . While a mathematically interesting structureit is largely irrelevant to atomic physics though perhaps not outside of the province ofthe interacting boson model of nuclei. Judd51;52 has considered the applicability of theLie group F4 to the atomic f�shell by associating his s and f quarks with pseudo-spins ofI = 2 and 1 respectively to permit the embedding of SOI3 � G2 in F4. In this way he hasbeen able to shed further light on the unusual structure of the f�shell as reected in thevarious relationships that are found to exist for atomic operators acting among f�shellstates. Two group chains are of particular relevance for the orbital states L of the f�shellF4 � SO8 � SO7 � [G2 � SOL3 ] (7)and F4 � SOI3 � [G2 � SOL3 ] (8)where the [G2 � SOL3 ] part of the two chains are identical. A given irreducible representa-tion of F4 may be decomposed following either chain. While the beginning and end of thetwo chains are identical the intermediate portions of the two chains will, in general, bequite distinct. Thus a matrix element that satis�es the selection rules for one chain maynot satisfy those arising in the other chain. Judd has further noted that since E6 � SU3�G2and E6 � F4 possibilities involving E6 can be considered. Much work remains to be donebut it is clear that e�cient means of handling the properties of the exceptional groups andtheir subgroups are an essential prerequisite to detailed investigations. To that end oneneeds to be able to evaluate branching rules, Kronecker products and resolve symmetrisedpowers of irreducible representations for all the relevant groups and subgroups.Relatively few general results are known for the exceptional groups. However, wegive below some results we have recently established:-



11 E6 !U1 � SO10(n : 0) ! X(a;b;c)f2a� b � 4cg � [2a+ b2 ; b2 ; b2 ; b2 ; b2] (a + b+ c = n) (9)(2n : 0) !f3(a� d)g � [a+ 2b + d2 ; a+ 2b + d2 ; a+ d2 ; a+ d2 ; a� d2 ] (a+ b+ c+ d = n)(10)E6 !F4(n : n) !(n) + (n� 1) + : : :+ (0)= (n=M) (11)(2n : 0) !(n; n) + (n; n� 1) + : : :+ (n)= (n; n=M) (12)F4 !SO9(n) ! X(a;b;c)[2a+ b2 ; b2 ; b2 ; b2] (a + b+ c = n) (13)(n; n) !X(a;b)[2a+ b2 ; 2a + b2 ; b2 ; b2] (a + b = 2n) (14)SO7 !G2[n]!(n) (15)[nn]! nXm=0(2n=m; n=m) (16)[nnn]!(2n=M) (17)G2 !SU3(n) ! nXm=0 mXk=0fm; kg (18)(2n; n) ! nXm=0 mXk=0f2n�m;n� kg (19)



12 The programme SCHUR has been used to generate much relevant information for speci�crepresentations of the exceptional groups and their subgroups. This information is toovoluminous to include here but may be obtained as a TEX �le from the author by e-mail. As an example, we give in Table 1 a shortened table of the decompositions of someirreducible representations of F4 under F4 ! SO3 � G2. If one knows the decompositionsfor one group chain it is often a comparatively simple task to obtain the decompositionsfor an alternative chain involving the same initial and �nal groups. Thus suppose oneknows the decompositions for the chainE8 � SO16 � SO9 � SO7 � SO9 �G2 (20)and wishes to obtain the decompositions for E8 � F4 � G2. These may be found bycomparison of E8 � F4� G2 � SO9 �G2 (21)with the decompositions obtained from Eq (20). Thus the decomposition of the 248�di-mensional irreducible representation (217) under Eq (20) to SO9 �G2 yields(217) ! ([11] + [s; 0])� (0) + [[1] + [s; 0] + [0]]� (1) + [0]� (21) (22)But under F4 ! SO9 we have (11) ![11] + [s; 0](1) ![1] + [s; 0] + [0](0) ![0]leading immediately to the E8 ! F4 �G2 branching rule(217) ! (11)� (0) + (1)� (1) + (0) � (21)Proceeding in that way we readily establish the decompositions shown in Table 2 whichgo beyond those currently in the literature.8. BACK TO THE FUTURE



13 It is now possible to calculate many of the properties of the exceptional groupsand their subgroups with relative ease. As a consequence it becomes possible to explorenew avenues of applications of exceptional groups in physics. At the time of writing it isby no means clear the directions such studies will take. It is intriguing to see the groupSO8 emerging as a signi�cant group in the f�shell and to see hints of still wider structuresinvolving the exceptional groups with SO8 and G2 as signi�cant subgroups. Perhaps thelargest exceptional group, E8, will yet make an appearance in atomic physics, along withits maximal subgroup SO16 which in turn contains naturally the subgroup SO8 � SO8 oralternatively with E8's doubly exceptional subgroup F4 � G2. The exceptional groups,along with SU3 may all be given constructions in terms of octonions. Perhaps these arepart of the never-ending story of atomic structure.9. A PERSONAL NOTEAs this volume is dedicated to the memory of Professor Adolfas Jucys I would liketo conclude on a personal note. I became aware of the work of Jucys and his collaboratorsin the early 1960's and decided to travel to Vilnius to meet him in 1968. Travel was noteasy to arrange but I �nally reached Vilnius by train through Warsaw and there was Jucys,with car to meet us, but the Intourist representative had also arrived and insisted we travelto the hotel in the Intourist car with Jucys in pursuit from the rear. It was a memorablevisit with great hospitality from Professor Jucys and his charming wife. It was great toovercome the barriers of separation that existed in those times. During that time I alsomet Vladas Vanagas who was well ahead of his time in his mathematical comprehensionof atomic and nuclear structures, alas also no longer with us. There were the keen youngstudents including Rudzikas, Savukynas, Glembockis and Alisauskas. Jucys saw clearlythat computers would play an increasingly more signi�cant part in future developmentsand I do not believe he would be surprised by these developments.ACKNOWLEDGEMENTThe work reported herein has been supported by Polish KBN Grant 18/p3/94/07



14 Table 1. Branching Rules for F4 ! SO3 � G2The representations of SO3 are enclosed in square brackets and those of G2 incurved brackets. The labels (�1�2) for G2 are based on the maximal SU3 subgroup. Thecorresponding Racah labels (u1u2)may be found by the relationshipu1 = �1 � �2; u2 = �2F4 SO3 � G2(1) [2](0) + [1](1)(12) [2](1) + [1](0) + [0](21)(s; 1) [3](1) + [3](0) + [2](21) + [2](1) + [1](2) + [1](1) + [1](0) + [0](1)(2) [4](0) + [3](1) + [2](2) + [2](1) + [2](0) + [1](21) + [1](1) + [0](2) + [0](0)(21) [4](1) + [3](21) + [3](2) + [3](1) + [3](0) + [2](21) + [2](2) + 2[2](1) + [2](0)+[1](31) + [1](21) + [1](2) + 2[1](1) + [1](0) + [0](1)(212) [4](21) + [4](1) + [3](2) + [3](1) + [3](0) + [2](31) + [2](21) + [2](2)+2[2](1) + [1](21) + [1](2) + [1](1) + [1](0) + [0](3) + [0](21) + [0](1)(22) [4](2) + [3](21) + [3](1) + [2](31) + [2](2) + [2](1) + [2](0) + [1](21) + [1](1)+[0](42) + [0](2) + [0](0)(s; 2) [5](1) + [5](0) + [4](21) + [4](2) + 2[4](1) + [4](0) + [3](31) + 2[3](21) + 2[3](2)+3[3](1) + [3](0) + [2](31) + [2](3) + 2[2](21) + 3[2](2) + 4[2](1) + 2[2](0) + [1](31)+[1](3) + 2[1](21) + 3[1](2) + 3[1](1) + [1](0) + [0](31) + [0](21) + [0](2) + [0](1)



15 Table 2. Some E8 ! F4 �G2 Decompositions(21) ! (2) � (0) + (s; 1)� (1) + (12)� (21) + (1)� (2) + (1)� (1)+ (0)� (2) + (0)� (0)(217) ! (12)� (0) + (1)� (1) + (0)� (21)(3) ! (s; 2) � (1) + (s; 2)� (0) + (212)� (21) + (21) � (2) + (21)� (1)+ (2)� (21) + (2)� (2) + (2)� (1) + (2)� (0) + (s; 1)� (31)+ (s; 1)� (21) + (s; 1)� (2) + 2(s; 1)� (1) + (12)� (3) + (12)� (21)+ (12)� (2) + (12)� (1) + (12)� (0) + (1)� (31) + (1)� (3)+ (1)� (21) + 2(1) � (2) + 2(1) � (1) + (1)� (0) + (0)� (31)+ (0)� (21) + (0)� (2)(316) ! (212)� (0) + (21) � (1) + (2)� (21) + (2)� (1) + (s; 1)� (2)+ (s; 1)� (1) + (s; 1)� (0) + (12)� (21) + (12)� (2) + (12)� (0)+ (1)� (31) + (1)� (21) + (1)� (2) + 2(1) � (1) + (0)� (3)+ (0)� (21) + (0)� (1)(427) ! (22)� (0) + (21) � (1) + (2)� (2) + (2)� (0) + (s; 1)� (21)+ (s; 1)� (1) + (12)� (21) + (12)� (1) + (1)� (31) + (1)� (2)+ (1)� (1) + (1)� (0) + (0)� (42) + (0)� (2) + (0)� (0)
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