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1. Introduction

What an imperfect world it would be if every symmetry was perfect

Symmetry plays a key role in all physical theories none the less so than in

the celebrated Judd-Ofelt theory of intensities of rare earths. Indeed symmetry

considerations have been crucial in nearly all developments of our understanding of

the diverse spectroscopic properties of the lanthanides and their heavier cousins, the

actinides. Explicit calculation of many spectroscopic properties have centred around

the construction of effective operators, limited by symmetry arguments and involving

the fitting of experimental data in terms of a number of phenomenological parameters.

Prior to the Judd-Ofelt theory the intensities of rare earth spectra in solutions and

crystals constituted a puzzle1. The simultaneous and independent publication of

the two papers by Judd2 and Ofelt3 satisfied David Hilbert’s criterion for a good

paper “One can measure the importance of a scientific work by the number of earlier

publications rendered superfluous”. An additional measure is the number of papers

that have drawn upon the initial work of Judd-Ofelt. In this paper we trace some of

the developments that led up to the Judd-Ofelt theory and beyond.

2. Symmetry and Effective Operators

The calculation of the energy levels of free atoms and ions was outlined in the classic

book of Condon and Shortley4. With the lack of reliable Hartree-Fock wavefunctions

it became a tradition to regard the radial integrals associated with the Coulomb and

spin-orbit interactions as parameters to be determined by least-squares fitting to the

known experimental energy levels. In the early 1950’s Trees5,6 and Racah7 found

empirically that adding a term αL(L + 1) led to a significant reduction in the mean

least-squares error for the energies of the SL terms for dn shell ions. No explanation

for the introduction of this effective interaction was offered. In 1959 Runciman and

Wybourne8 found that the introduction of a term αL(L + 1) significantly improved

the calculation of the terms of the 4f 2 and 4f 12 for the trivalent praseodymium and

thulium ions. Initially it was thought that the αL(L + 1) arose from the orbit-orbit

interaction9.

In 1962 Rajnak and Wybourne used second-order perturbation theory to sum

over the states of generic configurations that could couple to a configuration ℓn of n

equivalent ℓ electron orbitals10. They found that most of the second-order effects could

be accommodated by treating the ℓ + 1 Coulomb integrals as adjustable parameters

and adding ℓ additional effective two-body operators. In the case of the fn−shell that

amounts to the four Coulomb parameters and the three additional operators may be

chosen as

αL(L + 1) + βC(G2) + γC(SO7) (1)



where the last two are the Casimir invariants of the groups G2 and SO7 that arose

in Racah’s classification of the states of the fn−shell11. One may express the orbit-

orbit interaction for the fn−shell in precisely the same way as in Eq.(1) and obtain

explicit expressions12 for the values of α, β and γ. However, they are smaller and of

the opposite sign to those found from least-squares fits. This gives a salutary warning

of the dangers of parameter fitting - they may accommodate effects that are beyond

those anticipated. In this case the effect of configuration interaction mimics the orbit-

orbit interaction. Similar examples of different interactions mimicking one another

can be found in the case of anisotropic autoionizing Rydberg systems13. Furthermore,

at second-order, three-particle effective operators also arise10,14.

In general, effective operators may be built up from unit tensor operators u(k)

and/or unit double tensor operators w(1k) or equivalently in terms of coupled products

of annihilation and creation operators15−18. In terms of energy level calculations which

conserve the total angular momentum for a free atom or ion the effective operators

must be scalars with respect the rotation group SO3, or more precisely with its

covering group SU2. Technically, one is constructing an integrity basis or minimal

set of invariants in terms of which other invariants are polynomials in the minimal

set19−23. The determination of a complete list of f−electron scalar operators has been

given by Leavitt24.

In a crystal field the effective operators required to analyze crystal field splittings

are again scalar operators but now not with respect to the groups SO3 or SU2 but

with respect to the appropriate site symmetry point group. The explicit construction

of the crystal field invariant operators is essentially the construction of the appropriate

elements of an integrity basis and is largely model independent. The physics is hidden

in the associated parameters. At the simplest level one-particle orbital type operators

may be constructed and at a higher level effective two-particle or one-particle spin-

orbital operators may be introduced with further parameters being required.

Non-scalar operators, such as the electric dipole operator

P = −e
∑

i

ri (2)

are of particular spectroscopic interest as they induce transitions between different

energy levels. The electric dipole operator is of odd parity so can only induce

transitions between states of opposite parity. Unlike the energy operators which

transform under the appropriate point group as the identity representation the

components of the electric dipole operator span representations other than the identity

representation. Selection rules follow by standard group procedures. Selection rules

tell one what will not happen not what will happen. To obtain actual transitions within

the f−shell the odd-parity electric dipole operator must be combined with other odd-

parity operators to produce effective even-parity operators acting within the f−shell.

This was the essence of the Judd-Ofelt theory in its initial formulation. The even-

parity effective operators must transform with respect to the appropriate point group

in the same way as the electric dipole operator and thus preserve the basic selection



rules. In terms of single particle operators one can form linear combinations of the unit

tensor operators u(k) with k even that have the appropriate point group symmetries.

Essentially one is constructing terms in a generalized integrity basis. In a sense the

Judd-Ofelt theory is largely model-independent. Various specific mechanisms can lead

to the same parameterized effective interactions. That is one of the great achievements

of the Judd-Ofelt theory - it allows the correlation of a large amount of data in terms

of a small set of empirically determinable parameters.

The Judd-Ofelt theory involves the simplest possible set of one-particle spin-

independent effective operators having the correct point group transformation

properties that one can construct. It is not difficult to construct more complicated

operators from the basic u(k) and w(κk) operators which have the correct point

group transformation properties. Many cases of explicit constructions arising from

specific mechanisms have been discussed in the literature, we give but a small

selection17,18,25−35. Higher order treatments of the Judd-Ofelt theory lead to the

appearance of odd rank single particle type effective operators, two-particle effective

operators and various spin-dependent effective operators. Relativistic extensions of

the Judd-Ofelt theory likewise lead to additional effective operators what have been

termed doubly effective double tensor operators. All these can be accommodated by

introducing additional parameters but in the process losing the underlying simplicity

of the original Judd-Ofelt formulation. A given effective operator may, unwittingly,

accommodate more mechanisms than their user has anticipated. Real progress in

understanding specific mechanisms requires ab initio calculations which are now

becoming possible36,37 and will undoubtedly mature over the next four decades but

I believe that in the eight decades that will have followed the original Judd-Ofelt

theory, it will still be recognized that the publication of those two papers represented

a turning point in our understanding of the spectroscopic properties of the remarkable

lanthanides and actinides.
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