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1. Introduction

The concept of symmetry is fundamental to much of chemistry and physics and group

theory is the natural mathematical tool for implementing symmetry concepts. A large

variety of groups are used in chemistry and physics. The 32 point groups and the 230

space groups find wide applications in crystallographic problems ranging from crystal

field theory to the study of the magnetic properties of crystallographic lattices. These

are examples of finite groups. Here my emphasis will be on Lie groups and more

particularly on non-compact Lie groups. Whereas the finite groups are characterised

by finite numbers of unitary representations the Lie groups possess infinite numbers of

unitary representations. The unitary representations of the compact Lie groups are all

of finite dimension whereas those of the non-compact Lie groups are all (apart from

the trivial representations) of infinite dimension. This creates new possibilities for

systems characterized by infinite sets of quantum states such as arise in many-body

systems and indeed even in relatively simple systems like the hydrogen atom or the

isotropic harmonic oscillator. Applications of non-compact Lie groups occur in a wide

range of physical problems in areas such as quantum optics, quantum dots, nuclei,

many-electron atoms and molecules.

Here we shall review our current knowledge of the properties of non-compact Lie

groups and their present and future applications. The emphasis will be on outlining

results without going into deep technical details. For those details we list some of the

relevant references. In the following we first briefly discuss some of the properties of the

non-compact group U(2, 2) and its relevance to the hydrogen atom and many-electron

atoms. We then consider the non-compact groups Mp(2n) and Sp(2n,ℜ) and their

relevance to many-body sytems involving isotropic harmonic oscillator potentials. This

work is then applied to consideration of thermodynamic partition functions for many

bosonic and fermionic systems. Finally we remark upon the modelling of quantum

dot systems.

2. The non-compact group U(2, 2)

Bohr, in his very first paper1, on what has become known as “The Bohr-model” of

the hydrogen atom, made the surprising discovery that the energy levels could be

succinctly expressed (in appropriate units) as

En = −
1

n2
with n = 1, 2, . . .

It was not apparent in such a simple equation was hidden the remarkable 2(n)2

degeneracy of each energy level. The factor of 2 came from the subsequent discovery of

electron spin and the factor of (n) from Pauli’s observation2 that in a purely Coulombic

central field there was the additional constant of the motion associated with the

Runge-Lenz vector and from that the realization that the observed degeneracies were

precisely the dimensions of certain of the irreducible representations of the compact



Lie group SO(4) ∼ SU(2) × SU(2), in particular those commonly designated as

[n − 1, 0] ∼ {n − 1} × {n − 1}.

Much later, Barut and Kleinert3 observed that all the states of the discrete levels

of a H-atom spanned a single infinite-dimensional irreducible representation (which we

will designate as H0 = {1(0̄; 0)}) of the non-compact Lie group SO(4, 2) ∼ SU(2, 2)

with the group being referred to as the dynamical group of the H-atom3,4. The Runge-

Lenz vector ceases to be a constant of the motion for two or more electrons in a

central Coulomb field4,5 and SO(4) symmetry is broken. Nevertheless, it can be useful

to consider the n−electron states starting with the single irreducible representation

H0 of SU(2, 2), or more simply U(2, 2), and then forming symmetrized n−fold tensor

products. This is a far from trivial problem but some significant progress has been

made6 which I now sketch. Much of the background information can be found in the

references7−9. Whereas for compact Lie groups the irreducible representations are all

of finite dimension and hence all Kronecker products and symmetrized powers involve a

finite number of irreducible representations, for non-compact Lie groups the non-trivial

irreducible representations are all of infinite dimension and consequently Kronecker

products and symmetrized powers involve infinite numbers of infinite dimensional

irreducible representations.

A considerable amount is known about computing Kronecker products and

symmetrized powers (or plethysms10,11) for compact Lie groups7 drawing heavily

upon the theory of symmetric functions12,13. Compact expressions in terms of series

of Schur symmetric functions (S−functions) exist which are readily amenable to

computer evaluation. Corresponding expressions can be developed for the unitary

irreducible representations of relevant non-compact Lie groups using knowledge of

their maximal compact Lie subgroups8,9,14−17. As a result it has been possible to

give a complete result for the set of U(2, 2) irreducible representations contained in

the symmetric and antisymmetric parts of the Kronecker square of the fundamental

irreducible representation H0. The symmetric part describes the spin (S = 0) singlets

while the antisymmetric part describes the spin (S = 1) triplets. The groundstate

1s2(1S) is the first level of an infinite tower of states associated with the {2(0̄; 0)}

irreducible representation while the lowest 3SP level is the first level of an infinite

tower associated with the {2(1̄; 1)} irreducible representation. A complete account

of the two-electron hydrogen-like states remains to be considered but knowing the

relevant U(2, 2) irreducible representations is a significant first step.

3. Symplectic models of n−particle systems

Symplectic models of many-particle systems have had extensive applications in nuclear

physics18,19. Less well known are applications to mesoscopic systems such as quantum

dots20−22 and to diatomic molecules23. Here we also consider applications of symplectic

models to thermodynamic partition functions associated with harmonic oscillators

involving identical fermions or bosons.



The symplectic group Sp(6,ℜ) is well known as the dynamical group for a

single particle in an isotropic three-dimensional harmonic oscillator potential4. For

N−non-interacting particles in d dimensions the dynamical group is the non-compact

metaplectic group Mp(2Nd). this group has a rich subgroup structure with various

compact and non-compact subgroups22. Here I want to keep things relatively simple,

starting with a single fermion or boson in a isotropic d-dimensional harmonic oscillator

to establish a basis and then discuss the case of various approaches to the problem of

N identical noninteracting bosons or fermions. We will assume that the spin of the

single particle is sb (or sf) for the boson (or the fermion).

4. Single-particle states for a isotropic d-dimensional harmonic oscillator

We introduce three schemes for describing a single particle (fermion or boson) in

a isotropic d-dimensional harmonic oscillator.

4.1. A non-compact scheme

The infinite set of spatial states span the basic infinite dimensional unitary

harmonic series irreducible representation ∆̃ and we may classify the states under

the scheme

SU(2) × (Mp(2d) ⊃ Sp(2d,ℜ) ⊃ U(d) ⊃ O(d) ⊃ . . . U(1)) (1)

Note that we have a direct product with SU(2) being the group describing the spin

part of our wavefunction and the Mp(2d) group and its subgroups the spatial part.

Under Mp(2d) ⊃ Sp(2d,ℜ)

∆̃ → ∆+ + ∆− (2)

while under Sp(2d,ℜ) ⊃ U(d)

∆+ → M+ (3a)

∆− → M− (3b)

with

M+ =

∞
∑

m=0

{2m} (4a)

M− =
∞

∑

m=0

{2m + 1} (4b)

M = M+ + M− =
∞

∑

m=0

{m} (4c)

Under U(d) ⊃ O(d) we have the general result7,24

{λ} → [λ/D] (5)



where D is the infinite S−function series

D =

∞
∑

δ

{δ} (6)

and the summation is over all partitions (δ) whose parts are all even.

4.2. The SU(2) × U(d) scheme

In this scheme the spin s belongs to the group SU(2) and spans the SU(2)

irreducible representation {2s} while the spatial parts span the infinite set of

irreducible representations of U(d) labelled by one-part partitions {m} so we can

symbolically designate the SU(2) × U(d) single particle states by

{2s} × M =

∞
∑

m=0

{2s} × {m} (7)

the distinction between bosons and fermions being made at the SU(2) level. The even

parity states are associated with the even values of m and the odd parity states with

the odd values of m.

4.3. The U(1) × U(d) scheme

In this scheme we work at the spin projection level where the different ms states

span one-dimensional irreducible representations of the Abelian group U(1) which we

will choose to label as {ms} and remember that for U(1) the Kronecker products are

such that

{p} × {q} = {p + q} (8a)

while for symmetrized powers (or plethysms)

{p} ⊗ {λ} =

{

0 if ℓ(λ) > 1

p × λ1 if ℓ(λ) = 1
(8b)

the complete set of single particle states will span the reducible representation

ms=s
∑

ms=−s

{ms} × M (9)

5. N−noninteracting particles in a isotropic d-dimensional harmonic

oscillator

The distinction between bosons and fermions becomes crucial when we consider

more than one particle. Throughout we shall assume that the N particles are

indistinguishable. The basic ansatz is that for bosons the N−particle wavefunctions



must be totally symmetric with respect to all permutations of the N particles while

for fermions the N−particle wavefunctions must be totally antisymmetric with respect

to all permutations of the N particles. In other words boson wavefunctions are

permanental while those of fermions are determinantal. If our wavefunction is

constructed as products of spin and spatial parts then the symmetrization of the

spin and spatial parts need not themselves be symmetric (or antisymmetric) but their

product must follow the correct statistics.

5.1. Plethysm for direct products of groups

In many applications we are involved with the direct product of two groups (more

than two poses no new difficulties) say, G×G′ with irreducible representations AG×BG′

and we need to determine the G × G′ content of the N−fold product of an irreducible

representation say (A×B)×N (henceforth we drop the subscripts) and extract the part

of the product symmetrized according to the permutational symmetry {λ}. In terms

of plethysm we have10,11

(A × B) ⊗ {λ} =
∑

ρ

(A ⊗ {ρ · λ}) × (B ⊗ {ρ}) (10)

where {ρ · λ} signifies a S−function inner product which is null unless the partitions

(ρ) and (λ) are of the same weight, i.e. |ρ| = |λ|. Two special cases are of interest

{ρ} · {λ} =











{ρ} if {λ} = {N} and |ρ| = |λ|

{ρ′} if {λ} = {1N} and |ρ| = |λ|

(11)

where the partition (ρ′) is conjugate to (ρ).

By way of example we have

(A × B) ⊗ {4} = (A ⊗ {4}) × (B ⊗ {4}) + (A ⊗ {31}) × (B ⊗ {31})

+ (A ⊗ {22}) × (B ⊗ {22}) + (A ⊗ {212}) × (B ⊗ {212})

+ (A ⊗ {14}) × (B ⊗ {14}) (12a)

(A × B) ⊗ {14} = (A ⊗ {4}) × (B ⊗ {14}) + (A ⊗ {31}) × (B ⊗ {212})

+ (A ⊗ {22}) × (B ⊗ {22}) + (A ⊗ {212}) × (B ⊗ {31})

+ (A ⊗ {14}) × (B ⊗ {4}) (12b)

In many cases of interest only some of the terms in the right-hand-side of (12) will be

non-null. This is particularly the case when one of the groups is of low rank, e.g, SU(2)

or U(1). To be specific, let us henceforth consider bosons of spin sb = 1 and fermions

of spin sf = 1
2
. In this case the boson spin spans the {2} irreducible representation

of SU(2) while the fermion spin spans the {1} irreducible representation of SU(2).

There is no difficulty in going to higher spin states.



5.2. The SU(2) × Mp(2d) scheme

In this scheme the single particle spans the representation {2s} × ∆̃ of

SU(2) × Mp(2d) and for N−noninteracting particles we have

({2} × ∆̃) ⊗ {N} =
∑

ρ⊢N

({2} ⊗ {ρ}) × (∆̃ ⊗ {ρ}) for bosons (13a)

({1} × ∆̃) ⊗ {1N} =
∑

ρ⊢N

({1} ⊗ {ρ′}) × (∆̃ ⊗ {ρ}) for fermions (13b)

Let us consider the evaluation of the SU(2) plethysms, first for fermions and then

for bosons.

We have noted earlier that for fermions of spin sf = 1
2

that {1} ⊗ {ρ} = {ρ}

and that the partition (ρ) can involve at most two parts and in SU(2) we have the

irreducible representation equivalence

{ρ1, ρ2} ≡ {ρ1 − ρ2} (14)

leading to

({1} × ∆̃) ⊗ {1N} =

N

2
∑

S=Smin

2S+1(∆̃ ⊗ {2
N

2
−S12S}) (15)

Smin =







1
2

if N is odd

0 if N is even

(16)

Thus for N = 4 fermions we have

({1} × ∆̃) ⊗ {14} =5 (∆̃ ⊗ {14}) +3 (∆̃ ⊗ {212}) +1 (∆̃ ⊗ {22}) (17)

Recalling the isomorphisms between SO(3) and its covering group SU(2) we have

under SU(2) ∼ SO(3) {2} ∼ [1] leading to

{2} ⊗ {ρ} ∼ [ρ/D] (18)

The right-hand-side of (18) gives the spins for each partition (ρ) appearing in (13a).

Furthermore, (ρ) can involve at most three non-zero parts and those involving three

non-zero parts are equivalent to a partition with two or less parts via

{ρ1, ρ2, ρ3} ≡ {ρ1 − ρ3, ρ2 − ρ3} (19)

NB If [ρ/D] leads to partitions involving more than one non-zero part then the SO(3)

modification rules need to be applied. Assuming (19) has been applied leaving a SO(3)

non-standard irreducible representation [a, b] then

[a, b] ≡











0 if b ≥ 2

[a] if b = 1

(20)



with the above in mind we can use (13a) to give for four spin 1 bosons

({2} × ∆̃) ⊗ {4} =(9+5+1) (∆̃ ⊗ {4}) +(7+5+3) (∆̃ ⊗ {31})

+(3) (∆̃ ⊗ {212}) +(5+1) (∆̃ ⊗ {22}) (21)

Where again the multiplicities (2S +1) are given as left superscripts. To complete the

examples of this scheme one should evaluate the various plethysms for the relevant

metapletic group and then branch through the various subgroups. We shall not do

that at this time.

5.3. The SU(2) × U(d) scheme

In this scheme one starts with (7) and evaluates the relevant plethysms as in

the previous scheme. For the spin part there are no changes. The U(d) irreducible

representations are combined as the single infinite dimensional reducible representation

M . Thus for N spin 1
2

fermions we have from noting (15)

({1} × M) ⊗ {1N} =

N

2
∑

S=Smin

2S+1(M ⊗ {2
N

2
−S12S}) (22)

and for four fermions

({1} × M) ⊗ {14} =5 (M ⊗ {14}) +3 (M ⊗ {212}) +1 (M ⊗ {22}) (23)

For N bosons of spin 1 the result comes from (21) by simply replacing ∆̃ by M

throughout.

5.4. The U(1) × U(d) scheme

In this scheme we treat spin at the level of its projection ms. Clearly in each

scheme there must be a complete accounting of all the quantum states and respecting

symmetrization. In the case of fermions of spin 1
2

we have for N particles

(

({1
2
} × M) + ({−1

2
} × M)

)

⊗ {1N}

=

N
∑

x=0

(

({1
2
} × M) ⊗ {1N−x}

)

×
(

({−1
2
} × M) ⊗ {1x}

)

(24)

Noting (8a) and (8b), we can rewrite (24) as

(

({1
2
} × M) + ({−1

2
} × M)

)

⊗ {1N}

=

N
∑

x=0

(

{N−x
2

} × (M ⊗ {1N−x})
)

×
(

{−x
2
} × (M ⊗ {1x})

)

(25)

Notice that (25) involves the product of two terms, the first term,
(

{N−x
2

} × (M ⊗ {1N−x})
)

, involves states with spin projection MS = N−x
2

(spin-

up) which are antisymmetric in their spatial part while the second term,



(

{−x
2
} × (M ⊗ {1x})

)

,involves states with spin projection MS = −x
2

(spin-down)

which are again antisymmetric in their spatial part. Equation (25) involves Kronecker

products in U(1) and in U(d) and (25) may be rearranged as

(

({1
2
} × M) + ({−1

2
} × M)

)

⊗ {1N}

=
N

∑

x=0

(

{N−x
2

} × {−x
2
}
)

×
(

(M ⊗ {1N−x}) × (M ⊗ {1x})
)

(26)

The first Kronecker product can be evaluated using (8a) to give

(

{N−x
2

} × {−x
2
}
)

= {N

2
− x} (27)

and the second using the plethysm property

(A ⊗ {λ}) × (A ⊗ {µ}) = A ⊗ ({λ} × {µ}) (28)

leading to

(

(M ⊗ {1N−x}) × (M ⊗ {1x})
)

= M ⊗ ({1N−x} · {1x}) (29)

with the · implying ordinary S−function multiplication. Combining (27) and (29) in

(26) finally gives

(

({1
2
} × M) + ({−1

2
} × M)

)

⊗ {1N} =
N

∑

x=0

{N

2
− x} ×

(

M ⊗ ({1N−x} · {1x})
)

(30)

For four fermions of spin 1
2

we obtain

(

({1
2
} × M) + ({−1

2
} × M)

)

⊗ {14}

= {2} × (M ⊗ ({14} · {0})) + {1} × (M ⊗ ({13} · {1}))

+ {0} × (M ⊗ ({12} · {12})) + {−1} × (M ⊗ ({1} · {13}))

+ {−2} × (M ⊗ ({0} · {14})) (31a)

= ({2} + {−2}) × (M ⊗ {14}) + ({1} + {−1}) × (M ⊗ ({13} · {1}))

+ {0} × (M ⊗ ({12} · {12})) (31b)

= ({2} + {−2}) × (M ⊗ {14}) + ({1} + {−1}) × (M ⊗ ({14} + {212}))

+ {0} × (M ⊗ ({14} + {212} + {22})) (31c)

Comparison with (17) and (23) shows, as should be, that the same number of quantum

states are obtained in each scheme. We note that the above scheme was first used

by Shudeman25 to determine the states arising from configurations of equivalent

electrons ℓN though without using group theory. It was then used by Judd26 to recast

atomic shell theory, Judd giving a group formulation to the scheme and naming it

LL−coupling. I have given further details27.



Let us return to the spin 1 bosons. Each boson has three spin states (MS = 0, ±1)

that can be described by the U(1) irreducible representations {1}, {0}, {−1}. For

N−noninteracting bosons we have from plethysm

({1} × M + {0} × M + {−1} × M) ⊗ {N}

=

N
∑

x=0

x
∑

y=0

[(({1} × M) ⊗ {N − x}) × (({0} × M) ⊗ {x − y}) × (({−1} × M) ⊗ {y})]

(32a)

=
N

∑

x=0

x
∑

y=0

[({N − x} × (M ⊗ {N − x})) × ({0} × (M ⊗ {x − y}))

× ({−y} × (M ⊗ {y}))] (32b)

=

N
∑

x=0

x
∑

y=0

[{N − x − y} × (M ⊗ ({N − x} · {x − y} · {y})]

(32c)

where in (32c) the spin projection quantum number, MS is

MS = N − x − y (33)

For brevity, let us define

M ↑↓
S (S) =

{

{S} + {−S} if S > 0

{0} if S = 0
(34)

For four spin 1 bosons we have from (32c)

({1} × M + {0} × M + {−1} × M) ⊗ {4}

= M ↑↓
S (4)(M ⊗ {4}) + M ↑↓

S (3)(M ⊗ {3} · {1})

+ M ↑↓
S (2)(M ⊗ ({3} · {1} + {2} · {2})

+ M ↑↓
S (1)(M ⊗ ({2} · {1} · {1} + {3} · {1})

+ M ↑↓
S (0)(M ⊗ ({4} + {2} · {2} + {2} · {1} · {1})

(35a)

= M ↑↓
S (4)(M ⊗ {4}) + M ↑↓

S (3)(M ⊗ ({4} + {31}))

+ M ↑↓
S (2)(M ⊗ (2{4} + 2{31} + {22}))

+ M ↑↓
S (1)(M ⊗ (2{4} + 3{31} + {22} + {212}))

+ M ↑↓
S (0)(M ⊗ (3{4} + 3{31} + 2{22} + {212}))

(35b)

which is consistent with the MS projection of the spins found in (21).

6. Applications

The proper enumeration of the states of a few-body system in some particular

basis is an essential first step in making applications. For many-body systems one is

eventually led to statistical problems28.



6.1. Thermodynamic partition functions for bosons and fermions

With the development of traps that confine a finite number of ultracold atoms

in essentially a harmonic potential there has been considerable interest in developing

thermodynamic partition functions for a finite number N of non-interacting bosons

or fermions29−32. The canonical partition function of statistical physics is defined as

ZN(β) = T r
(

e−βH
)

(36)

where β = (kBT )−1 and

H =

N
∑

i=1

Hi (37)

is the Hamiltonian, the sum of N identical single particle Hamiltonians, with a

spectrum of energy eigenvalues E1, E2, . . . (with possible degeneracies). For a single

particle, boson or fermion,

Z1(β) =
∑

i=1

e(−βEi) (38)

Introduce a set of variables, (x) = (x1, x2, . . .) , not necessarily finite in number,

with xi = e(−βEi). Note that in terms of symmetric functions12 Z1(β) = s1(x) =

e1(x) = h1(x) = p1(x) in such variables. For N -noninteracting particles we are

interested in symmetrising N copies of the single particle function in the variables

(x) which is an N−fold plethysm of the appropriate symmetric functions. Recall

p1(x) ⊗ pr(x) = pr(x) =
∑

xr = Z1(rβ) (for bosons or fermions). Furthermore,

s1(x) ⊗ {λ} = {λ}(x) = p1(x) ⊗ {λ}. But,

sλ =
∑

σ

z−1
σ χλ

σpσ

where for any partition (σ)

zσ =
∏

i≥1

imimi!

with mi = mi(σ) is the number of parts of σ equal to i. The term χλ
σ is a characteristic

of the symmetric group S|σ|. For N fermions we choose {λ} = {1N} while for bosons

{λ} = {N} and are immediately led to

ZN(β)± =
∑

|σ|=N

ε±σ z−1
σ Z1(σβ) (39)

where ε+ = 1, ε− = (−1)|σ|−ℓ(σ) and

Z1(σβ) =

ℓ(σ)
∏

i=1

Z1(σiβ) (40)



Thus the canonical partition function for N -noninteracting bosons or fermions is

completely determined by the single particle partition function. The coefficients sum

to unity for bosons (+) and to zero for fermions (−). For example:-

Z5(β)± =
1

120
(24Z1(5β) ± 30Z1(4β)Z1(β) ± 20Z1(3β)Z1(2β)

+20Z1(3β)Z1(β)2 + 15Z1(2β)2Z1(β) ± 10Z1(2β)Z1(β)3 + Z1(β)5
)

(41)

However, (41) assumes a single spin state. For fermions of spin s = 1
2

(41) is the

partition function appropriate to five such fermions with maximal spin projection

MS = 5
2
. The complete partition function ZT

5 covering the complete set of spin states

can be constructed analogously to (31) to give

ZT
5 = Z↑

5 (β) + Z↑
4 (β)Z↓

1 (β) + Z↑
3 (β)Z↓

2 (β)

+ Z↑
2 (β)Z↓

3 (β) + Z↑
1 (β)Z↓

4 (β) + Z↓
5 (β) (42)

where the Z↑
n(β) indicates that the spin projection is MS = n

2
and Z↓

n(β) a spin

projection MS = −n
2
. Analogous results can be constructed for other spin states of

both fermions and bosons. We note the close correspondence with the LL−coupling

of atomic physics26.

6.2. Non-compact group modeling of quantum dots

Quantum dots form another example of identical particles in an approximate

harmonic oscillator potential. Here we sketch only the basic ideas.

Experimentally the electrons of a quantum dot are contained in a parabolic

potential and hence we expect a close relationship with a many-electron system subject

to a harmonic oscillator potential. The interaction potential V (ri, rj) between particles

i and j moving in a two-dimensional confining potential in the x − y plane is taken

to saturate at small particle separations and to decrease quadratically with increasing

separation. In free space we would expect the interaction between two electrons to

vary as |ri − rj |
−1. In a quantum dot the form of V (ri, rj) is modified by the presence

of image charges. The wavefunctions of the electrons confined in the quantum dots

have a small but finite extent in the z−direction perpendicular to the x − y plane.

This results in a smearing of the electron charges along the z−direction. As a result

the interparticle repulsion tends to saturate at small distances. This suggests choosing

the interaction as

V (ri, rj) = 2V0 −
1

2
m∗Ω2|ri − rj|

2 (43)

where m∗ is the electron effective mass and V0 and Ω are positive parameters.

Consider an N−electron quantum dot each with a charge −e, a g−factor g∗, spatial

coordinates ri and spin components sz,i along the z−axis. Suppose there is a magnetic

field B along the z−axis. The spatial part of the Hamiltonian can be written as

Hspace =
1

2m∗

∑

i

[

pi +
eAi

c

]2

+
1

2
m∗ω2

0

∑

i

|ri|
2 +

∑

i<j

V (ri, rj) (44)



and the spin part as

Hspin = −g∗µBB
∑

i

sz,i (45)

where the momentum and vector potential associated with the i−th electron are given

by

pi = (px,i, py,i) Ai = (Ax,i, Ay,i) (46)

and µB is the Bohr magneton.

The eigenstates of H will involve the product of the spatial and spin eigenstates

obtained from Hspatial and Hspin. The total spin projection SZ =
∑

i sz,i will be a

good quantum number. Choosing a circular gauge Ai = B(−yi/2, xi/2, 0) Eqn. (44)

becomes

Hspace =
1

2m∗

∑

i

p2
i +

1

2
m∗ω2

0(B)
∑

i

|ri|
2 +

∑

i<j

[

2V0 −
1

2
m∗Ω2|ri, rj|

2

]

+
ωc

2

∑

i

Lz,i (47)

where ω2
0(B) = ω2

0 + ω2
c/4 and ωc = eB/m∗c.

The dynamical algebra of our mesoscopic N−electron system in d dimensions

(usually d = 1, 2) is that of the non-compact Lie group Sp(2Nd,ℜ). We can construct

subalgebras of Sp(2Nd,ℜ) by forming subsets of the defining generators that close

under commutation. So that contracting on the particle or space indices we can

obtain further Lie subalgebras such as

Sp(2Nd,ℜ) ⊃ Sp(2,ℜ) × O(Nd) ⊃ Sp(2,ℜ) × O(N) × O(d)

⊃ U(1) × O(N) × O(d) (48a)

Sp(2Nd,ℜ) ⊃ Sp(2N,ℜ) × O(d) ⊃ U(N) × O(d)

⊃ U(1) × O(N) × O(d) (48b)

Sp(2Nd,ℜ) ⊃ Sp(2d,ℜ) × U(N) ⊃ U(d) × O(N)

⊃ U(1) × O(N) × O(d) (48c)

Sp(2Nd,ℜ) ⊃ U(Nd) ⊃ U(N) × U(d) ⊃ U(1) × O(N) × O(d) (48d)

Note the separation of the spatial O(d) and particle O(N) dependencies.

The Hamiltonian (47) can eventually be written in terms of the generators of

Sp(2,ℜ), O(d) and Sp(2N,ℜ). Practical calculation then involves the evaluation of

matrix elements of the group generators in a harmonic oscillator basis.



7. Concluding remarks

The past few years have seen substantial progress in understanding the properties

of non-compact groups. Now the time is ripe for practical applications to many-body

problems in chemistry and physics.
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Appendix: Degeneracy, Pascal’s triangle and N−dimensional H-atoms and

harmonic oscillators

The non-relativistic H−atom and the isotropic harmonic oscillator in three

dimensions are well-known to all students of quantum physics. The degeneracy groups

for the corresponding N−dimensional problems are SO(N + 1) for the H−atom and

SU(N) for the isotropic harmonic oscillator4. In the former case the degenerate orbital

states span the [n] irreducible representaions of SO(N + 1) and are of dimension

DN+1([n]) = (N + 2n − 1)
(N + n − 2)!

n!(N − 1)!
(A1)

while in the latter case they span the {n} irreducible representation of SU(N) and

are of dimension

DN({n}) =
(N + n − 1)!

n!(N − 1)!
(A2)

Both cases may be nicely displayed using Pascal’s triangle for the harmonic

oscillator and the asymmetric Pascal triangle33 as shown in Fig. 1 and 2 below. The

degeneracy groups are shown on the left diagonal and the irreducible representations

along the right diagonal.



{0}

SU1 1

{1}

SU2 1 1

{2}

SU3 1 2 1

{3}

SU4 1 3 3 1

{4}

SU5 1 4 6 4 1

{5}

SU6 1 5 10 10 5 1

{6}

SU7 1 6 15 20 15 6 1

{7}

SU8 1 7 21 35 35 21 7 1

{8}

SU9 1 8 28 56 70 56 28 8 1

Fig. 1 Pascal’s triangle for the degeneracies of an isotropic N−dimensional

harmonic oscillator

[0]

SO21

[1]

SO31 2

[2]

SO41 3 2

[3]

SO51 4 5 2

[4]

SO61 5 9 7 2

[5]

SO71 6 14 16 9 2

[6]

SO81 7 20 30 25 11 2

[7]

SO91 8 27 50 55 36 13 2

[8]

SO101 9 35 77 105 91 49 15 2

Fig. 2 The Asymmetric Pascal’s triangle for the degeneracies of an

N−dimensional hydrogen atom
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