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The universe is infinite in all directions, not only above
us in the large but also below us in the small
— Emil Wiechert (1896)
Abstract

The dynamical group Sp(6n, R) is used to give a description of the states for n—noninteracting
particles confined by an isotropic three-dimensional harmonic oscillator potential. The subgroup
structure of the dynamical group is used to determine the relevant spins and unitary group
representations of the n—particle states. This is a necessary precursor to developing model Ha-
miltonians for describing systems such as quantum dots and nuclei in terms of polynomials in
the dynamical group generators.

1. Introduction

The isotropic three-dimensional harmonic oscillator (henceforth we will abbreviate to just HO)
for a single particle is one of the few problems whose Schrodinger equation is completely solvable. The
complete set of states span a single irreducible representation of the metaplectic group Mp(6) which is
the covering group of the symplectic group Sp(6, R)[1-8]. Upon the restriction Mp(6) — Sp(6, R) the
single irreducible representation of Mp(6) decomposes into a pair of irreducible representations which we
designate as (s;(0)) and (s; (1)) [3]. The irreducible representation (s;(0)) is spanned by the complete set
of even parity states and (s; (1)) by the odd parity states. Throughout this paper we shall often just write
Sp(N) rather than Sp(N, R) with the understanding that we will always be referring to the non-compact
symplectic group defined on reals and not the compact symplectic group.

For n—noninteracting particles the dynamical group is M p(6n)[7,8] and again the complete set of
states span a single irreducible representation of Mp(6n). Upon the restriction Mp(6n) — Sp(6n, R) the
single irreducible representation of Mp(6n) decomposes into a pair of irreducible representations which
again we designate as (s;(0)) and (s;(1)) with the even parity states spanning the (s;(0)) irreducible
representation and (s; (1)) by the odd parity states.

The group Mp(6n) has a very rich subgroup structure[4,5,7,8] which we will first outline and then
direct our attention to the relevant group-subgroup decompositions leading to a detailed classification
of the states and the identification of their spin and unitary #(3) structure. This should then make it
possible to start to develop model Hamiltonians in terms of polynomials in the relevant group generators
for n—interacting particles in applications associated with quantum dots and symplectic models of nuclei.

2. The substructure of the dynamical group Mp(6n)

Let us start by considering the slightly more general case of n—noninteracting particles in a
d—dimensional harmonic oscillator potential. The dynamical group may be formally constructed from the
coordinate and momentum operators of the individual particles under the usual Heisenberg commutation
relations. Bilinear combinations of these operators are constructed to close under commutation and the
associated Lie algebra identified. It is readily found that indeed they close upon the algebra associated
with the metaplectic group Mp(2nd) which is the covering group of the non-compact symplectic group
Sp(2nd, R). The metaplectic group Mp(2nd) has a very rich subgroup structure[8] as shown in Fig.1.
These subgroup structures can be determined by contracting on particle or spatial indices. The diversity of
the subgroup structures reflect different ways of separating the spatial and particle number dependencies.
Thus the subgroup O(d) describes the angular momentum states of the system while the subgroup O(n)
gives information on the permutational symmetries of the states via the symmetric group S(n) which is

a subgroup of O(n).



2  Poznan Lectures 17-20 October, 1995

Mp(2Nd)
Sp(2Nd, R)
U(Nd)
Sp(2) x O(Nd) Sp(2N) x 0(d) Sp(2d) x O(N) \
W e =< B
Sp(2) x O(N) x O(d)  U(l) x O(Nd) U(N) x O(d)  U(d) x O(N)

NV

U(1) x O(N) x 0(d)

Fig. 1: Group-subgroup structures appropriate to quantum dots.

3. Labelling Sp(2N, R) irreducible representations

The labelling of the irreducible representations of compact Lie groups in terms of partition labels
is well established[9]. Here we shall limit ourselves to discussion of the so-called positive discrete unitary
irreducible representations of the group Sp(2n, R) and its double covering group, Mp(2n), drawing he-
avily upon references [2] and [3]. These irreducible representations are all infinite dimensional and are
characterised by a lowest weight with respect to the ordering of weights of the maximal compact sub-
group U(n). There exists a harmonic representation, A, associated with the Heisenberg algebra. This is
a true, unitary, infinite dimensional irreducible representation of the double covering group Mp(2n) of
Sp(2n, R), the so-called metaplectic group. This representation is reducible into the sum of two irreduci-
ble representations A} and A_ whose leading weights are (3% ...3) and (21 ...3) corresponding to the

highest weights of the representations E%{O} and E%{l} which appear in the restriction of Sp(2n, R) to



its maximal compact subgroup U(n).

The tensor powers Ak all decompose into a direct sum of unitary irreducible representations
of Mp(2n). All those irreducible representations which derive from A for some k will be referred to as
harmonic series representaions. All those irreducible representations that appear in AF will be labelled by
the symbols (%(/\)) The harmonic series representations appearing in AF are in one-to-one correspondence
with the terms arising in the branching rule appropriate to the restriction from Mp(2nk) to Sp(2n, R) x
O(k)

A= Yo < (1)

where the summation is carried out over all partitions (A) = (A1, Az, .. .) for which the conjugate partition
(A) = (A1, Ag, .. .) satisfies the constraints R R

Al + Az S k (2&)
and R
TIrreducible representations of Sp(2n, R) (%k(/\)) satisfying Eq.(2) will be said to be standard and we may
limit our attention to these irreducible representations of Sp(2n, R).

The value of £ maybe an integer (k even) or a half-odd-integer (k odd). In terms of inputting
and outputting Sp(2n, R) labelled irreducible representations into SCHUR it is useful to introduce the
equivalent notation

(55 () = (5 (V) 3)
where .
5= + & (4)

with k being the integer part of % and the residue part is s = 0 or % Thus we have the typical notational
equivalences
3
(sLA) = {5 k=3 (L) =(1) k=2
SCHUR accepts irreducible representation labels in the form of lists of (sx; A} and standardises the in-
put in accordance with the constraints of Eq.(2) making null all non-standard Sp(2n, R) irreducible
representations.

4. Lowest energy states for non-interacting particles in a HO

In the case of n non-interacting spin % particles in a three-dimensional isotropic HO potential
the energy of a given state is simply the sum of the one-particle energies (cf. Fig. 2) and hence the lowest
energy state associated with a given Sp(6, R) multiplet (X)) is, relative to the groundstate energy,

wyhw (5)

where w is the oscillator angular frequency and w) is the weight of the partition (A). Representations of
Sp(6, R) having different partitions but of the same weight will have the same zero-order energy as given

in Eq. (5).
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Fig. 2: The states of a single particle in a harmonic oscillator potential.

The states of n—particles may be associated with occupations of particles in various of the single
particle Z(3) multiplets subject to the Pauli exclusion principle. It is convenient to speak of n—particle
configurations of the form

fome{ayme{2pme ... (6)
where the exponents are the occupation numbers for the various #(3) single particle irreducible repre-
sentations. The ¢ (3) states of weight w for n—particles may be determined as follows

1. Partition the integer w into n parts allowing zero parts if necessary.
2. Even weight partitions involve even parity states otherwise odd parity states.

3. Replace each part ,i, by {¢} which then labels the #(3) irrep for a single particle in the i—th
harmonic oscillator orbital. A given orbital ¢ can accommodate up to d; = (¢ + 1)(i + 2) partic-
les with spin % and hence partitions having parts, ¢, with a multiplicity exceeding d; must be

discarded.

4. For a given partition containing k distinct non-repeating parts form the SU(2) x U (3) Kronecker
product

(51 (i) g = {ia) - {3 x {ir) ™)

to give a series of SU(2)° x U(3) multiplets.
5. If the parts ¢ are repeated with a multiplicity m then evaluate the plethysm

m

1 M m a—m M m—a a—m
{GH) o (1"} = Y et e {2mmerremy) (8)
a=[ 7]
where the spin multiplicity (25 4+ 1) = (2a — m + 1) has been written as a superscript.

For n = 3 we have for weight 4 the four partitions
44+0+0, 3+1+0, 2+240, 2+4+1+1 (9)

Applying the above algorithm we find for the first partition a &/(3) multiplet {4} with S = % corresponding
to two particles in the {0} orbital and one in the {4} orbital.. The second partition gives two U(3)
multiplets, {4} 4+ {31} with spins S = 1 and S = 2. These are associated with the states arising from the
U(3) configuration {0} {1}1{3}* The third partition yields the ¢/(3) multiplet {31} with 5 = 2 and the



U(3) multiplets {4} + {31} + {2%} with spin S = 3, corresponding to the configuration {0}'{2}?. The
fourth partition yields the two (3) multiplets {31} +{2?} with spin S = % and the three #(3) multiplets
{4} + 2{31} + {22} + {21%} with spin S = % , corresponding to the configuration {1}?{2}*. Thus for
spin S = 2 we obtain the #/(3) multiplets {4} 4+ 3{31} + {21?} and for spin S = £ the #/(3) multiplets
444} + 431} + 2{2?} + {21%}.

5. The Lowest ¢/(3) Multiplets

Filling the first k& shells with particles will involve a total of

S 1;(/@ +2) (10

particles. If n — Ny particles are in the lowest unfilled shell then the weights w) of admissible partitions
labelling irreducible representations of ¢ (3) will be given by

(k+ D)(k+2)(k+ 3)]
12

wr = k [ - (11)

Thus for 12 particles we would have wy = 14.
If the first k shells are fully occupied then the resultant state has spin .S = 0 and belongs to the
U(3) irrep {p,p,p} where

(12)

p:

[(k - 1)k(k2—|- 1)(k + 2)]

6. Lowest Energy Even Parity 12-particle States

It is desirable to consider a reasonably large number of particles to bring out the main features
of the n—particle problem. To be specific I shall consider the case of 12—particles and initially just the
even parity states. The lowest states will occur with the first two shells fully occupied and the remaining
4 particles occupying the third shell. We could, in terms of ¢ (3) multiplets, designate the configuration
as

{012 {13°{2}* (13)
The spin and unitary ¢ (3) multiplets can be determined by first evaluating the plethysm
{12} o {1} (14)

for the direct product group SU(2) x U(3). This leads to a set of spin S = 2 states arising from the #/(3)
plethysm {2} @ {1*}, a set of S = 1 states from the ¢(3) plethysm {2} ® {21%} and a set of S = 0 states
from the ¢(3) plethysm {2} @ {2%}. The first two filled shells result in a single S = 0 state transforming
under U(3) as the {23} and to obtain the final list of #(3) irreducible representations we must add the
partition {23} to those associated with each of the above plethysms to finally yield the spin S and U(3)
multiplets given in Table 6.1.

S=2 {653}
S=1 {837} + {752} + {743} + {653} + {5%4}
S=0 {842} + {743} + {672} + {647}

Table 6.1 Spin and #(3) multiplets for the {0}2{1}°{2}* configuration.
7. Second to Lowest Energy Even Parity 12-particle States

The second to lowest energy even parity 12-particle states all involve ¢/(3) multiplets labelled by
partitions of weight 16. Five configurations arise:-

Lo{op{1p{214{3}*
SA{opH{1y2p
S{op{1y2)e
{012y
{03{1}{2}7{3)

O = W N
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Proceeding as before we can systematically determine the various possible spins S and their
associated U(3) multiplets to give:-

S=1,223 {952} + {943} + {862} + 3{853} + {84%}
+ 2{763} + 3{754} + 2{624} + 2{65%}
S=0,1%2,2 {11 32} + {10 51} + 3{10 42} + 3{10 3%} + {961}
+ 6{952} + 7{943} + {871} + 6{862} + 12{853}
+ 5{847%} + 3{7%2} + 9{763} + 10{754} + 4{6%4}
+ 4{65%}
S=0,1 {11 41} + {11 32} + {10 51} + 4{10 42} + 2{10 3%}
+ 2{961} + 5{952} + 7{943} + {871} + 6{862}
+ 8{853} + 6{84%} + 2{7?2} + 7{763} + 6{754}
+ 41624} + {657}
Table 7.1 Spin and #(3) multiplets for the {0}*{1}°{2}*{3}' configuration.
S=23 {624}
S=1,2 {853} + {763} + {754} + {657}
S=0,1 {943} + {862} + {853} + {847} + {763}
+ {754} + {624}
Table 7.2 Spin and U(3) multiplets for the {0}}{1}°{2}° configuration.
S5=23,4 {657}
S=3 {624}
S=1,2,3 {853} + {763} + 2{754} + {624} + {657}
S=2 {862} + {853} + {84%} + 2{763} + 2{754}
+ 20624} + {657}
S$=0,1,2 {952} + {943} + 2{862} + 3{853} + 2{847%}
+ {772} + 3{763} + 3{754} + 2{6%4} + {657}
S=1 {961} + 2{952} + 2{943} + {871} + 3{862}
+ 5{853} + 2{84?} + 2{7?2} + 5{763} + 5{754}
+ 2{624} + 2{65%}
S=1 {10 3%} + {952} + {943} + {871} + {862}
+ 3{853} + {772} + 2{763} + 2{754} + {657}
S=0 {10 42} + {961} + {952} + 2{943} + {8%}
+ {871} + 4{862} + 3{853} + 3{847%} + 3{763}
+ 2{754} + 3{6%4}
Table 7.3 Spin and U(3) multiplets for the {0}?{1}*{2}° configuration.
S=1,2 {10 3%} + {952} + {943} + 2{853}
+ {763} + {754} + {657}
S=0,1 {11 32} + 2{10 42} + {10 3%} + 2{952}
+ 3{943} + 2{862} + 3{853} + 2{84%}
+ {772} + 2{763} + 2{754} + {674}

Table 7.4 Spin and #(3) multiplets for the {0}?{1}°{2}3{4} configuration.




S=0,1,2 {10 42}
+ 2{862}
+ 2{754}

S =0 {12 22}
+ 2{943}
+ 2{763}

S=1 2{11 32}
+ 4{943}
+ 3{7%2}
+ 2{65%}

+ {10 32}
+ 3{853}
+ {624}

+ {11 32}
+ 3{862}
+ 2{754}
+ 2{10 42}
+ 2{862}
+ 4{763}

+ {952}

+ {847}

+ {657}

+ 3{10 42}
+ 2{853}
+ 2{624}
+ 2{10 32}
+ 6{853}
+ 5{754}

+ 2{943}
+ 2{763}

+ 2{952}
+ 3{84%}

+ 5{952}
+ 2{842}
+ {624}

Table 7.5 Spin and (3) multiplets for the {0}?{1}°{2}?{3}? configuration.

In practice there i1s no difficulty in obtaining the corresponding odd parity 12-particle states.
Of course the total number of possible states is infinite and to encompass these we must return to the

non-compact groups.

8. Infinite Sets of Even Parity 12-particle States

The complete set of even parity 12-particle states span the infinite dimensional irreducible repre-
sentation (s; (0)) of the non-compact group Sp(72, R). To obtain a description of the states we need to
study the decomposition of the irreducible representation (s; (0)) as we move through a series of subgroups
as portrayed in Fig.1. Any such decomposition involves an infinite set of subgroup irreducible represen-
tations and hence to consider manageable problems we need to introduce a cutoff. For simplicity let us
consider the restriction Sp(72, R) — Sp(6, R) x O(12) and furthermore limit our attention to irreducible
representations whose labelling partitions (A) are of weight wy < 16. We readily find the decomposition

as given in Table 8.1.




o™
— e e e e e — O
R N A T N e —— —

AN N —H —H O O — e~ e N — ~ o e = o o~ =~ 5
M1111111U054275431]54]2 10 <f 0 — o0 N —

— e T O OO0 00, 0.0 0 ool =m0 o S oS N0 0 Y h o N — N
e e | e N e e e e T e e e i O 2 ) o s o
SN TN TN TN TN TN TN AN TN T e e e e e N TN 4 e e g e T e s L

T TN TN N N N S N = NS o N R N e N I o~ =
AeH NS 0 O AN N A ey N =& I e T GG I R T e RGN RA =
MO NN A OO OO N0 o —a 1O Mo O SH O NN ST om0 NN o =
A A A A Oy Oy Oy 00 0 0 0 W= O O OO OO SH S N O
NIPNINIP NI NI NI NI NIPNE NI G A AN NN NN AN N e e e e A A A AN AN NI N -

L L L L L L L L L L L L L L L L L L L L L L L L

o~ [\ oy —
= =2 "oTe—

~ — OO o —e — — — — —
T on T — o ST o~ N — & N & —
e EOC N T P P T R s Ty Yo . S ¥ gy 1| Y — N [
e e e e =2 M RN = e SO Pl ol b I\ N I o T N GCR U
— e O 0 o TH O e TN o o SN TN ol AN TN e TN el 8 T T O S T

L e Y e N e I T N B e e N e B e ¥ B o NGt - I o Ny

1O <F O NN — — OO OO FMOa O H o AN O o 10 H N —~c 0 —o NN
oA A A O O O 00 00 00 0 Q0 == = = I~ O O O O OO0 0 SHosH o< o O

N e e e e e e e e e e e e e e N e e e e N e S e e e e e e e e e e e e e e

L L L L L L L L L L L L L L L L L L L L L L L L

—_—_—— e —

P e S R -
12314253]2
MmN AN~ O o —_— —— e — —— —
=~ N — 5 MmN A AN N AN N =N e
PP P PP e SR S > P SR < S T O O R N R TN A
TR S R G B0 T o, 000 0,000 s L S a e,
OMN AN o N~ R T e ~
oS Ve NN N NN NN
SN A F NN N s N T I e R AN A A NN N TN S e
AF N NN A A O OO0 M o0 N IINO D H NS IO e S NS o & m =
TN A A A o Ao —H o~ O) O Oy OY 0 00 00 Q0 0 == I~ I~ 0O O WO W00 1O SH OSH S 0 AN
6((((((((((((((((((((((((((((((((((((

L L L L L L L L L L L L L L L L L L L L L L L

8 Poznan Lectures 17-20 October, 1995

Table 8.1 Decomposition of the irreducible representation (s;(0)) of Sp(72, R) under the restriction

Sp(72, R) — Sp(6, R) x O(12) (to weight 16).

This is already a considerable list of irreducible representations. The list can be substantially

reduced by noting that no partition (A) of weight wy < 13 can yield a Pauli allowed spin state and hence

all those members of the list may be removed. Under the restriction Sp(6, R) — U(3) for an irreducible

representation (6;(A)) the lowest weight #/(3) irreducible representation is necessarily {A} and as seen

from Sec. 4 partitions into fewer than three parts cannot lead to a Pauli allowed spin state and hence all
irreducible representations associated with partitions into fewer than three parts may also be discarded

leaving us with the much shorter list shown in Table 8.2.
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Table 8.2 As for Table 8.1 but with terms of weight < 14 and length < 3 removed.

The O(12) irreducible representations are all finite dimensional whereas those of Sp(6, R) are
all of infinite dimension. The reductions Sp(6, R) — U(3) and O(12) — S(12) tell us the ¢(3) and spin

contents respectively.

9. Spin Content of the 12-particle States

The spin content of the states associated with a given irreducible representation [A] of O(n) is
determined by its decomposition under O(n) — S(n) and seeking out those irreducible representations of
S(n) that are of the form {27 1°} where 2r+s = n and the associated spinis S =
may be determined systematically[7,8,10,11]. Typically we obtain the spin states shown in Table 9.1 for

several O(12) irreducible representations.

= 0
[5* 4]

[642] 1
[653]

62 2] 1
[743] 1
[752]

[837]

[842] 1
[657] 7
[62 4] 16
[754] 26
[763] 27
[72 2] 7
[842] 20
[853] 33
[862] 24
[871] 3
[943] 23
[952] 17
[961] 4
[10 32] 7
[10 42] 13
[10 51] 2
[11 41] 4
[12 22] 1

19
22
49
46
15
26
59
31

35
30

13
15

L O O b

=

5. These decompositions
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Table 9.1 Spin contents of some relevant O(12 irreducible representations.

Note that in going from partitions of weight 14 to 16 the number of possible spin states rapidly
increasing in a manner not unlike the Wigner type distribution that arises in the plotting of the distri-
bution of the spacings of consecutive eigenvalues of large random matrices. A similar effect has been
observed in other group-subgroup decompositions and merits more study[12-14].

An important, and as yet incompletely solved,problem is to be able to predict those irreducible
representations of Q(n) that cannot yield irreducible representations of S(n) of the form {271°} without
requiring an explicit decomposition. A further problem is to develop a method that will directly yield
the multiplicity of a given irreducible representation of the form {2"1°} without requiring a complete
decomposition under O(n) — S(n). A key to the evaluation of such decompositions is the evaluation of
so-called reduced plethysms[10,11] of the form (1) ® {A}. Hints at a solution come from the observation
that if (A) is a one part partition, say (k), then increasing k in steps of unity results for a certain value of &
the multiplicity coefficient of say {(p1, pa, ...} and {1 + 1, pa, ...} being equal. Thereafter the multiplicity
coefficients of {y1 + x, pa, ...} are independent of x and are said to be stabilised. The coefficients up to
the stabilisation point often form identifiable integer sequences[15]. Scharf and Thibon [16] have used
such considerations to recently derive a generating function for the multiplicity coefficients that arise in
(1) @ {A}.

10. U(3) Content of the 12-particle States

The U(3) content of the 12-particle states comes from the decomposition of the irreducible repre-
sentations of Sp(6, R) under the group reduction Sp(6, R) — U(3) [2,3]. Some relevant decompositions
are given below for U (3) irreducible representations, truncated at weight 18 are given in Table 10.1.



(6; (5% 4)) {954} + {85%} + {7%4} + {765} + {754}
+ {657} + {5%4}

(6; (647)) {10 4%} + {954} + 2{864} + {847} + {765}
+ {754} + {63} + {624} + {64}

(6;(653)) {10 53} + {963} + {954} + {873} + 2{864}
+ 2{85%} + {853} + {7%4} + 2{765} + {763}
+ {754} + {624} + {657} + {653}

(6; (6% 2)) {10 62} + {963} + {822} + {873} + 2{864}
+ {862} + {765} + {763} + {63} + {624}
+ {622}

(6;(743)) {11 43} + {10 53} + {10 42} + 2{963} + 2{954}
+ {943} + {873} + 2{864} + {85%} + {853}
+ {847} + {774} + {765} + {763} + {754}
+ {743}

(6;(752)) {11 52} + {10 62} + {10 53} + 2{972} + 2{963}
+ 2{954} + {952} + 2{873} + 2{864} + {862}
+ {857} + {853} + 2{7%4} + {772} + {765}
+ {763} + {754} + {752}

(6;(832)) {12 3%} + {11 43} + 2{10 53} + {10 32} + {963}
+ {954} + {943} + {873} + {857} + {853}
+ {837}

(6;(842)) {12 42} + {11 52} + {11 43} + 2{10 62} + 2{10 53}
+ 2{10 47} + {10 42} + {972} + 2{963} + 2{954}
+ {952} + {943} + {872} + {873} + 2{864}
+ {862} + {853} + {847} + {842}

(6; (652)) {852} + {765} + {652}

(6; (6% 4)) {864} + {765} + {63} + {624}

(6;(754)) {954} + {864} + {85%} + {7%4} + {765}
+ {754}

(6;(763)) {963} + {873} + {864} + {7%4} + {765}
+ {763}

(6; (7% 2)) {972} + {873} + {774} + {772}

(6;(842)) {10 4%} + {954} + {864} + {84%}

Table 10.1 Some Sp(6, R) — U(3) decompositions (to weight 18).
11. Orbital Angular Momentum of 12-particle States

The orbital angular momentum L of the 12-particle states follows from the decomposition of the
U(3) irreducible representations under the restriction #(3) — SO(3). Considerable simplification arises by
recognising that the irreducible representations of ¢ (3) are irreducible under the restriction ¢ (3) — SU(3)
and for SU(3) the three part labelling partitions are equivalent to irreducible representations involving
partitions into fewer than three parts, indeed

{1, A2, A3} = {A1 — Az, Ao — A3, 0} (15)

Thus the decomposition of the irreducible representation {5? 4} of U(3) is the same as that of the
SU(3) irreducible representation {1}. Likewise the decompositions of the #(3) irreducible representations
{652} and {5% 4} are identical with respect to reduction to the subgroup SO(3). Likewise irreducible
representations of SU(3) that are contragredient to one another i.e.,

{/\1, Az, /\3} and {Al - A3, Al - Az, 0} (16)

have equivalent decompositions with respect to reduction to the subgroup SO(3). Some relevant SU(3) —
S80O(3) decompositions are given in Table 11.1.

11
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L= 0 1 2 3 4 5 6 7 8 9
0 1

{1} 1

{21 1 1

{21} 11

(31 1 1

{31} 11 1

{4y 1 1 1

{41} 1 1 1 1

{42} 1 2 1 1

{5} 1 1 1

{51} 11 1 1 1

{52} 11 2 1 1

{6} 1 1 1 1

{61} 1 1 1 1 1 1

{621 1 2 1 2 1 1

{63} 11 2 2 1 1

{7} 1 1 1 1
{71} 1 1 1 1 1 1 1
{72} 1 1 2 1 2 1 1
{73} 1 1 2 2 2 1 1

{8} 1 1 1 1 1
{81} 1 1 1 1 1 1 1 1
{82} 1 2 1 2 1 2 1 1
{83} 1 1 2 2 2 2 1 1
{84} 1 2 1 3 2 2 1 1
{93} 1 1 2 2 2 2 2 1 1

Table 11.1 Some relevant SU(3) — SO(3) decompositions.
12. Labelling of the Even Parity 12-particle States

In the preceding I have outlined how one can systematically label the even parity 12-particle
states using the group chain

Sp(72,R) O Sp(6, R) x O(12) S U(3) x 8(12) 5 SO(3) x 8(12) (17)

The last segment of the chain, SO(3) x §(12), yields the traditional orbital, L, and spin, S, quantum
numbers. Specific 12-particle even parity states can be systematically designated by the sequence of
irreducible representations associated with the sequence of groups Sp(72, R) Sp(6, R) U(3) S(12)° SO(3)L
leading to the notation

|53 (0)), (63 (\)a{A} Bz *F1L) (18)

where «; 8¢, v stand for any other numbers required to distinguish the various reduction multiplicities.
Usually we will suppress the irreducible representation of Sp(72, R). Using the customary spectroscopic
notation for the orbital angular momentum 7 and the spin multiplicity 25 + 1 as a superscript we may
designate the lowest energy even parity 12-particle states of the configuration {0}2{1}°{2}* as shown in

Table 12.1.
(65 (5 4)){5° 4} °P) |(6;(64%)){647} ' SD) |(6;(653)){653} >*PDF)
|(6; (62 2)){62 2} 1SDG) [(6; (743)){743} 3’1PDFG) [(6; (752)){752} 3PDF2GH)
|(6; (832)){832} 3PFH) |(6;(842)){842}) 1SD2FG2HI)

Table 12.1 States of the 12-particle configuration {0}?{1}°{2}*.



The entries in Table 12.1 may be compared with those given in Table 6.1. Each of the entries in
Table 12.1 represent the lowest energy terms of an infinite tower of states with each floor of the tower
increasing in energy by 2hw. Each floor of the tower involves several U(3) multiplets all labelled by
partitions of the same weight. Thus in our example the first floor involves ¢(3) multiplets of weight 14,
those of the second floor weight 16 and so on. Thus all the ¢(3) multiplets appearing in Table 6.1 occur
on the ground floor of the tower while those in Tables 7.1 to 7.5 occur on the second floor etc. Each
floor can involve various values of S and L. All the states associated with a given Sp(6, R) irreducible
representation (6; (X)) start from the floor involving partitions of weight wy and contribute just the #(3)
multiplet {A} to that floor. Going to the next floor can result in the Sp(6, R) irreducible representation
contributing several different ¢/(3) irreducible representations as can be seen from Table 10.1. These U(3)
multiplets will all involve the same spin structure but may involve differing orbital angular momenta as
may be seen in the examples shown in Table 12.2.

1(6; (5% 4)) {5 4} °P)  |(6(64%)) {64} 'SD) [{6;(653)) {653} >*PDF)

{652} 3P) {62 4} 1SD) {652} 53Pp)
{754} 3PDF) {754} 'PDF) {62 4} 535D)
{842} 1PDF) {763} 53PDFG)

{853} 3 PDF,GH)

Table 12.2 Examples of some weight 14 and 16 states.

The odd parity states appear on floors interspacing those of the even parity states. Again suc-
cessive odd parity floors involve an increase in energy of 2hw. As we ascend the infinite tower we find
they become increasingly densely packed with ¢/(3) multiplets associated with various spins. Each U(3)
multiplet {A} appearing on the first floor is the first member of an infinite column of U(3) multiplets
arising from the Sp(6, R) — U(3) reduction of the Sp(6, R) irreducible representation (6;(A)). These
columns penetrate each of the successive floors of the same parity. Thus on each floor there will be #(3)
multiplets originating from irreducible representations of Sp(6, R) that started from lower floors, other
U(3) multiplets will be associated with Sp(6, R) irreps that start from that floor (See Fig. 3). Not surpri-
singly we have infinite sets of infinite dimensional irreducible representations (6; (A)) each starting from
the floor whose zero-order energy is wyhw.

13
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765}{7241{8521{954} § < {6°}{765}{864}2{954} {1042} ©  (852}{765}  +(765):

18hw
{652}{754} {642} {7541{84%} {652}
16hw
{64%}
14hw
< 6;(5%4) > < 6;(642) > < 6;(65%) > < 6;(765) >

Fig. 3: Some of the infinite Sp(6, R) multiplets for 12 particles showing the #/(3) multiplets for the lowest
three zero-order energy levels.

13. An Example

The self-consistency of the picture just outlined can be seen in the following example. We note
from Tables 7.1 to 7.5 that the second floor contains the U(3) irreducible representation {853}. simply
counting the entries in those tables shows that this 2/(3) irreducible representation occurs with the spins
according to Table 13.1

Table 13.1 The number of times the #(3) irreducible representation {853} occurs for the four allowed
spin values.

At first sight it is tempting to associate all the above entries with the decomposition of the O(12)
irreducible representation into those of S§(12) and thence with the irreducible representation (6;(853))
of 8p(6, R). However, inspection of Table 9.1 shows that the spin content of the [853] irreducible repre-
sentation of O(12) produces slightly fewer entries than in Table 14.1. Where have the extra irreducible
representations {853} of U (3) come from? The answer is clear if we inspect the entries in Table 10.1 and see
that the weight 14 Sp(6, R) irreducible representation can produce weight 16 irreducible representations



of U(3). Thus the Sp(6, R) irreducible representations
(6:(653)), (6:(743)), (6:(752)), (6;(83%), (6;(842)) (19)

Inspection of Table 9.1 show that these give precisely the right number of spin multiplicities which when
added to those coming from the (6; (853)) x [853] irreducible representation of Sp(6, R) x O(12) reproduce
the entries in Table 14.1 which demonstrates the full self-consistency of the non-compact group approach.

14. The Next Steps

In the preceding pages I have outlined how one can consistently establish a non-compact group
description of the states of n—non-interacting fermions in an isotropic three-dimensional HO. This part of
the theory now appears to be fairly complete. The major remaining computational problem is associated
with the rapid determination of the O(n) — S(n) decompositions. Significant progress has been made on
this problem and further substantive progress can be expected.

The next step is to investigate model Hamiltonians constructed from polynomials in the group
generators[]. A trivial example would be the introduction of a term proportional to S(.S + 1) which would
immediately separate terms according to their spins. If the term is positive then states of lowest spin
would lie lowest as indeed the case for many-electron quantum dots[5]. The complete dynamical group
Mp(6n) has such a rich subgroup structure and its exploration has hardly begun. This is not surprising as
the understanding of the properties of non-compact groups has been a comparatively recent development.
In recent years there has been considerable progress in the systematic calculation of the matrix elements
of non-compact group generators, a prequisite to undertaking detailed calculations[2,17].

While our discussion has been throughout devoted to three-dimensional systems there is no
difficulty in increasing or decreasing the dimension of the system being considered.
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