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1. IntroductionThe eigenfunctions of the square of the N -electron spin operator corre-sponding to an eigenvalue S(S+1) form a basis for the irreducible representa-tion (irreps) of the symmetric group SN described by a two-row Young diagramwith p = N2 + S (1)boxes in the �rst row and q = N2 � S (2)boxes in the second row. This property of the total spin eigen-spaces re-sults in many applications, such as the development of the symmetric groupapproach to the theory of N -electron systems [1], the formulation of the socalled spin-free quantum chemistry [2], numerous applications in the theory ofatomic spectra [3], in the theory of magnetism [4], in the statistical theory ofspectra [5], and so on. One of advantages of these approaches is a possibilityof expressing the coupling constants which appear in formulae for quantum-mechanical expectation values, in terms of matrix elements of the appropriaterepresentations of the symmetric group. In consequence, quantities, which areexpressible in terms of traces of the operators (like e.g. averages and moments)depend upon the the characters of the pertinent representations. In these ap-plications one is interested in formulae for the characters rather then charactertables since having the formulae one can easily explore the dependence on the2



number of particles and on the spin quantum numbers.The problem of evaluation of the characters of irreps of SN has been solvedmany years ago [6]. General algorithms have been formulated by Gamba [7]and by Butler and King [8]. In all these works, procedures for the evaluationof the characters of a given representation of SN have been formulated. Inthe case of two-row representations, these methods allow for the evaluation ofthe character for arbitrary, but speci�ed, values of S and N . On the otherhand, the characters in the form of explicit functions of N and S are neededin atomic and molecular structure theory. The character expressions for theidentity permutation�[p;q][1N ] � f(S;N) = 2S + 1N + 1  N + 1N=2 � S!; (3)(equal to the dimension of the representation) and for the class of transposi-tions �[p;q][1N�2 2] = 4S(S + 1) + N(N � 4)2N(N � 1) f(S;N) (4)have already been derived by Heisenberg [9]. Similar expressions for [1N�t t],t = 3; 4; 5 and for [1N�4 22] have been reported by Corson [10]. Recently, sim-ple expressions for the classes [1N�t t] and [1N�s�t s t] with arbitrary s and thave been obtained from the Murnaghan-Nakayama rule [11]. In this note, ageneral expression for an arbitrary two-row representation character is given.The derivation is based on the algorithm of Butler and King [8].3



2. The general algorithmThe two-row representation character �[p;q](�) corresponding to the class ofSN de�ned by the partition (�) = (1�1 2�2 : : : t�t); (5)with tXk=1 k�k = p + q = N; (6)is an integer function of t + 2 parameters: of p, q (i.e. of N , S) and of �k,k = 1; 2; : : : ; t. Due to the constraint (6) only t of them are independent. Mostfrequently one is interested in the dependence of the characters upon N and Sfor a �xed (�). For the two-row representations, Eq. (4.9) of Butler and King[8] may be rewritten as �[p;q](�) = qXx=0 C(x) f<q�x>�1 ; (7)where f<x>�1 = (�1 + 1� 2x)�1!x! (�1 + 1� x)! ; (8)and C(x) = X(�) p+qYk=2 �k�k!; (9)with (�) = (2�2 3�3 : : : t�t) (10)standing for a partition of x with no part smaller than 2. Obviously,tXk=2 k�k = x: (11)4



The values of f<x>�1 are related to the dimensions of the irreps of S�1:f<x>�1 = 8>>><>>>: �[�1�x;x]1�1 if 0 � x � �12 ;��[x�1;�1�x+1]1�1 if �12 < x � �1 + 1: (12)If x = (�1 + 1)=2 or x > �1 + 1, then f<x>�1 = 0. Therefore, if q > �1 + 1,the lower limit of the sum over x in Eq. (7) may be set equal to q � �1 � 1.Besides, since f<x>�1 = �f<�1�x+1>�1 ; (13)Eq. (7) simpli�es to�[p;q](�) = [�12 ]Xx=0 [C(q � x)� C(q � �1 � 1 + x)] f<x>�1 ; (14)where h�12 i stands for the integer part of �12 . In particular, if �1 < 2 then�[p;q](�) = C(q)� C(b): (15)According to Eq. (9), C(x) is evaluated as follows:(1) List the partitions of (x) having no part smaller than 2;(2) Replace each partition (2�2 3�3 : : : t�t) by the binomial coe�cientproduct ��2�2� ��3�3� � � � ��t�t�(3) Get C(x) as the sum of the binomial coe�cient products found in (1).Thus, the �rst few coe�cients of the character formula become5



C(0) = 1; C(1) = 0; C(2) = �2; C(3) = �3,C(4) = 12�2(�2 � 1) + �4; C(5) = �2�3 + �5,C(6) = 16�2(�2 � 1)(�2 � 2) + 12�3(�3 � 1) + �2�4 + �6,C(7) = 12�2(�2 � 1)�3 + �3�4 + �2�5 + �7,C(8) = 124�2(�2 � 1)(�2 � 2)(�2 � 3) + 12�2�3(�3 � 1) + 12�2(�2 � 1)�4+12�4(�4 � 1) + �3�5 + �2�6 + �8.3. Stabilization PropertyIt is easy to see that, in general, C(x) does not depend upon �y wheny > x. Hence, according to Eq. (7), �[p;q](�) does not depend upon those parts�y of the partition of N which are larger than q. In particular,�[p;0](�) = 1;�[p;1](�) = �1 � 1;�[p;2](�) = 12�1(�1 � 3) + �2;�[p;3](�) = 16�1(�1 � 1)(�1 � 5) + (�1 � 1)�2 + �3:Similar expressions for larger q values may readily be obtained by combiningEqs. (7), (8) and (9). This observation is a special case of a general stabilizationrule for the symmetric group characters [12].Since S = N2 �q, a knowledge of C(k), k = 0; 1; : : : ; q, is su�cient to deter-mine all of the characters for systems with S � N2 � q. Therefore, in high-spinsystems only the "short-cycle" part of the permutation de�nes the character6



formula. More speci�cally, if S = N2 � q, then the corresponding charactersdo not depend upon �q+1, �q+2, : : :. Alternatively, it may be formulated asfollows: Let (�) be a partition of p + q with no part larger than q and let (�)be a partition of k with all parts larger than q, then�[p+k;q](��) = �[p;q](�) : (16)The irreps of SN are labelled by ordered partitions of N . In the case of thetwo-row representations, the standard ordering implies that q � p. Partitionsthat are not in standard order can be modi�ed to produce equivalent standardSN irreps using the modi�cation rules of Littlewood [13], [14]. For two-partpartitions this amounts to [p; q] ) �[q� 1; p+ 1]. If p = q� 1 then the resultis null. Thus, �[p;q](�) = ��[q�1;p+1](�) : (17)Combining the stabilization property and the SN modi�cation rule one mayderive interesting symmetry relations between the two-row representation char-acters. Indeed, according to Eqs. (16) and (17), for every k > p + 1, we have�[p+k;q](��) = �[pq](�) = ��[q�1;p+1](�) = ��[k+q�1;p+1](��) : (18)Another interesting, though probably less important, relation holds forthe dimensions of the irreps. Namely, as one can easily check,f(S; n) = f(S + 1; n); if n = (2S + 2)2 � 2; (19)f(S; n) = f(S + 2; n); if n = (2S + 3)2 � 3: (20)7



It seems, however, that no similar relations exist between f(S; n) and f(S +�; n) if � > 2.4. Some Special CasesCases where (�) is composed of only several di�erent cycles are both thesimplest and the most important in applications. If (�) = 1N�tt, then the onlybinomial coe�cient which contributes to Eq. (9) is � 1�t�. Hence,�[p;q][1N�t t] = f<q>N�t + f<q�t>N�t : (21)This formula is equivalent to Eq. (29) of ref. [11]. It reduces to Eq. (4)for t = 2 and to the results of Corson [10] for t = 3; 4; 5. In the case of(�) = 1N�t�tt�t, there may be several non-zero C coe�cients: C(t) = ��t1 �,C(2t) = ��t2 �, : : :, C(mt) = ��tm�, where m = min(�t; h qti) and int(a). Then,�[p;q][1�1 t�t] = mXn=0  �tn! f<q�nt>�1 ; (22)with �1 = N � t�t.A similar procedure may also be applied in more complicated cases. Forexample, if (�) = 1�1s�st�t with �1 = N � s�s � t�t then�[p;q][1�1 s�s t�t ] = Xnsnt  �sns! �tnt! f<q�nss�ntt>�1 ; (23)where the sum is extended over all terms for which nss + ntt � q, ns � �sand nt � �t. 8



5. Concluding RemarksThe formulae for the symmetric group characters presented in this papersupply a general tool for expressing spectral density distribution moments ofthe Heisenberg Hamiltonian in terms of the number of particles N = p+ q andof the total spin S = 12(p � q). For other model Hamiltonians, these formulaeare also useful since the irreducible characters appear in numerous expressionsde�ning the appropriate moments [5].The stabilization property of the characters (16) may allow the expressionof more complicated propagation coe�cients in terms of simpler ones. Alsothe symmetry relation (18) may be essential for simplifying some asymptoticexpressions. However their signi�cance for statistical spectroscopy has to beexplored in more detail.Acknowledgement:This work has been supported by the Polish KBN under projects No. 2P03B 011 08 and 2 P302 078 07.
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