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Abstract: Characters of irreducible representations (irreps) of the symmetric group cor-
responding to the two-row Young diagrams, i.e. describing transformation properties of
N-electron eigenfunctions of the total spin operators, have been expressed as explicit func-
tions of the number of electrons N and of the total spin quantum number S. The formulae
are useful in various areas of theory of many-electron systems, particularly in designing

algorithms for evaluation of spectral density moments.
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1. Introduction

The eigenfunctions of the square of the N-electron spin operator corre-
sponding to an eigenvalue S(S + 1) form a basis for the irreducible representa-
tion (irreps) of the symmetric group Sy described by a two-row Young diagram
with

p=—+5 (1)
boxes in the first row and

=5 (2)

boxes in the second row. This property of the total spin eigen-spaces re-
sults in many applications, such as the development of the symmetric group
approach to the theory of N-electron systems [1], the formulation of the so
called spin-free quantum chemistry [2], numerous applications in the theory of
atomic spectra [3], in the theory of magnetism [4], in the statistical theory of
spectra [5], and so on. One of advantages of these approaches is a possibility
of expressing the coupling constants which appear in formulae for quantum-
mechanical expectation values, in terms of matrix elements of the appropriate
representations of the symmetric group. In consequence, quantities, which are
expressible in terms of traces of the operators (like e.g. averages and moments)
depend upon the the characters of the pertinent representations. In these ap-
plications one is interested in formulae for the characters rather then character

tables since having the formulae one can easily explore the dependence on the



number of particles and on the spin quantum numbers.

The problem of evaluation of the characters of irreps of Sy has been solved
many years ago [6]. General algorithms have been formulated by Gamba [7]
and by Butler and King [8]. In all these works, procedures for the evaluation
of the characters of a given representation of Sy have been formulated. In
the case of two-row representations, these methods allow for the evaluation of
the character for arbitrary, but specified, values of S and N. On the other
hand, the characters in the form of explicit functions of N and S are needed
in atomic and molecular structure theory. The character expressions for the
identity permutation

- 25+1(N+1)7 )

[Pl — —
Xpn = f(5,N) = NrI\N2-S

(equal to the dimension of the representation) and for the class of transposi-

tions

bl _AS(S+ 1)+ NN )
[=22] 2N(N —1)

J(5,N) (4)
have already been derived by Heisenberg [9]. Similar expressions for [1V=t¢],
t =3,4,5 and for [1¥=122] have been reported by Corson [10]. Recently, sim-
ple expressions for the classes [1V~'#] and [1V~*"!s¢#] with arbitrary s and ¢
have been obtained from the Murnaghan-Nakayama rule [11]. In this note, a
general expression for an arbitrary two-row representation character is given.

The derivation is based on the algorithm of Butler and King [8].



2. The general algorithm

[p,;]] corresponding to the class of

The two-row representation character X(a

Sy defined by the partition

(a) = (17122 . 42%), (5)
with

t

> kay=p+q=N, (6)

k=1

is an integer function of ¢ + 2 parameters: of p, ¢ (i.e. of N, S) and of «y,
k=1,2,...,t. Due to the constraint (6) only ¢ of them are independent. Most
frequently one is interested in the dependence of the characters upon N and S
for a fixed («). For the two-row representations, Eq. (4.9) of Butler and King

[8] may be rewritten as

XE];;J] = Cla) f5i77, (7)
r=0
where
cos (o1 +1—=2x)aq!
fal 2o +1—a)’ (8)
and
p+q ap
e - 11 () )
(8) k=2 \I7k
with

(B) = (27230 | 1) (10)

standing for a partition of x with no part smaller than 2. Obviously,



The values of f57> are related to the dimensions of the irreps of S, :

[al_l’7l’] s o
Xie if 0<a< S
[ = : (12)

—X[lﬂjl’“‘“’“] if & <r<o+1.

If 2 = (ay +1)/20r & > ay+ 1, then 57 = 0. Therefore, if ¢ > a3 + 1,
the lower limit of the sum over x in Eq. (7) may be set equal to ¢ — ay — 1.

Besides, since

<z> . _ g<on—w+l> (13)
Eq. (7) simplifies to
- [5]
Xy =2 [Clg—2)=Clg— a1 =1+ 2)] [, (14)
z=0

where [%] stands for the integer part of . In particular, if a3 <2 then

= e(q) - (o). (15)

According to Eq. (9), C(x) is evaluated as follows:

(1) List the partitions of (x) having no part smaller than 2;

(2) Replace each partition (272 3% ...#%) by the binomial coefficient

product (32) (52) -+ (5)

(3) Get C(x) as the sum of the binomial coefficient products found in (1).

Thus, the first few coefficients of the character formula become



Cl0)=1, C(1)=0, C(2)=0aq, C(3)=as,
C(4) = tag(ay — 1) + ay, C(5) = azas + as,

2

6(6) = éOQ(O‘? - 1)(O‘2 - 2) + %043(043 — 1) + azay + ag,
C(7) = %052(052 — Das + asay + agas + ar,

6(8) = 21—40é2(0é2 — 1)(0[2 — 2)(0[2 — 3) —|— %062063(063 — 1) —|— %O{Q(O{Q — 1)0[4

-I-%Oé4(044 — 1)+ azas + azas + as.

3. Stabilization Property

It is easy to see that, in general, C(x) does not depend upon «, when

y > x. Hence, according to Eq. (7), X(Z;’;J] does not depend upon those parts

v, of the partition of N which are larger than ¢. In particular,

R
XEZ;)I] = o — 17
X[p’z] = l041(041 —3)+ az
(o) 9 ’
P3]  _ l 1 _5 -1
X)) = 6041(041 ) )+ (o Jas + as.

Similar expressions for larger ¢ values may readily be obtained by combining
Eqgs. (7), (8) and (9). This observation is a special case of a general stabilization
rule for the symmetric group characters [12].

Since S = %—q, a knowledge of C(k), k = 0,1,...,¢, is sufficient to deter-
mine all of the characters for systems with S > % — ¢g. Therefore, in high-spin

systems only the "short-cycle” part of the permutation defines the character



formula. More specifically, if S = % — ¢, then the corresponding characters
do not depend upon «y41, ytz2, ... Alternatively, it may be formulated as
follows: Let (o) be a partition of p 4+ ¢ with no part larger than ¢ and let (u)

be a partition of & with all parts larger than ¢, then

[p+ka] _  [p.al
X(uo) " = X(o) - (16)

The irreps of Sy are labelled by ordered partitions of N. In the case of the
two-row representations, the standard ordering implies that ¢ < p. Partitions
that are not in standard order can be modified to produce equivalent standard
Sy irreps using the modification rules of Littlewood [13], [14]. For two-part
partitions this amounts to [p,q] = —[¢— 1,p+ 1]. I p= ¢ — 1 then the result

is null. Thus,

[pa] _ X[q—Lp-I-l] (17)

Combining the stabilization property and the Sy modification rule one may
derive interesting symmetry relations between the two-row representation char-

acters. Indeed, according to Eqs. (16) and (17), for every k > p + 1, we have

[p+k,q] [pa] la—1,p+1] [k+9—1,p+1] (18)

X(uo) = = X(o) = ~X(0) = T X(uo) .

Another interesting, though probably less important, relation holds for
the dimensions of the irreps. Namely, as one can easily check,
f(S;n) = f(S+1n), if n=(25+2)* -2, (19)

f(S,n) = f(S+2,n), if n=(25+3)*-3. (20)



It seems, however, that no similar relations exist between f(S,n) and f(5

Ayn)if A > 2.

4. Some Special Cases
Cases where («) is composed of only several different cycles are both the
simplest and the most important in applications. If (o) = 1V~ then the only

binomial coefficient which contributes to Eq. (9) is (ﬁlt) Hence,
117}3 . f<q> _I_f<q t>‘ (21)

This formula is equivalent to Eq. (29) of ref. [11]. It reduces to Eq. (4)
for t = 2 and to the results of Corson [10] for ¢ = 3,4,5. In the case of
() = 1N¥=t14% there may be several non-zero C coefficients: C(t) = (at),

1

C(2t) = (?), .o C(mt) = (fnt), where m = min(ay, [%]) and int(a). Then,

XF;;%] jo] = Z ( )f<q nt> (22)

n=0
with oy = N — tay.
A similar procedure may also be applied in more complicated cases. For

example, if (o) = 1°1s%t* with oy = N — sa; — tay then

A NsS—N¢
xF{fﬂsastat]:Z( )( )f<q (23)

MaTt n
where the sum is extended over all terms for which ny,s + nit < ¢, ny; < a,

and n: < ay.



5. Concluding Remarks

The formulae for the symmetric group characters presented in this paper
supply a general tool for expressing spectral density distribution moments of
the Heisenberg Hamiltonian in terms of the number of particles N = p+ ¢ and
of the total spin S = %(p — ¢). For other model Hamiltonians, these formulae
are also useful since the irreducible characters appear in numerous expressions
defining the appropriate moments [5].

The stabilization property of the characters (16) may allow the expression
of more complicated propagation coefficients in terms of simpler ones. Also
the symmetry relation (18) may be essential for simplifying some asymptotic
expressions. However their significance for statistical spectroscopy has to be

explored in more detail.
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