
On algebraic approaches to the genetic codeR. D. Kent1 and M. Schlesinger21School of Computer Science, 2Department of PhysicsUniversity of Windsor, Ontario, Canada N9B 3P4B. G. WybourneInstytut Fizyki, Uniwersytet Miko laja Kopernika,ul. Grudzi�adzka 5/7, 87-100 Toru�n, Poland(1 April, 1998)The role of Lie groups and algebras in symmetry based models of the genetic code is considered.The two schemes, based upon the symplectic group Sp(6) and the exceptional group G(2) are shownto correspond to di�erent embeddings in the group SO(14). Some possible alternative schemes aresketched. Problems with considering codons being represented as fermionic or bosonic are noted.A complete listing is given of all 64-dimensional irreducible representations that can arise in thesymmetric and alternating groups. I. INTRODUCTIONMessenger ribonucleic acid (mRNA) is comprised of a sugar spine along which are attached 20 di�erent types ofamino acids. Each of these is constructed utilizing four bases (nucleotides) taken three at a time in all permutations,thereby forming codon (tri-nucleotide) sequences (including three sequences called `stop', or terminating, codons).Interaction is between either two or three valence electrons. Each nucleotide is paired in DNA with another (anti-nucleotide) while each codon has a unique anti-codon. A known property of DNA and RNA is that the tripletsequences are precise and the codon assignments to amino acids, forming multiplets, are known. What is not wellunderstood is the basis for this genetic code.The possibility of underlying continuous symmetries being involved in the genetic code has been considered byHornos and Hornos [1], hitherto referred to as HH. In particular they have searched for approximate symmetries inthe genetic code in terms of Lie algebraic models. Speci�cally, they have investigated those simple Lie algebras thatpossess at least one irreducible representation of dimension 64, the number 64 corresponding to the 4� 4� 4 possiblecodons, each involving four bases arranged in triplets, to code the 20 amino acids. HH discussed in detail group-subgroup schemes based upon the symplectic group Sp(6) to describe the symmetry breaking (we abuse notationby using groups and algebras indiscriminately). More recently, Forger, Hornos and Hornos [2] (FHH) have extendedtheir study and included an additional symmetry breaking model based upon the exceptional group G(2). Herein, wecomment upon certain aspects of their work, show that the two schemes correspond to two di�erent embeddings in thegroup SO(14) and outline some possible alternative schemes. We then comment on FHH's introduction of fermionsand bosons in relation to O'Raifeartaigh's no-go theorem. Finally we give a complete listing of all 64-dimensionalirreducible representations that can arise in the symmetric and alternating groups.II. THE LIE ALGEBRAS AND LIE GROUPSThe complete list of posssible Lie algebras and their associated 64 dimensional irreducible representations is givenin Table I (we exclude the trivial cases where the vector irreducible representation is of degree 64). In labellingirreducible representations we follow the natural partition labelling of King and Al-Qubanchi [3]. The �rst columngives the simple Lie group followed by its rank, the third column gives the natural partition labelling for the relevant64-dimensional irreducible representation . The fourth column gives the vector irreducible representation of thegroup followed by its dimension while the �nal two columns give adjoint irreducible representation followed by itsdimension. The latter number corresponds to the number of generators of the group. We note the local isomorphismsSO(6) � SU (4), Sp(4) � SO(5) and SU (2) � Sp(2) � SO(3). Strictly speaking SU (2) is the covering group ofSO(3), an important distinction when one is considering spin irreducible representations .We note that the group SO(14) possesses two inequivalent 64-dimensional spin irreducible representations �+ and�� which are conjugate to one another under an involutary outer automorphism [4]. Table I exhausts the possibilitiesfor simple Lie groups. Other possibilities are considered towards the end of this paper.1



III. SO(14) AS A UNIFYING GROUPThe group SO(14) has a rich set of group-subgroup structures two of which lead to a uni�cation of the two modelsof HH and FHH. First we note that whereas the irreducible representations of G(2) are all necessarily orthogonal,and the vector [1] and adjoint [12] irreducible representations of SO(14) are also orthogonal, the spin irreduciblerepresentations �� are complex. In the case of the symplectic group Sp(6) the vector h1i and 64-dimensional h21iirreducible representations are symplectic and the adjoint h2i irreducible representation is orthogonal [5,6]. Theseproperties allow the groups Sp(6) and G(2) to be maximally embedded in SO(14) as indeed noted by Dynkin [7].The relevant branching rules for SO(14)! Sp(6) are:SO(14)! Sp(6)[1]! h12i (1a)[12]! h2i + h212i (1b)�� ! h21i (1c)and for SO(14)! G(2): SO(14)! G(2)[1]! (21) (2a)[12]! (21) + (3) (2b)�� ! (31) (2c)In both cases the vector [1] and spin �� irreducible representations of SO(14) remain irreducible under restrictionto the maximal subgroup, Sp(6) or G(2) while the decomposition of the adjoint irreducible representation [12] containsthe adjoint irreducible representation of the corresponding subgroup. It is these properties that lead to the conclusionthat the Sp(6) and G(2) symmetry models of HH and FHH correspond to di�erent embeddings in the group SO(14) .The subgroup Sp(6) is larger than G(2) with the consequence that whereas Sp(6) � U (1) � SU (3) we have justG(2) � SU (3). The two groups have a common SU (3) subgroup. In the case of G(2) ! SU (3) we have thedecomposition (31)! f32g+ f31g+ f22g+ 2f21g+ f2g+ f12g+ f1g (3)whereas for Sp(6)! U (1)� SU (3) we have (multiplying the U (1) weights by 3 to avoid fractions of integers)h21i ! f6g � f21g+ f2g � f31g+ f2g � f22g+ f2g � f1g+ f�2g � f32g+f�2g � f2g+ f�2g � f12g+ f�6g � f21g (4)Note that the presence of the U (1) irreducible representations in (4) removes the degeneracy of the two f21g irreduciblerepresentations appearing in (3). In other words the Sp(6) structure is richer than that of G(2).The groups Sp(6) and G(2) admit several subgroup structures. HH have studied the structureSp(6) � Sp(4) � SU (2) � SU (2) � SU (2) � SU (2) (5)and FHH also the structure G(2) � SU (2) � SU (2) (6)with further breakings of the SU (2) subgroups. Under (6) one has the decomposition(31)! f5g � f1g+ f4g � f2g+ f4g � f0g+ f3g � f1g+ f2g � f2g+ f2g � f0g+f1g � f3g+ f1g � f1g (7)Comparison with (3) shows the G(2) ! SU (3) and G(2) � SU (2) � SU (2) schemes yield the same number ofrepresentations but di�erent degeneracies.In general, if the vector irreducible representation f1g decomposes under SU (n) ! U (1)� SU (n � 1) asf1g ! f1g � f1g+ f�n+ 1g � f0g (8)2



then an arbitrary irreducible representation f�g of SU (n) decomposes asf�g !Xm f�nm+ !�g � f�=mg (9)where !� is the weight of the partition (�), with f�=mg restricted to partitions into at most (n�1) non-zero parts andremembering that in SU (p) for an irreducible representation f�g involving p non-zero parts we have the equivalencef�1; �2; : : : ; �pg � f�1 � �p; �2 � �p; : : : ; �p�1 � �p; 0g (10)Using (10) we can decompose the SU (3) irreducible representations in (3) under SU (3) ! U (1) � SU (2) to getunder G(2)! SU (3)! U (1)� SU (2)(31)! f5g � f1g+ f4g � f2g+ f4g � f0g+ 2f3g � f1g+ 2f2g � f2g+ 2f2g � f0g+ f1g � f3g+ 3f1g � f1g+ 2f0g � f2g+ 2f0g � f0g+ f�1g � f3g+ 3f�1g � f1g+ 2f�2g � f2g+ 2f�2g � f0g+ 2f�3g � f1g+ f�4g � f2g+ f�4g � f0g+ f�5g � f1g (11)which is, not surprisingly, the same U (1)� SU (2) content obtained by FHH in Step 3 of their Table III.The group SO(14) admits many di�erent subgroup structures. Only a few have been explored in detail. Thestructures in (1) and (2) are unique in as much as the SO(14) irreducible representation remains irreducible in the�rst stage of the symmetry reduction. All other structures (apart from SO(14) � SO(13)) involve a reduction intotwo or more irreducible representations at the �rst stage of the symmetry reduction. Thus, for example, one hasstructures such as SO(14) � SO(7) � SO(7) � G(2)�G(2) � G(2) (12)with the vector irreducible representation of SO(14) decomposing as[1]! [1]� [0] + [0]� [1]! (10)� (00) + (00)� (10)! 2(10) (13)and the spin irreducible representations as�� ! ���! ((10) + (00)) � ((10) + (00))! (21) + (20) + 3(10) + 2(00) (14)The group SO(13) is of less signi�cance as the vector irreducible representation is of dimension 13 leading to ratheruninteresting subgroup structures. It would appear from our preceding remarks that the Lie group of major interestremains as HH's original choice of Sp(6). IV. OTHER SP(6) MODELSThe group Sp(6) admits a variety of subgroup structures. Most are of little interest apart from those alreadyconsidered by HH and FHH and the structureSp(6) � U (1)� SU (3) � U (1)� U (1)� SU (2) (15)The �rst step of the symmetry reduction is given in (4). Each irreducible representation given in (4) decomposesin the second step according to the results given in Table II. Every one of the 30 U (1)�U (1)� SU (2) multiplets hasunique labels. There is a one-to-one correspondence between the �nal degeneracies of this model with that of the G2model of FHH. The di�erence is in the earlier breaking of the symmetry. As already noted there are two distinct G2models, namely that based upon G2 ! SU (2) � SU (2) and used by FHH and that based upon G2 ! SU (3).A typical state in the Sp(6)! U (1)� SU (3)! U (1) � SU (2) � U (1) may be uniquely labelled asjh21iY1f�gY2fmgY3i (16)The Y1 , Y2 and Y3 labels (to within a normalisation factor) are associated with the three U (1) subgroups and areanalogous to hypercharge. The third U (1) comes from the SU (2)! U (1) reduction required to give a complete set ofbasis states. It is assumed that the states are degenerate with respect to Y3. The SU (3) irreducible representation is3



labelled by a two part partition f�g. The irreducible representations of SU (2) are labelled by fmg and are associatedwith a degeneracy of (m + 1) with Y3 distinguishing the degenerate states.The multiplicities may be represented by the eigenvalues of the operatorO = a0 + a1Y1 + a2C2(SU (3)) + a3Y2 + a4m(m + 2) (17)The eigenvalues of C2(SU (3)) may be taken, to within a normalisation factor, as [8]C2(�1; �2) = 2(�21 + �22 � �21�22 + 3�1) (18)The invariant operator (17) has the same number of parameters as FHH's G(2) model and one less than that of theoriginal HH Sp(6) model. Nevertheless, the operator given here represents a di�erent mode of symmetry breaking.The complete set of states is displayed in Table III.V. OF BOSONS AND FERMIONSThe algebraic models proposed in HH and FHH re
ect experience with algebraic models in nuclear and particlephysics. Such ideas must be developed with caution when taken over to biological problems. The introductionof fermionic and bosonic representations in FHH goes against the usual ideas of particle physics where one hasO'Raifeartaigh's no-go theorem [9] that rules out the possibility of combining fermions and bosons into a commonmultiplet, or irreducible representation , of a Lie group|that becomes possible only in going to super-Lie groupswhich introduce both commutative and anticommutative variables. Thus, in the standard SU (3) model of the baryonoctet, the adjoint irreducible representation f21g of SU (3) contains isospin multiplets with both integer and halfinteger isospin but the baryons are all fermions. Similarly in the meson nonets both integer and half integer isospinoccur but the mesons are all bosons. The relevant group for isospin is SU (2), the covering group of SO(3). Thepossibility of using super algebras in analysing the genetic code has been considered by Bashford et al. [10].VI. SYMMETRIC AND ALTERNATING GROUPSScant attention has been paid to the �nite groups. Irreducible representations of dimension 64 are relatively rareamong the �nite groups. None of the crystallographic point groups contain irreducible representations of degree i6.This leaves the symmetric, S(n), and alternating, A(n), groups as the most likely candidates. In those cases one cangive an exhaustive list. For the ordinary irreducible representations the only cases for all n are for n = 8 and n = 65,speci�cally S(8) : � f521g; f3213gA(8) : � [521]S(65) : � f641g; f2163gA(65) : � [641]while for the spin irreducible representations we are limited to the casesS(13) : � f�gS(14) : � f��gA(14) : � [�]A(15) : � [��]It is di�cult to motivate a symmetry breaking based upon these groups though we note the explicit appearance ofpermutational invariance in the closing stages of FHH. 4



VII. CONCLUDING REMARKSIt would appear from the present work that the most suitable Lie group for describing symmetry breaking modelsof the genetic code is the symplectic group Sp(6) and that at this stage in the development more than one Sp(6)model is possible. The possibilities of using �nite groups appear to be quite restrictive as long as it is assumed thatthe symmetry breaking starts with a 64-dimensional irreducible representation . As FHH rightly note \symmetryconsiderations alone cannot replace a microscopic model but just establish a general background." This parallels thecorresponding di�culty that has been experienced in physics with the interacting boson model of nuclei. HH andFHH have raised some important issues. Developing a microscopic model remains the major task for future work.Some preliminary steps in that direction have been given elsewhere [11].AcknowledgementsRDK and MS acknowledge support from the Natural Sciences and Engineering Research Council (NSERC) ofCanada. BGW has been supported in part by a Polish KBN Grant and was also appreciative of the hospitalityextended to him at University of Windsor in May 1997. All calculations were made using SCHUR [12].[1] J. E. M. Hornos and Y. M. M. Hornos, Phys. Rev. Lett. 71, 4401 (1993).[2] M. Forger, Y. M. M. Hornos and J. E. M. Hornos, Phys. Rev. E 56, 7078 (1997).[3] R. C. King and A. H. A. Al-Qubanchi, J. Phys. A: Math. Gen. 14, 15 (1981).[4] R. C. King, Luan Dehuai and B. G. Wybourne, J. Phys. A: Math. Gen. 14, 2509 (1981).[5] A. I. Mal'cev, Izv. Akad. Nauk. SSR Ser. Math. 8, 143 (1944); Transl. in Am. Math. Soc. Transl. 9, No. 1 (1962).[6] P. H. Butler and R. C. King, Can. J. Math. 26, 328 (1974).[7] E. B. Dynkin, Trudy Mosk. Mat.O-va 1, 39 (1959); translated in Am. Math. Soc. Transl. (2) 6, 245 (1965).[8] B. G. Wybourne, Classical Groups for Physicists, J Wiley and Sons, New York 1973.[9] L. O'Raifeartaigh, Phys. Rev. 139, 1052 (1965).[10] J. D. Bashford, I. Tsohantjis and P.D. Jarvis, Proc. Nat. Acad, Sci. NY l95, 987 (1998). Also, see J. D. Bashford, P.D.Jarvis and I. Tsohantjis, Phys. Lett. A l233, 481 (1997).[11] M. Schlesinger and R. D. Kent, in Proc. 4th International School Theoret. Phys. (World Scienti�c, Singapore, 1997), pp.263{282.[12] A description of SCHUR can be found at http://www.phys.uni.torun.pl/bgwTABLE I. The Lie groups possessing a 64-dimensional irreducible representation .Group rank �64 V dim V Ad dim AdSO(14) 7 �� [1] 14 [12] 91SO(13) 6 � [1] 13 [12] 78Sp(6) 3 h21i h1i 6 h2i 21SO(6) 3 [21] [1] 6 [12] 15SU(4) 3 f321g f1g 4 f212g 15G(2) 2 (31) (1; 0) 7 (21) 14SO(5) 2 [�21] [1] 5 [12] 10Sp(4) 2 h41i h1i 4 h2i 10SU(3) 2 f63g f1g 3 f21g 8Sp(2) 1 h63 i h1i 2 h2i 3SU(2) 1 f63 g f1g 2 f2g 3SO(3) 1 [�31 ] [1] 3 [1] 35



TABLE II. U(1)� SU(3)! U(1)� U(1)� branching rulesa.(8) f6g � f21g ! f6g � f3g � f1g + f6g � f0g � f2g + f6g � f0g � f0g+ f6g � f�3g � f1g(8) f�6g � f21g ! f�6g � f3g � f1g + f�6g � f0g � f2g + f�6g � f0g � f0g+ f�6g � f�3g � f1g(15) f2g � f31g ! f2g � f4g � f2g + f2g � f1g � f3g + f2g � f1g � f1g+ f2g � f�2g � f2g + f2g � f�2g � f0g + f2g � f�5g � f1g(15) f�2g � f32g ! f�2g � f5g � f1g + f�2g � f2g � f2g + f�2g � f2g � f0g+ f�2g � f�1g � f3g + f�2g � f�1g � f1g + f�2g � f�4g � f2g(6) f2g � f22g ! f2g � f4g � f0g + f2g � f1g � f1g + f2g � f�2g � f2g(6) f�2g � f2g ! f�2g � f2g � f2g + f�2g � f�1g � f1g + f�2g � f�4g � f0g(3) f2g � f1g ! f2g � f1g � f1g + f2g � f�2g � f0g(3) f�2g � f12g ! f�2g � f2g � f0g + f�2g � f�1g � f1gaThe dimensions of the U(1)�SU(3) irreducible representations are placed in brackets () in the leftmost column. The dimensionsof the SU(2) irreducible representations fmg are just (m+ 1).TABLE III. The complete set of states in the Sp(6) ! U(1)� U(1)� SU(2) scheme.jh21i � 6f21g � 3f1g � 1i jh21i � 6f21g0f2g � 2ijh21i � 6f21g0f2g0i jh21i � 6f21g0f0g0ijh21i2f31g4f2g � 2i jh21i2f31g4f2g0ijh21i2f31g1f3g � 3i jh21i2f31g1f3g � 1ijh21i2f31g1f1g � 1i jh21i2f31g � 2f2g � 2ijh21i2f31g � 2f2g0i jh21i2f31g � 2f0g0ijh21i2f31g � 5f1g � 1ijh21i � 2f32g5f1g � 1i jh21i � 2f32g2f2g � 2ijh21i � 2f32g2f2g0i jh21i � 2f32g2f0g0ijh21i � 2f32g � 1f3g � 3i jh21i � 2f32g � 1f3g � 1ijh21i � 2f32g � 1f1g � 1i jh21i � 2f32g � 4f2g � 2ijh21i � 2f32g � 4f2g0ijh21i2f22g4f0g0i jh21i2f22g1f1g � 1ijh21i2f22g � 2f2g � 2i jh21i2f22g � 2f2g0ijh21i � 2f2g2f2g � 2i jh21i � 2f2g2f2g0ijh21i � 2f2g � 1f1g � 1i jh21i � 2f2g � 4f0g0ijh21i2f1g1f1g � 1i jh21i2f1g � 2f0g0ijh21i � 2f12g � 1f1g � 1i jh21i � 2f12g2f0g0i
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