Admissible partitions and the square of the Vandermonde determinant

Brian G Wybourne
Instytut Fizyki,Uniwersytet Mikołaja Kopernika, 87-100 Toruń, POLAND

Abstract

The expansion of the second power of the Vandermonde determinant as a finite sum of Schur functions is considered.

1. Introduction

Laughlin[1] has described the fractional quantum Hall effect in terms of a wavefunction

$$
\begin{equation*}
\Psi_{\text {Laughlin }}^{m}\left(z_{1}, \ldots, z_{N}\right)=\prod_{i<j}^{N}\left(z_{i}-z_{j}\right)^{2 m+1} \exp \left(-\frac{1}{2} \sum_{i=1}^{N}\left|z_{i}\right|^{2}\right) \tag{1}
\end{equation*}
$$

The Vandermonde alternating function in N variables is defined as

$$
\begin{align*}
& V\left(z_{1}, \ldots, z_{N}\right)=\prod_{i<j}^{N}\left(z_{i}-z_{j}\right) \tag{2}\\
& \frac{\Psi_{\text {Laughlin }}}{V}=V^{2 m}=\sum_{\lambda \vdash n} c^{\lambda} s_{\lambda} \tag{3}
\end{align*}
$$

where $n=m N(N-1)$ and the s_{λ} are Schur functions. The coefficients c_{λ} are signed integers.
Dunne[2] and Di Francesco et al[3] have discussed properties of the expansions while Scharf et al[4] have given specific algorithms for computing the expansions for $m=1$ with N from 2 to 9 . The author has extended these results to $N=10$ leading to a number of new conjectures.

1.1. Expansion of the Laughlin wavefunction

Henceforth we consider the case where $m=1$. The partitions, (λ), indexing the Schur functions are of weight $N(N-1)$. For a given N the partitions are bounded by a highest partition $(2 N-2,2 N-4, \ldots, 0)$ and a lowest partition $\left((N-1)^{N-1}\right)$ with the partitions being of length N and $N-1$.

Let

$$
\begin{equation*}
n_{k}=\sum_{i=0}^{k} \lambda_{N-i}-k(k+1) k=0,1, \ldots, N-1 \tag{4}
\end{equation*}
$$

Di Francesco et al[3] define admissible partitions as satisfying Eq(4) with all $n_{k} \geq 0$. They computed the number of admissible partitions A_{N} for $N \leq 29$ and conjectured that A_{N} was the number of distinct partitions arising in the expansion, $\mathrm{Eq}(3)$, provided none of the coefficients vanished.

The conjecture has been shown[4] to fail for $N \geq 8$. We find the number of admissible partitions associated with vanishing coefficients as

$$
(N=8) \quad 8,(N=9) \quad 66,(N=10) \quad 389
$$

The coefficients of s_{λ} and $s_{\lambda_{r}}$ are equal if[2]

$$
\begin{equation*}
\left(\lambda_{r}\right)=\left(2(N-1)-\lambda_{N}, \ldots, 2(N-1)-\lambda_{1}\right) \tag{5}
\end{equation*}
$$

We list the 8 partitions for $N=8$ as reverse pairs

$\left\{1311985^{2} 41\right\}$	$\left\{13109^{2} 6531\right\}$	$(Q 1)$
$\left\{13119854^{2} 2\right\}$	$\{1310987531\}$	$(Q 2)$
$\{1311976541\}$	$\left\{1210^{2} 96531\right\}$	$(Q 3)$
$\left\{121197^{2} 4^{2} 1\right\}$	$\left\{1210^{2} 7^{2} 532\right\}$	$(Q 4)$

1.2. The q-discriminant

Let $q \mathbf{x}=\left(q x_{1}, q x_{2}, \ldots, q x_{N}\right)$ and the q-discriminant of \mathbf{x} be

$$
\begin{equation*}
D_{N}(q ; \mathbf{x})=\prod_{1 \leq i \neq j \leq N}\left(x_{i}-q x_{j}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{N}(q ; \mathbf{x})=\prod_{1 \leq i \neq j \leq N}\left(x_{i}-q x_{j}\right)\left(q x_{i}-x_{j}\right) \quad=\sum_{\lambda} c^{\lambda}(q) s_{\lambda}(\mathbf{x}) \tag{7}
\end{equation*}
$$

So that

$$
\begin{equation*}
V_{N}^{2}(\mathbf{x})=\prod_{1 \leq i<j \leq N}\left(x_{i}-x_{j}\right)^{2}=R_{N}(1 ; \mathbf{x}) \tag{8}
\end{equation*}
$$

Introduce $q-$ polynomials such that

$$
\begin{align*}
R_{N}(q ; \mathbf{x}) & =\sum_{\lambda} c^{\lambda}(q) s_{\lambda}(\mathbf{x}) \tag{9}\\
R_{N}(q ; \mathbf{x}) & =\frac{(-1)^{N(N-1) / 2}}{(1-q)^{N}} \sum_{\nu \subseteq(N-1)^{N}}\left((-q)^{|\nu|)}+(-q)^{N^{2}-|\nu|}\right) \\
& \times s_{(N-1)^{N} / \nu}(\mathbf{x}) s_{\nu^{\prime}}(\mathbf{x})
\end{align*}
$$

Such expansions have been evaluated as polynomials in q for all admissible partitions for $N=2 \ldots 6$ with many examples for $N=7,8,9$.

$\mathrm{N}=2$	$[1]$	q	$\{2\}$
	$[-3]$	$-\left(q^{2}+q+1\right)$	$\left\{1^{2}\right\}$
$\mathrm{N}=3$	$[1]$	q^{3}	$\{42\}$
	$[-3]$	$-q^{2}\left(q^{2}+q+1\right)$	$\left\{41^{2}\right\}+\left\{3^{2}\right\}$
	$[6]$	$+q\left(q^{2}+q+1\right)\left(q^{2}+1\right)$	$\{321\}$
	$[-15]$	$-\left(q^{2}+q+1\right)\left(q^{4}+q^{2}+q+1\right)$	$\left\{2^{3}\right\}$
$\mathrm{N}=4$	$[1]$	q^{6}	$\{642\}$
	$[-3]$	$-q^{5}\left(q^{2}+q+1\right)$	$\left\{641^{2}\right\}+\left\{63^{2}\right\}+\left\{5^{2} 2\right\}$
	$[6]$	$+q^{4}\left(q^{2}+q+1\right)\left(q^{2}+1\right)$	$\{6321\}+\{543\}$

The q-polynomials for the four pairs of partitions designated earlier as $Q(1) \ldots Q(4)$ are

$$
\begin{aligned}
& Q(1)-q^{17}\left(q^{2}-q+1\right)^{2}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)^{5}(1-q)^{4} \\
& Q(2)+q^{16}\left(q^{2}-q+1\right)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{6}(1-q)^{4} \\
& Q(3)+q^{16}\left(q^{2}-q+1\right)^{2}\left(q^{2}+1\right)^{3}\left(q^{2}+q+1\right)^{5}(1-q)^{4} \\
& Q(4)+q^{14}\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)^{5}(1-q)^{4} \\
& \quad \times\left(q^{10}+q^{9}+3 q^{8}+4 q^{6}+q^{5}+4 q^{4}+3 q^{2}+q+1\right)
\end{aligned}
$$

Note the factor $(q-1)^{4}$ which vanishes for $q=1$.

1.3. A conjecture

The following conjecture has been verified to hold for $N \leq 10$
If a q-polynomial is of the form $(-1)^{\phi} q^{p} Q(q)$ then under $N \rightarrow N+1$

$$
\phi \rightarrow \phi, p \rightarrow p+N, Q(q) \rightarrow Q(q),\{\lambda\} \rightarrow\{2 N-2, \lambda\}
$$

Define

$$
Q S(N)=\sum_{\lambda} c_{\lambda}(q)
$$

then

$$
Q S(N)=\prod_{x=0}^{[N / 2]}(-3 x+1) \prod_{x=0}^{[(N-1) / 2]}(6 x+1)
$$

Di Francesco etal[3] establish the remarkable result that the sum of the squares of the coefficients of the second power of the Vandermonde with $q=1$ is

$$
\frac{(3 N)!}{N!(3!)^{N}}
$$

What is the corresponding result for the q-polynomials? For $N=4$ one finds

$$
\begin{aligned}
& q^{24}+6 q^{23}+22 q^{22}+58 q^{21}+128 q^{20}+242 q^{19} \\
& +418 q^{18}+646 q^{17}+929 q^{16}+1210 q^{15}+1490 q^{14} \\
& +1670 q^{13}+1760 q^{12}+1670 q^{11}+1490 q^{10}+1210 q^{9} \\
& +646 q^{8}+418 q^{6}+242 q^{5}+128 q^{4}+58 q^{3}+22 q^{2}+6 q+1
\end{aligned}
$$

Note the polynomial is symmetrical and unimodal! Can the general result be found?

Acknowledgments

This work has benefited from interaction with R C King and J-Y Thibon and is supported in part by the Polish KBN Grant 5P03B 5721.

References

[1] Laughlin R B 1983 Phys. Rev. Lett. 501395
[2] Dunne G V 1993 Int. J. Mod. Phys. B7 4783
[3] Di Francesco P, Gaudin M, Itzykson C and Lesage F 1994 Int. J. Mod. Phys. A9 4257
[4] Scharf T, Thibon J-Y and Wybourne B G 1994 J. Phys. A: Math. Gen. 274211

