“Bosons love to come together; fermions can’t stand each other”

Daniel Kleppner

Bosons, Fermions and Symmetric

Functions

Brian G Wybourne
Instytut Fizyki,

Uniwersytet Mikolaja Kopernika, Torun - Polska

8 May 2001




Outline

Symmetric Functions
The One-Dimensional Harmonic Oscillator

Bosons, Fermions and Harmonic Oscillators

Symmetric Functions, Partition Functions and Thermodynamics

References

Acknowledgements




Symmetric Functions

Newton’s Arithmetica Universalis
Monomial Symmetric Functions
Schur Functions and Monomials

Power Sum Symmetric Functions

Schur Functions, Power Sums and S,, Characters




Monomial Symmetric Functions

e A symmetric monomial
my(zx) = Z r®
(87

involves a sum over all distinct permutations « of
(A) = (A1, A, ...). e.g. if () = (1, T2, z3) then

2

2 2 2 2 2
mo1(x) = xixe + 2723 + T125 + X125 + T5T3 + X225

mis(x) = 12273

e If A\ Fn then my(z) is homogeneous of degree n. Normally we
shall assume (z) involves an infinite number of variables. The

monomials form a basis for the ring of symmetric functions.

e Other bases exist.




Schur Functions and Monomials

e The Schur-functions (S—functions) are indexed by ordered

partitions (A) and are combinatorially defined as

sa(z) = Z z! (2)

where the sum is over all semistandard A\—tableaux

e In just three variables, (z) = (x1,z2,z3), we have for (\) = (21)
s91(T1, T2, x3) = a:%azg—kac%xg—kazlazg+$1x2x3+x1$2$3+x1x§+x§az3+az2x§

corresponding to the eight tableaux

1)1 1(1 1(2 12 1
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Schur Functions and Monomials

e In terms of monomials
so1(x1, X2, x3) = mo1(x1, T2, T3) + 2mqs (1, T2, T3)
In an arbitrary number of variables (z) = (z1,z2,...)
s21(x) = ma1(z) + 2mqs(z)

e Generally,

sa(x) = ZK,\“mM

u-n

where K, 1s the Kostka matrix.




Schur Functions and other Symmetric Functions

e Note that there is a wide choice of the variables (x). If they are

chosen as the eigenvalues of unitary matrices of rank /N then the
S —tunctions become the characters of the covariant

representations of the unitary group U(N)

e There are two special cases of interest, being closely related to

properties of bosons and fermions respectively:-

sy = hn The homogeneous symmetric functions

SN = €N The elementary symmetric functions




Schur Functions and other Symmetric Functions

e The power sum symmetric functions, p,, are simply defined as

Dr = Zx: = m, () (4)

and to form a complete basis we need the multiplicative power

SUIIS

Po = Po1Pos - - - (5)

e The characters x2 of S(IV) provide the link between S—functions

and power sum symmetric functions.

s = 2 Xopo (6)

o




Schur Functions and other Symmetric Functions

e For any partition (o)

2o = H i)

i>1
where m; = m; (o) is the number of parts of o equal to i.

e We have the two special cases

hn — Z Z(;lpa

lo|=n

E ! —1
€En — 50-20. Do

lo|=n




The n—Dimensional Harmonic Oscillator

e The n—dimensional harmonic oscillator has the metaplectic
group Mp(2n) as its dynamical group and is the double covering
group of the non-compact group Sp(2n,R).

e Under Mp(2n) — Sp(2n,RN)

A— AL+ A (10)

Harmonic series irreps of Sp(2n,R) are labelled (3k(\)) with
(A) = (A1, A2, ... ) for which the conjugate partition
(A) = (A1, g, ... ) satisfies the constraints

5\1—|—5\2§k and 5\1§n




The n-Dimensional Harmonic Oscillator

e Under Sp(2n,R) — U(n)
Ay — e2 ({0} + {2} + {4} +...) (130)

A e3({1} {3} + {5} +...) (13b)

e Thus A, covers the even parity states and A_ the odd parity
states

e Succinctly, under Mp(2n) — U(n)

- 1 >
A—erM  with M=) {m}
m=0
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The 1-Dimensional Harmonic Oscillator

e The degeneracy group is U(1), but all its irreps are
one-dimensional. For IV non-interacting particles in a
one-dimensional harmonic oscillator we wish to count the number
of symmetric states for bosons and antisymmetric states for

fermions. 1i.e.

M®{N} = ig]k\,{k} bosons (15a)
k=0

o0

M@ {1V} = Z ¢ {0} fermions (15b)

N(N-—-1
PRTEESY
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The 1-Dimensional Harmonic Oscillator

e We find g% is the number of partitions of k into at most N parts
with repetitions and null parts allowed while cfv is the number of

partitions of £ into N distinct parts, including the null part.

c=g% if  l=k4+ XA (16)

Can map one of the sets of partitions onto the other by adding,
or subtracting py = (N —1,...,2,1,0). Adding py to the
partitions of k£ into at most /N parts converts them into
partitions, all of whose parts are distinct. and hence the above

equivalence.
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The 1-Dimensional Harmonic Oscillator

e Thus there is a one-to-one correspondence between the counts of
the states formed by /N non-interacting bosons and fermions in a
one-dimensional harmonic oscillator. Their thermodynamic
properties are equivalent apart from a shift in the ground state

energy.

e Suppose

A@{N} =) sk(¥(k)
k=0

A {1V} =
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The 1-Dimensional Harmonic Oscillator

e then

SN = 956\7 — 9N and oy =9y °  —9n (18)

e Thus the Sp(2,R) content of the two plethysms differ simply by

__ N(N-1) . ¢ _ A= N(J\;_l)
{— f— N1 ie. ay =Sy (19)

which again reflects the boson-fermion symmetry of the

one-dimensional harmonic oscillator.
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Symmetric Functions and Partition Functions

e Consider an ideal gas of N-noninteracting particles

Define the canonical partition function of statistical physics as

Zn(8) = Tr (=) (20

where 8 = (kgT)~! and

is the Hamiltonian, the sum of NV identical single particle
Hamiltonians, with a spectrum of energy eigenvalues &7, &5, . ..

(with possible degeneracies)
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Symmetric Functions and Partition Functions

For a single particle, boson or fermion,

2,(8) = Y el P (22)

Introduce a set of variables, (x) = (z1,x3,...) , not necessarily

finite in number, with z; = e(=8%)

Note that Z1(8) = s1(x) = e1(x) = h1(z) = p1(x) in such
variables.

For N-noninteracting particles we are interested in symmetrising
N copies of the single particle function in the variables (x) which

is an [N —fold plethysm of the appropriate symmetric functions.
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Symmetric Functions and Partition Functions

e Recall p1(x) ® p-(x) = pr-(x) = > x" = Z1(rp3) (for bosons or

fermions)
e Furthermore, s1(z) ® {A\} = {A\}(z) = p1(z) ® {\}

e But,

S\ = Z Zngépa

(o}

e For N fermions we choose {\} = {1¥} while for bosons
{A} = {N} and are immediately led to

ZN(B)F = ) a2y Zi(0p)

jo|=N
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Symmetric Functions and Partition Functions

e where et =1, e~ = (=1)l°I=4) and

(o)

Zi(of) = H Z1(0:B)

Thus the canonical partition function for /N-noninteracting
bosons or fermions is completely determined by the single
particle partition function. The coeflicients sum to unity for

bosons (+) and to zero for fermions (—). For example:-

25(8)* = <3 (2421(56) & 3021 (48) 21(8) & 202, (38) 21 (26)

+2021(38)21(8) + 1521(28)221(8) £ 102, (28) 21(8)° + 21(B)°)
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