"Bosons love to come together; fermions can't stand each other" Daniel Kleppner

Bosons, Fermions and Symmetric Functions

Brian G Wybourne
Instytut Fizyki,
Uniwersytet Mikołaja Kopernika, Toruń - Polska
8 May 2001

Outline

- Symmetric Functions
- The One-Dimensional Harmonic Oscillator
- Bosons, Fermions and Harmonic Oscillators
- Symmetric Functions, Partition Functions and Thermodynamics
- References
- Acknowledgements

Symmetric Functions

- Newton's Arithmetica Universalis
- Monomial Symmetric Functions
- Schur Functions and Monomials
- Power Sum Symmetric Functions
- Schur Functions, Power Sums and S_{n} Characters

Monomial Symmetric Functions

- A symmetric monomial

$$
\begin{equation*}
m_{\lambda}(x)=\sum_{\alpha} x^{\alpha} \tag{1}
\end{equation*}
$$

involves a sum over all distinct permutations α of
$(\lambda)=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$. e.g. if $(x)=\left(x_{1}, x_{2}, x_{3}\right)$ then

$$
\begin{gathered}
m_{21}(x)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2} \\
m_{1^{3}}(x)=x_{1} x_{2} x_{3}
\end{gathered}
$$

- If $\lambda \vdash n$ then $m_{\lambda}(x)$ is homogeneous of degree n. Normally we shall assume (x) involves an infinite number of variables. The monomials form a basis for the ring of symmetric functions.
- Other bases exist.

Schur Functions and Monomials

- The Schur-functions (S-functions) are indexed by ordered partitions (λ) and are combinatorially defined as

$$
\begin{equation*}
s_{\lambda}(x)=\sum_{T} x^{T} \tag{2}
\end{equation*}
$$

where the sum is over all semistandard λ-tableaux

- In just three variables, $(x)=\left(x_{1}, x_{2}, x_{3}\right)$, we have for $(\lambda)=(21)$ $s_{21}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}$ corresponding to the eight tableaux

Schur Functions and Monomials

- In terms of monomials

$$
s_{21}\left(x_{1}, x_{2}, x_{3}\right)=m_{21}\left(x_{1}, x_{2}, x_{3}\right)+2 m_{1^{3}}\left(x_{1}, x_{2}, x_{3}\right)
$$

In an arbitrary number of variables $(x)=\left(x_{1}, x_{2}, \ldots\right)$

$$
s_{21}(x)=m_{21}(x)+2 m_{1^{3}}(x)
$$

- Generally,

$$
\begin{equation*}
s_{\lambda}(x)=\sum_{\mu \vdash n} K_{\lambda \mu} m_{\mu} \tag{3}
\end{equation*}
$$

where $K_{\lambda \mu}$ is the Kostka matrix.

Schur Functions and other Symmetric Functions

- Note that there is a wide choice of the variables (x). If they are chosen as the eigenvalues of unitary matrices of rank N then the S-functions become the characters of the covariant representations of the unitary group $U(N)$
- There are two special cases of interest, being closely related to properties of bosons and fermions respectively:-

$$
\begin{aligned}
& s_{N}=h_{N} \quad \text { The homogeneous symmetric functions } \\
& s_{1^{N}}=e_{N} \quad \text { The elementary symmetric functions }
\end{aligned}
$$

Schur Functions and other Symmetric Functions

- The power sum symmetric functions, p_{r}, are simply defined as

$$
\begin{equation*}
p_{r}=\sum x_{i}^{r}=m_{r}(x) \tag{4}
\end{equation*}
$$

and to form a complete basis we need the multiplicative power sums

$$
\begin{equation*}
p_{\sigma}=p_{\sigma_{1}} p_{\sigma_{2}} \ldots \tag{5}
\end{equation*}
$$

- The characters χ_{σ}^{λ} of $S(N)$ provide the link between S-functions and power sum symmetric functions.

$$
\begin{equation*}
s_{\lambda}=\sum_{\sigma} z_{\sigma}^{-1} \chi_{\sigma}^{\lambda} p_{\sigma} \tag{6}
\end{equation*}
$$

Schur Functions and other Symmetric Functions

- For any partition (σ)

$$
\begin{equation*}
z_{\sigma}=\prod_{i \geq 1} i^{m_{i}} m_{i}! \tag{7}
\end{equation*}
$$

where $m_{i}=m_{i}(\sigma)$ is the number of parts of σ equal to i.

- We have the two special cases

$$
\begin{gather*}
h_{n}=\sum_{|\sigma|=n} z_{\sigma}^{-1} p_{\sigma} \tag{8a}\\
e_{n}=\sum_{|\sigma|=n} \varepsilon_{\sigma} z_{\sigma}^{-1} p_{\sigma} \tag{8b}
\end{gather*}
$$

where

$$
\begin{equation*}
\varepsilon_{\sigma}=\chi_{\sigma}^{1^{n}}=(-1)^{|\sigma|-\ell(\sigma)} \tag{9}
\end{equation*}
$$

The n-Dimensional Harmonic Oscillator

- The n-dimensional harmonic oscillator has the metaplectic group $M p(2 n)$ as its dynamical group and is the double covering group of the non-compact group $S p(2 n, \Re)$.
- Under $M p(2 n) \rightarrow S p(2 n, \Re)$

$$
\begin{equation*}
\tilde{\Delta} \rightarrow \Delta_{+}+\Delta_{-} \tag{10}
\end{equation*}
$$

Harmonic series irreps of $S p(2 n, \Re)$ are labelled $\left\langle\frac{1}{2} k(\lambda)\right\rangle$ with $(\lambda)=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ for which the conjugate partition $(\tilde{\lambda})=\left(\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \ldots\right)$ satisfies the constraints

$$
\begin{equation*}
\tilde{\lambda}_{1}+\tilde{\lambda}_{2} \leq k \quad \text { and } \quad \tilde{\lambda}_{1} \leq n \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{+} \equiv\left\langle\frac{1}{2}(0)\right\rangle \quad \text { and } \quad \Delta_{-} \equiv\left\langle\frac{1}{2}(1)\right\rangle \tag{12}
\end{equation*}
$$

The n-Dimensional Harmonic Oscillator

- Under $S p(2 n, \Re) \rightarrow U(n)$

$$
\begin{align*}
& \Delta_{+} \rightarrow \varepsilon^{\frac{1}{2}}(\{0\}+\{2\}+\{4\}+\ldots) \tag{13a}\\
& \Delta_{-} \rightarrow \varepsilon^{\frac{1}{2}}(\{1\}+\{3\}+\{5\}+\ldots) \tag{13b}
\end{align*}
$$

- Thus Δ_{+}covers the even parity states and Δ_{-}the odd parity states
- Succinctly, under $M p(2 n) \rightarrow U(n)$

$$
\begin{equation*}
\tilde{\Delta} \rightarrow \varepsilon^{\frac{1}{2}} M \quad \text { with } \quad M=\sum_{m=0}^{\infty}\{m\} \tag{14}
\end{equation*}
$$

The 1-Dimensional Harmonic Oscillator

- The degeneracy group is $U(1)$, but all its irreps are one-dimensional. For N non-interacting particles in a one-dimensional harmonic oscillator we wish to count the number of symmetric states for bosons and antisymmetric states for fermions. i.e.

$$
\begin{gather*}
M \otimes\{N\}=\sum_{k=0}^{\infty} g_{N}^{k}\{k\} \quad \text { bosons } \tag{15a}\\
M \otimes\left\{1^{N}\right\}=\sum_{\ell=\frac{N(N-1)}{2}}^{\infty} c_{N}^{\ell}\{\ell\} \quad \text { fermions } \tag{15b}
\end{gather*}
$$

The 1-Dimensional Harmonic Oscillator

- We find g_{N}^{k} is the number of partitions of k into at most N parts with repetitions and null parts allowed while c_{N}^{ℓ} is the number of partitions of ℓ into N distinct parts, including the null part.

$$
\begin{equation*}
c_{N}^{\ell}=g_{N}^{k} \quad \text { if } \quad \ell=k+\frac{N(N-1)}{2} \tag{16}
\end{equation*}
$$

- Can map one of the sets of partitions onto the other by adding, or subtracting $\rho_{N}=(N-1, \ldots, 2,1,0)$. Adding ρ_{N} to the partitions of k into at most N parts converts them into partitions, all of whose parts are distinct. and hence the above equivalence.

The 1-Dimensional Harmonic Oscillator

- Thus there is a one-to-one correspondence between the counts of the states formed by N non-interacting bosons and fermions in a one-dimensional harmonic oscillator. Their thermodynamic properties are equivalent apart from a shift in the ground state energy.
- Suppose

$$
\begin{equation*}
\tilde{\Delta} \otimes\{N\}=\sum_{k=0}^{\infty} s_{N}^{k}\left\langle\frac{N}{2}(k)\right\rangle \tag{17a}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\Delta} \otimes\left\{1^{N}\right\}=\sum_{\ell=\frac{N(N-1)}{2}}^{\infty} a_{N}^{\ell}\left\langle\frac{N}{2}(\ell)\right\rangle \tag{17b}
\end{equation*}
$$

The 1-Dimensional Harmonic Oscillator

- then

$$
\begin{equation*}
s_{N}^{k}=g_{N}^{k}-g_{N}^{k-2} \quad \text { and } \quad a_{N}^{\ell}=g_{N}^{\ell-\frac{N(N-1)}{2}}-g_{N}^{\ell-\frac{N(N-1)}{2}-2} \tag{18}
\end{equation*}
$$

- Thus the $S p(2, \Re)$ content of the two plethysms differ simply by

$$
\begin{equation*}
\ell \rightarrow \ell-\frac{N(N-1)}{2} \quad \text { i.e. } \quad a_{N}^{\ell}=s_{N}^{\ell-\frac{N(N-1)}{2}} \tag{19}
\end{equation*}
$$

which again reflects the boson-fermion symmetry of the one-dimensional harmonic oscillator.

Symmetric Functions and Partition Functions

- Consider an ideal gas of N-noninteracting particles Define the canonical partition function of statistical physics as

$$
\begin{equation*}
\mathcal{Z}_{N}(\beta)=\mathcal{T} r\left(e^{-\beta \mathcal{H}}\right) \tag{20}
\end{equation*}
$$

where $\beta=\left(k_{B} T\right)^{-1}$ and

$$
\begin{equation*}
\mathcal{H}=\sum_{i=1}^{N} \mathcal{H}_{i} \tag{21}
\end{equation*}
$$

is the Hamiltonian, the sum of N identical single particle Hamiltonians, with a spectrum of energy eigenvalues $\mathcal{E}_{1}, \mathcal{E}_{2}, \ldots$ (with possible degeneracies)

Symmetric Functions and Partition Functions

- For a single particle, boson or fermion,

$$
\begin{equation*}
\mathcal{Z}_{1}(\beta)=\sum_{i=1} e^{\left(-\beta \mathcal{E}_{i}\right)} \tag{22}
\end{equation*}
$$

- Introduce a set of variables, $(x)=\left(x_{1}, x_{2}, \ldots\right)$, not necessarily finite in number, with $x_{i}=e^{\left(-\beta \mathcal{E}_{i}\right)}$
- Note that $\mathcal{Z}_{1}(\beta)=s_{1}(x)=e_{1}(x)=h_{1}(x)=p_{1}(x)$ in such variables.
- For N-noninteracting particles we are interested in symmetrising N copies of the single particle function in the variables (x) which is an N-fold plethysm of the appropriate symmetric functions.

Symmetric Functions and Partition Functions

- Recall $p_{1}(x) \otimes p_{r}(x)=p_{r}(x)=\sum x^{r}=\mathcal{Z}_{1}(r \beta)$ (for bosons or fermions)
- Furthermore, $s_{1}(x) \otimes\{\lambda\}=\{\lambda\}(x)=p_{1}(x) \otimes\{\lambda\}$
- But,

$$
\begin{equation*}
s_{\lambda}=\sum_{\sigma} z_{\sigma}^{-1} \chi_{\sigma}^{\lambda} p_{\sigma} \tag{3}
\end{equation*}
$$

- For N fermions we choose $\{\lambda\}=\left\{1^{N}\right\}$ while for bosons $\{\lambda\}=\{N\}$ and are immediately led to

$$
\begin{equation*}
\mathcal{Z}_{N}(\beta)^{ \pm}=\sum_{|\sigma|=N} \varepsilon_{\sigma}^{ \pm} z_{\sigma}^{-1} \mathcal{Z}_{1}(\sigma \beta) \tag{23}
\end{equation*}
$$

Symmetric Functions and Partition Functions

- where $\varepsilon^{+}=1, \varepsilon^{-}=(-1)^{|\sigma|-\ell(\sigma)}$ and

$$
\begin{equation*}
\mathcal{Z}_{1}(\sigma \beta)=\prod_{i=1}^{\ell(\sigma)} \mathcal{Z}_{1}\left(\sigma_{i} \beta\right) \tag{24}
\end{equation*}
$$

Thus the canonical partition function for N-noninteracting bosons or fermions is completely determined by the single particle partition function. The coefficients sum to unity for bosons $(+)$ and to zero for fermions $(-)$. For example:-

$$
\begin{aligned}
& \mathcal{Z}_{5}(\beta)^{ \pm}=\frac{1}{120}\left(24 \mathcal{Z}_{1}(5 \beta) \pm 30 \mathcal{Z}_{1}(4 \beta) \mathcal{Z}_{1}(\beta) \pm 20 \mathcal{Z}_{1}(3 \beta) \mathcal{Z}_{1}(2 \beta)\right. \\
& \left.+20 \mathcal{Z}_{1}(3 \beta) \mathcal{Z}_{1}(\beta)^{2}+15 \mathcal{Z}_{1}(2 \beta)^{2} \mathcal{Z}_{1}(\beta) \pm 10 \mathcal{Z}_{1}(2 \beta) \mathcal{Z}_{1}(\beta)^{3}+\mathcal{Z}_{1}(\beta)^{5}\right)
\end{aligned}
$$

References

"One can measure the importance of a scientific work by the number of earlier publications rendered superfluous by it" David Hilbert

- H-J Schmidt and J Schnack, Partition functions and symmetric polynomials cond-mat/0104293 17April (2001).
- H-J Schmidt and J Schnack, Investigations on finite ideal quantum gases Physica A260 479 (1998).
- H-J Schmidt and J Schnack, Thermodynamic fermion-boson symmetry in harmonic oscillator potentials Physica A265 584 (1999).
- M Crescimanno and A S Landsberg, Spectral equivalence of bosons and fermions in one-dimensional harmonic potentials Phys. Rev. A63 035601 (2001).

ACKNOWLEDGMENTS

- I am grateful to the authors of the references for inspiration.
- To KBN for renewal of my Research Grant ?
- To the patience of my audience!
- Thank you! Dziȩkuje bardzo!

