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Abstract. The symmetry properties of bosons and fermions in a one-

dimensional harmonic oscillator are explored. It is shown that there is

a one-to-one correspondence between the counts of the maximal spin

states states formed by N−non-interacting bosons and fermions in a

one-dimensional harmonic oscillator.
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1. Introduction

It is sometimes said that there are only two solvable problems in physics, the

harmonic oscillator and the one centre Kepler problem, and in reality even they

are approximations. Nevertheless, the harmonic oscillator, both in its classical and

quantum formulations continues to fascinate and, at times, to give new insights into

old physics problems. As in most areas of physics symmetry concepts play a key

role. Even the classical one-dimensional harmonic oscillator has a surprisingly large

symmetry group1, SL(4,ℜ). The n−dimensional isotropic harmonic oscillator has

the metaplectic group, Mp(2n) as its dynamical group2 which is the double covering

group of the non-compact group Sp(2n,ℜ). These groups are characterised by non-

trivial infinite dimensional unitary representations. The complete set of states for a

single particle, boson or fermion, in a n−dimensional isotropic harmonic oscillator

span the single irreducible representation ∆̃ of Mp(2n). Under the restriction

Mp(2n) → Sp(2n,ℜ) the irreducible representation ∆̃ splits into the sum of two

infinite dimensional irreducible representations ∆± of Sp(2n,ℜ) viz.

∆̃ → ∆+ + ∆− (1)

In general, we shall label the so-called harmonic series irreducible representations

of Sp(2n,ℜ) with the notation2 〈1

2
k(λ)〉 (λ) = (λ1, λ2, . . .) for which the conjugate

partition3 (λ̃) = (λ̃1, λ̃2, . . .) satisfies the constraints2

λ̃1 + λ̃2 ≤ k and λ̃1 ≤ n (2)

In such a notation

∆+ ≡ 〈1

2
(0)〉 and ∆− ≡ 〈1

2
(1)〉 (3)

The group Sp(2n,ℜ) has as its maximal compact subgroup the unitary group U(n)

which is known as the degeneracy group of the n−dimensional harmonic oscillator.

Under the restriction Sp(2n, R) → U(n) one has the decompositions

∆+ = 〈1

2
(0)〉 →ε

1

2 ({0} + {2} + {4} + . . .) (4a)

∆− = 〈1

2
(1)〉 →ε

1

2 ({1} + {3} + {5} + . . .) (4b)

Thus ∆+ covers the infinite series of even parity states and ∆− the infinite series of odd

parity states for a single particle in a n−dimensional harmonic oscillator. Noting (1)

and (4) we can succinctly write the decomposition for the ∆̃ irreducible representation

of Mp(2n) under Mp(2n) → U(n) as2

∆̃ → ε
1

2 M (5)

with

M =

∞∑

m=0

{m} (6)

With the above notation established we can now turn to the major purpose of this

note, the special case of bosons and fermions in a one-dimensional harmonic oscillator.



2. Counting states for N-noninteracting bosons and fermions

For a one-dimensional harmonic oscillator the degeneracy group is U(1), but all

the irreducible representations of U(1) are one-dimensional. For N−non-interacting

particles in a one-dimensional harmonic oscillator we wish to count the number of

symmetric states for bosons and antisymmetric states for fermions. At the U(1) level

this is equivalent to evaluating the terms in the expansion of the respective plethysms4

M ⊗ {N} =

∞∑

k=0

gk
N{k} bosons (7b)

M ⊗ {1N} =

∞∑

ℓ=
N(N−1)

2

cℓ
N{ℓ} fermions (7f)

Due to the simple nature of the group U(1) the expansion coefficients gk
N and cℓ

N may

be completely determined in terms of the enumeration of partitions with gk
N being the

number of partitions of the integer k into at most N parts with repetitions and null

parts allowed while cℓ
N is the number of partitions of ℓ into N distinct parts, including

the null part.

We can map of one of the sets of partitions into the other by adding, or subtracting,

ρN = (N − 1, . . . , 2, 1, 0). Adding ρN to the partitions of k into at most N parts,

converts them into partitions, all of whose parts are distinct. Hence

cℓ
N = gk

N if ℓ = k + N(N−1)
2

(8)

For example

M ⊗ {4} ⊃ {0} + {1} + 2{2} + 3{3} + 5{4} + 6{5} + 9{6} + 11{7} + . . . (9a)

M ⊗ {14} ⊃{6} + {7} + 2{8} + 3{9} + 5{10} + 6{11} + 9{12} + 11{13} + . . . (9b)

noting that ck+6

4 = g6
4. For g7

4 and c13
4 we have the respective sets of 11 partitions

g7

4 (231) + (3212) + (322) + (321) + (413) + (421) + (43) + (512)

+ (52) + (61) + (7) (10a)

c13

4 (5431) + (6421) + (643) + (652) + (7321) + (742) + (751) + (832)

+ (841) + (931) + (10 21) (10b)

adding (3, 2, 1, 0) to each partition in (10a) gives the partitions in (10b).

Thus we can conclude that there is a one-to-one correspondence between the counts

of the states formed by N−non-interacting bosons and fermions in a one-dimensional

harmonic oscillator. This has the known consequence5,6 that in such a situation the

thermodynamic properties of N−non-interacting bosons and fermions are equivalent

apart from a shift in the groundstate energy.



3. The Sp(2,ℜ) symmetry

As already mentioned the infinite set of states of the one-dimensional harmonic

oscillator span the reducible representation ∆̃ = ∆+ + ∆− of Sp(2,ℜ). Suppose

∆̃ ⊗ {N} =

∞∑

k=0

sk
N〈

N

2
(k)〉 (11a)

∆̃ ⊗ {1N} =
∞∑

ℓ=
N(N−1)

2

aℓ
N〈

N

2
(ℓ)〉 (11b)

It follows from the previous section and the known decomposition rules for Sp(2,ℜ) →

U(1) that2

sk
N = gk

N − gk−2

N (12a)

aℓ
N = g

ℓ−
N(N−1)

2
N − g

ℓ−
N(N−1)

2
−2

N (12b)

Thus the Sp(2,ℜ) content of the two plethysms differ simply by

ℓ → ℓ − N(N−1)
2

(13)

i.e.

aℓ
N = s

ℓ−
N(N−1)

2
N (14)

which again reflects the boson-fermion symmetry of the one-dimensional harmonic

oscillator.

As an example, for N = 5 we have

∆̃ ⊗ {5} =

〈s2(0)〉 + 〈s2(1)〉 + 〈s2(2)〉 + 2〈s2(3)〉

+ 3〈s2(4)〉 + 4〈s2(5)〉 + 5〈s2(6)〉 + 6〈s2(7)〉

+ 8〈s2(8)〉 + 10〈s2(9)〉 + 12〈s2(10 )〉 + . . .

(15a)

and

∆̃ ⊗ {15} =

< s2(10 ) > + < s2(11 ) > + < s2(12 ) > + 2 < s2(13 ) >

+ 3 < s2(14 ) > + 4 < s2(15 ) > + 5 < s2(16 ) > + 6 < s2(17 ) >

+ . . . (15b)

hence we see, for example, that

a16

5 = s6

5 = 5



4. Inclusion of spin

In the preceding we have assumed in each case the bosons or fermions have been

prepared in states involving a single spin component. In some experimental situations

such a preparation is possible. In general the full spin needs to be taken into account

by considering direct products of the spin group SU(2) with the groups appropriate to

the description of the one-dimensional space. Such an extension is relatively simple.

One then finds that there is a restricted boson-fermion correspondence, namely that

between boson and fermion states of maximal spin multiplicity.

5. Concluding remarks

We have shown that there is a is a qualified one-to-one correspondence between

the counts of the states formed by N−non-interacting bosons and fermions in a one-

dimensional harmonic oscillator. This is consistent with the known thermodynamic

properties of such systems for suitably prepared systems..
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