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2 R C King$ and B G Wybournez l1. IntroductionThe calculation of the matrix elements of the generators of a compact simple Liegroup G when acting on states spanning a particular �nite-dimensional irreduciblerepresentation � of G is a common problem in applications of Lie groups to physics(Judd 1963, Racah 1965). The generators of the group G transform as the adjointirreducible representation � of G. A knowledge of the place of � in the Kroneckersquare ��� of an arbitrary irreducible representation � is of signi�cance in evaluatingmatrix elements of group generators. It is well known, for example, that the 8-dimensional adjoint representation � of the group SU(3) occurs with multiplicity twoin the Kronecker square � � �. This is an important feature of the quark model(Gell-Mann and Ne'eman 1964, Pais 1966).Within this model couplings are further in
uenced by the fact that in thedecomposition of the Kronecker square � � � into its symmetric and antisymmetricparts, � 
 f2g and � 
 f12g respectively, the adjoint appears with multiplicity one ineach part. However, this equality of multiplicities of the adjoint � in the symmetricand antisymmetric parts of the Kronecker square of an arbitrary �nite-dimensionalirreducible representation � of an arbitrary compact simple Lie group G, while notbeing untypical in the case of SU(k + 1), is the exception rather than the rule for theother compact simple Lie groups. In many instances the occurrence of � is con�nedto just one or other of these two parts.Indeed this work arose from observations based on the resolution of Kroneckersquares of irreducible representations of the compact simple Lie groups into theirsymmetric and antisymmetric parts using SCHUR�. The results obtained in this wayled us to pose the question: \When does the adjoint � occur only in the symmetricor only in the antisymmetric part of the Kronecker square of a given irreduciblerepresentation � of G?". Herein we give an answer to this question in the formof propositions covering SU(k + 1), SO(2k + 1), Sp(2k), SO(2k), E7 and G2, andconjectures covering the remaining cases, E6, E8 and F4. At the same time weprovide explicit formulae for the relevant multiplicities of occurrence of the adjoint.Throughout we take advantage of the fact that the representation theory of eachcompact simple Lie group G is determined by that of the corresponding complexsimple Lie algebra g.In section 2 the notation for irreducible representations and their characters isestablished, while in section 3 some preliminary results are presented which followfrom Weyl's character formula and the algebra of Schur functions. The multiplicity ofoccurrence of the adjoint irreducible representation � in the Kronecker square ��� isdetermined in section 4 for all irreducible representations � of each compact simple Liegroup G. In particular it is shown that this multiplicity is nonvanishing if and onlyif � is both nontrivial and selfcontragredient. The irreducible representations of Gwhich are selfcontragredient are identi�ed in section 5, and further classi�ed as eitherorthogonal or symplectic. This distinction is particularly important in determining the



The place of the adjoint representation 3multiplicities of occurrence of the adjoint irreducible representation � in the symmetricand antisymmetric squares, � 
 f2g and � 
 f12g, respectively. This determinationis carried out for SU(k + 1) in section 6. The remaining classical compact simpleLie groups , SO(2k + 1), Sp(2k) and SO(2k) are dealt with in section 7, while theexceptional simple Lie groups are covered in section 8.2. Natural and Dynkin labels for irreducible representations.Each compact simple Lie group G is associated with the unique compact realform of a complex simple Lie algebra g, and their �nite-dimensional irreduciblerepresentations � are in one-to-one correspondence. Each of these irreduciblerepresentations is de�ned, up to equivalence, by its highest weight �. This highestweight � can itself be speci�ed in more than one way, using for example, either Dynkinlabels (Dynkin 1957, McKay and Patera 1981) or natural labels involving partitions(Wybourne and Bowick 1977, King and Al-Qubanchi 1981, Black et al 1983). Of thesethe former have the advantage of allowing all compact simple Lie groups to be dealtwith in a uniform manner, while the latter are particularly useful in dealing with thefour in�nite series of compact classical simple Lie groups in a rank independent way.Let g be the complex simple Lie algebra associated with the compact simple Liegroup G. Let h be the Cartan subalgebra of g and let h� be the dual of h. Let � and� denote the sets of roots and simple roots, respectively, of g. For each �i 2 � let�_i = 2�i=(�i; �i), where (� ; �) signi�es the inner product on h�.Each �nite-dimensional irreducible representation � of g corresponds to a highestweight module V � and is speci�ed up to equivalence by its highest weight �. Ifg has rank k then the corresponding Dynkin labels are given by ai = (�;�_i ) fori = 1; : : : ; k. In the basis of fundamental weights (Bremner et al 1985) !i with(!i; �_j ) = �ij for i; j = 1; 2; : : : ; k, we have � = Pki=1 ai!i, and it is convenient towrite � = ((a1; a2; : : : ; ak)). Of necessity � is dominant with each component ai anon-negative integer. A quantity of particular interest in what follows is the numberof non-vanishing Dynkin labels ai, which we refer to as the breadth of � and denoteby b(�).Alternatively we can make use of partitions to specify irreducible representationsof G. Let � = (�1; �2; : : : ; �`(�)) signify a partition of length `(�) and weight w�. Theparts �i of � for i = 1; 2; : : : ; ` are positive integers, with �1 � �2 � � � � � �`(�) > 0,whose sum is w�. Let the number of distinct parts of � be d(�), a key parameter inwhat follows.All the �nite-dimensional irreducible representations of the classical and excep-tional Lie groups G may be labelled by means of partitions (Wybourne and Bowick1977, King and Al-Qubanchi 1981, Black et al 1983). This labelling is natural in thesense that it indicates the tensor or spinor structure of corresponding modules of G.The precise connection between Dynkin labels and natural labels has been spelled outin detail by King and Al-Qubanchi (1981), with a further re�nement in the labelling



4 R C King$ and B G Wybournez lbeing provided by Black et al (1983). We refer the reader to these papers for much ofthe notation employed here. This notation is such that the representation labels areto be identi�ed with characters of the corresponding representations of both G andg. In this way no distinction need, nor will be made between characters of G and g,although in general we choose to talk about characters or irreducible representationsof G.3. Preliminary lemmasIf we work in terms of natural labels involving partitions then the connection withSchur functions provides a uniform framework in which to describe the decompositionof Kronecker products of all irreducible representations of all the classical compactsimple Lie groups, independent of their rank (Black et al 1983). At the heart of thesemethods lies the fact that the characters of the irreducible representations � can allbe expressed in terms of Schur functions whose products and quotients are describedby the Littlewood-Richardson rule (Littlewood 1950, Macdonald 1995). As usual wedenote Schur function products and quotients by � and =, while symmetrised productsor plethysms are denoted by 
. Recalling our de�nition of d(�) as the number ofdistinct parts of the partition �, the following two lemmas then follow trivially fromthe properties of Schur functions:Lemma 3.1 � � 1 and �=1 contain d(�) + 1 and d(�) distinct terms, respectively.Lemma 3.2 (�=1) � 1 contains � with multiplicity d(�).On the other hand if we work in terms of formal exponentials the key tool at ourdisposal is Weyl's character formula (Humphreys 1972):chV � = Pw2W �(w)ew(�+�)Pw2W �(w)ew(�) ; (3.1)where the summations are over all elements w of the Weyl group W of g, �(w) is theparity or signature of w, and � is half the sum of the positive roots of g. The Weylgroup W is generated by the re
ections ri, with i = 1; : : : ; k, whose action on anyweight � is de�ned by ri(�) = � � (�;�_i )�i. If w = ri1ri2 � � � rim then �(w) = (�1)m.The expansion of (3.1) in the form:chV � = X�2h�m��e�; (3.2)serves to de�ne the weights � of V � and their multiplicities m��.Weyl's character formula (3.1) with � replaced by � also serves to de�ne formalcharacters chV � for any weight � of any complex simple Lie algebra g of rank k whoseWeyl group is W . For such characters it is easy to derive from (3.1):Lemma 3.3 chV � = �(w)chV w(�+�)�� for any w 2W .Lemma 3.4 chV � = 0 if (�;�_i ) = �1 for any i 2 f1; : : : ; kg.



The place of the adjoint representation 5The adjoint irreducible representation � of each compact simple Lie group G isidenti�ed in table 1 in terms of both natural and Dynkin labels. This irreduciblerepresentation � is characterised by the fact that its weights coincide with the set �of all roots � of g, each with multiplicity one, together with the zero vector withmultiplicity equal to the rank k of g. The expansion (3.2) of Weyl's character formulafor the adjoint irreducible representation � therefore takes the form:chV � = k 1 +X�2� e� = k 1 +X�2� ew(�) for any w 2W; (3.3)where the last step depends on the fact that � is invariant under the action of theWeyl group W .Turning, more generally, to arbitrary representations of G, the symmetric, bilinear,inner product h �; �i on the set of characters of equivalence classes of irreduciblerepresentations of G is such thatchV ��� = chV �chV � =X� h�� �; �ichV �: (3.4)where h���; �i is the multiplicity of occurrence of the irreducible representation � inthe Kronecker product ���, and the sum is taken over all irreducible representations� of G.Here we are particularly interested in the decomposition of the Kronecker square�� � of an irreducible representation � into its symmetric and antisymmmetric parts�
 f2g and �
 f12g. If A and B denote arbitrary linear combinations of irreduciblerepresentations of a compact simple Lie group G, then the algebra of plethysms is suchthat (Littlewood 1950):A�A = A
 f2g+ A
 f12g; (3.5)(A + B)
 f2g = A
 f2g+ A�B + B 
 f2g; (3.6a)(A + B)
 f12g = A
 f12g+ A�B + B 
 f12g; (3.6b)(A �B)
 f2g = (A 
 f2g)� (B 
 f2g) + (A 
 f12g) � (B 
 f12g); (3.7a)(A �B)
 f12g = (A 
 f2g)� (B 
 f12g) + (A 
 f12g)� (B 
 f2g): (3.7b)It follows from (3.5) that the multiplicities of occurrence of the adjoint irreduciblerepresentation � in the Kronecker square, the symmetrised and the antisymmetrisedsquares of an arbitrary irreducible representation � of a simple Lie group G are suchthat: h�� �; �i = h�
 f2g; �i + h� 
 f12g; �i: (3.8)To every irreducible representation � of a compact simple Lie group G therecorresponds a contragredient or dual irreducible representation � such that if � denotesthe trivial, identity, 1-dimensional irreducible representation of G, thenh�� �; �i = ���: (3.9)



6 R C King$ and B G Wybournez lAn irreducible representation � is said to be selfcontragredient if � = �.The contragredient � of � is characterised by the fact that the weights of � areequal to the weights of � taken with opposite sign, but no change in multiplicity(Mal'cev 1962). Clearly the adjoint irreducible representation � is selfcontragredientsince its only nonvanishing weights are the roots � 2 �, each having multiplicity one,and � 2 � implies �� 2 �.More generally, all the irreducible representations � of SO(2k+1), Sp(2k), SO(2k)with k even, E7, E8, F4 and G2 are selfcontragredient so that � = �. In the case ofSU(k+1), SO(2k) with k odd, and E6 the irreducible representations � contragredientto � are given in table 2 in terms of both natural and Dynkin labels.An alternative characterisation of selfcontragredient irreducible representations ofG is provided by the following proposition which follows immediately from (3.9):Proposition 3.5 The irreducible representation � of a compact simple Lie group Gis selfcontragredient if and only if h���; �i = 1, where � is the identity representationof G.If an irreducible representation � of a compact simple Lie group G is notselfcontragredient then its character is complex. In the case of a selfcontragredientirreducible representation � the character is real, and the representation matricesthemselves are either orthogonal or symplectic according as their Kronecker squaresupports a symmetric or an antisymmetric bilinear form. More precisely, bearing inmind (3.5) and Proposition 3.5 which imply that there are indeed only two possibilities,we have:Proposition 3.6 A selfcontragredient irreducible representation � of a compactsimple Lie group G is orthogonal if h�
f2g; �i = 1 and is symplectic if h�
f12g; �i = 1,where � is the identity irreducible representation of G.The identi�cation of orthogonal and symplectic irreducible representations for allthe compact simple Lie groups is well-known (Dynkin 1957, Mal'cev 1962, Mehta 1966,Mehta and Srivastava 1966, Butler and King 1974, McKay and Patera 1981). The datais summarised in tables 3 and 4 in terms of natural and Dynkin labels, respectively.The following lemmas regarding arbitrary irreducible representations �, � and �of a simple Lie group G whose adjoint irreducible representation is � may be readilyderived and are of considerable use in what follows:Lemma 3.7 h�� �; �i = h�� �; �i.Lemma 3.8 h�� �; �i = h� � �; �i.For the record it should also be noted that an inspection of the tabulation ofroots � 2 � of each simple Lie group G in the basis of fundamental weights !igiven by Bremner et al (1985) reveals that for the highest weight � of any irreduciblerepresentation of G:Lemma 3.9 � + � 6= � for any � 2 �.



The place of the adjoint representation 74. Kronecker squaresWe are interested in the multiplicity of occurrence of the adjoint irreduciblerepresentation � in the Kronecker square � � � of each �nite-dimensional irreduciblerepresentation � of each compact simple Lie group G. From Lemma 3.8 the requiredmultiplicity is that of � in the Kronecker product �� �.However, from (3.1) and (3.3)chV �chV � = kchV � +X�2�Pw2W �(w)ew(�+�+�)Pw2W �(w)ew(�)= kchV � +X�2� chV �+�; (4.1)where � + � may or may not be dominant. There are three cases to consider:(i) if � + � is dominant there is no problem since chV �+� is standard.(ii) if �+� is not dominant but there exists any i 2 f1; : : : ; kg such that (�+�;�_i ) =�1 then chV �+� = 0 by virtue of Lemma 3.4. In such a case we say that �+ � isnull.(iii)if � + � is not dominant and not null then there exists i 2 f1; : : : ; kg such that(� + �;�_i ) � �2 and the corresponding contribution chV �+� to (4.1) must bestandardised through the use of Lemma 3.3.For example, if � = ��i for some i 2 f1; : : : ; kg then (�+ �;�_i ) = (���i; �_i ) =ai � 2 and (� + �;�_j ) = (�� �i; �_j ) = aj � (�i; �_j ) � aj � 0 for all j 6= i. It followsthat ���i is dominant if ai � 2 and null if ai = 1, but is non-dominant and non-nullif ai = 0. However, if ai = 0 we haveri(� � �i + �)� � = �� �i � (�� �i + �; �_i )�i = �� ai�i = �; (4.2)since (�; �_i ) = 1 for all i � 1; 2; : : : ; k. It then follows from Lemma 3.3 with w = rithat chV ���i = �chV � if ai = 0: (4.3)More generally, in case (iii) since � is dominant with (�;�_i ) = ai � 0 forall i 2 f1; : : : ; kg, there must exist i 2 f1; : : : ; kg such that (�;�_i ) = �p withp � ai + 2 � 2. However, (�; �_) 2 f0;�1;�2;�3g for all � 2 � (Humphreys1972), so there are just two possibilities, namely p = 2 and p = 3, with the latteronly occuring in the case G = G2. Moreover, an examination of the tables of Bremneret al (1985) shows that for any given � 2 � if (�;�_i ) = �p for some i 2 f1; : : : ; kgwith p = 2 or 3 then that value of i is unique. We can distinguish between the twopossibilities: (a) � = ��i and (b) � 6= ��i. The �rst of these has already been dealtwith. In fact it is the only possibility for each of the simply laced algebras Ak, Dk,E6, E7 and E8.



8 R C King$ and B G Wybournez lTurning to case (b), if � 6= ��i then � is not a multiple of �i since the only otherpossibility is � = +�i in which case (�;�_i ) = �p = 2, in contradiction with therequirement that p = 2 or 3. However, if � is not a multiple of �i, thenri(�) = �� (�;�_i )�i = � + p�i; (4.4)and there necessarily exists a chain of roots � + r�i with r = 0; 1; : : : ; p (Humphreys1972). In addition,ri(� + � + �)� � = � + �� (� + � + �; �_i )�i = � + �� (ai � p + 1)�i = � + �; (4.5)where � = �+ q�i with q = p� 1� ai. Recalling that p � ai + 2 and ai � 0 it followsthat 1 � q < p, so that � is necessarily a root. Thus, from (4.5) and Lemma 3.3chV �+� = �chV �+� with � = � + q�i 2 �; (4.6)and we have a cancellation of contributions to (4.1) of the terms arising from � 2 �and � 2 �. To be sure that this is the end of the story we have to be sure that allthe � obtained by means of (4.5) from di�erent � are distinct.It is to be noted that having identi�ed all relevant � and i from the tables ofBremner et al (1985), then � = �+ q�i with q restricted to be 1 or 2. In fact if p = 2then the condition p � ai+2 � 2 implies that ai = 0 so that q = 1. For the non-simplylaced algebras Bk, Ck, F4 and G2, this covers all possibilities except in the case of G2for which it is necessary to consider p = 3. In this case we have either ai = 1 so thatq = 1 as before, or ai = 0 so that q = 2. Again consulting the tables of Bremner etal (1985) to obtain the list of roots � = � + q�i, it is indeed found in every case thatthe � arising from di�erent � are distinct. Moreover in every case (�; �_j ) 2 f0;�1gfor all j 2 f1; : : : ; kg so that �+� is either dominant or null. In all cases we thereforehave the cancellation of contributions to (4.1) implied by (4.6), although in some casesthese contributions are in fact null.Applying (4.3) and (4.6) to (4.1), together with the observations made regardingcases (i) and (ii), we have the following:Proposition 4.1 Let � be any �nite-dimensional irreducible representation of acompact simple Lie group G whose adjoint irreducible representation is �, and let b(�)be the number of non-vanishing components of the Dynkin label � = ((a1; : : : ; ak)).Then chV �chV � = b(�)chV � + X�2�� chV �+�;where �� is the set of roots � 2 � such that � + � is dominant, and there exists no� 2 � such that ri(� + � + �) = � + � + � for any i 2 f1; : : : ; kg.Thanks to Lemmas 3.8 and 3.9 this immediately gives us one of our key results:Proposition 4.2 For any compact simple Lie group G, the multiplicity ofoccurrence of the adjoint irreducible representation � in the Kronecker square of



The place of the adjoint representation 9any �nite-dimensional irreducible representation � is non-zero if and only if � isselfcontragredient. If � is selfcontragredient this multiplicity is given by h� � �; �i =b(�), where b(�) is the number of non-vanishing components of the Dynkin label� = ((a1; : : : ; ak)).The above proposition was stated earlier by Elashvili (1992) but he provided onlya partial proof of its validity. In particular he gave no justi�cation of the fact thath�� �; �i is equal to b(�).5. Symmetrised Kronecker squares for SU(k + 1)While the results of section 4 embodied in Propositions 4.1 and 4.2 are completelygeneral in the sense that they apply to any compact simple Lie group G, it is worthpointing out that the same results may be derived rather easily using Schur functionmethods in the case of SU(k + 1).In terms of natural labels an arbitrary �nite-dimensional irreducible representationis denoted by f�g, where � is a partition of length `(�) � k, and the adjoint irreduciblerepresentation is given by � = f21k�1g. The Kronecker product f�g�f21k�1g may beevaluated quite readily through the use of the Littlewood-Richardson rule (Littlewood1950, Macdonald 1995). However, it is advantageous to make use of the freedomassociated with the constraint x1x2 � � �xk+1 = 1, which applies to all Schur functionscorresponding to characters of SU(k + 1), to express � = f21k�1g in the form f1; 1g.This composite partition notation emphasises the fact that the adjoint irreduciblerepresentation � = f1; 1g of SU(k+ 1) appears in the decomposition of the Kroneckerproduct of the de�ning, fundamental irreducible representation !1 = f1g and itscontragredient !k = f1kg = f1g. This product takes the form:f1g � f1g = f1; 1g+ f0g: (5.1)With this notation (Black et al 1983), the Kronecker product of an arbitraryirreducible representationf�g of SU(k+ 1) with the adjoint irreducible representationdecomposes in accordance with the formulaf�g � f1; 1g = f1;� � 1g+ f(�=1) � 1g: (5.2)In general modi�cation rules (Black et al 1983) may have to be brought into play.However, since `(�) � k all terms in (5.2) are standard except the term f1;�; 1g if`(�) = k, and in such a case f1;�; 1g is identically zero.It then follows from Lemma 3.2 that the multiplicity of f�g in the Kroneckerproduct (5.2) is given by:hf�g � �; f�gi = d(�): (5.3)Lemma 3.5 then implies that if f�g is selfcontragredient thenhf�g � f�g; �i = d(�): (5.4)



10 R C King$ and B G Wybournez lThat this is in agreement with Proposition 4.2 may be seen by noting (King and Al-Qubanchi 1981) that ai = �i��i+1 for i = 1; : : : ; k and ak = �k. Hence the number ofnon-vanishing components of the Dynkin label ((a1; : : : ; ak)) coincides with the numberof distinct parts of the partition (�1; : : : ; �`(�)) with `(�) � k � 1, that is b(�) = d(�).Turning now to symmetrised squares, the algebra of Schur functions is such that:f�g � f�g = f�g 
 p21 = f�g 
 f2g+ f�g 
 f12g; (5.5a)f�g 
 p2 = f�g 
 f2g � f�g 
 f12g; (5.5b)where p1 and p2 are power sum functions (Littlewood 1950, Macdonald 1995). Thusif f�g is selfcontragredienthf�g 
 f2g; �i = 12�d(�) + hf�g 
 p2; �i�; (5.6a)hf�g 
 f12g; �i = 12�d(�) � hf�g 
 p2; �i�; (5.6b)where it is now appropriate to make use of the freedom in the choice of Schur functionscorresponding to characters of SU(k+1) to take � = f��g, with the partition �� de�nedby �� = (�1+1; �k�11 ; �1�1). This ensures that for any selfcontragredient f�g, for which� necessarily has weight w� = 12(k + 1)�1, the Kronecker square f�g � f�g = f� � �gcontains f��g with �� of weight (k + 1)�1, without the necessity of modi�cation.A very e�cient method of evaluating f�g 
 pr has been provided by Littlewood(1951) for any positive integer r. This involves the notions of r-core (or r-residue),r-sign and r-quotient of an arbitrary partition �. In the case r = 2 Littlewood's keytheorem implies (Carr�e and Leclerc 1995, Yang and Wybourne 1995) the following:Lemma 5.1 Let the 2-core of � be �̂, let the 2-sign of � be sign(�), and let the2-quotient of � be sign(�)�(0)�(1), thenhf�g 
 p2; f�gi = ��hf�(0)g � f�(1)g; f�gi (5.7)where if �̂ 6= 0 then �� = 0, while if �̂ = 0 then �� = �1 according as the sign(�) = �.In the case of interest, namely � = � = ��, we have (Yang and Wybourne 1995):Proposition 5.2 For �1 � 1 let �� = (�1 + 1; �k�11 ; �1 � 1). Then��� =8><>: 0 if k = 0; 2(mod 4);�1 if k = 3(mod 4);�(�1)�1 if k = 1(mod 4), (5.8)while for k odd and �1 evenf�(0)� g = n(�1 + 22 ) k+12 o and f�(1)� g = n(�1 � 22 ) k+12 o (5.9a)and for k odd and �1 oddf�(0)� g = n(�1 � 12 ) k+12 o and f�(1)� g = n(�1 + 12 ) k+12 o (5.9b)



The place of the adjoint representation 11It is particularly noteworthy that the partitions �(0)� and �(1)� are rectangular inthat they de�ne rectangular Young diagrams. This ensures that the 2-quotients areeasy to write down since for any pair of such partitions � = (ap) and � = (bq), witha � b and p � q, we havef�g � f�g = f(ap) � (bq)g =X
 f(� + 
; �=
)g; (5.10)where the summation is over all those partitions 
 such that 
1 � b and `(
) � q.Moreover the quotient �=
 consists of a single term � whose parts are given by�r = b � 
q�r+1 for r = 1; : : : ; q, and the multiplicity of each term f�g = f(� + 
; �)gin (5.10) is just one.To evaluate f�(0)� g�f�(0)� g using (5.10) we choose, for k odd and �1 even, � = (ap) =�(0)� and � = (bq) = �(1)� with �(0)� and �(1)� de�ned by (5.9a), while for k odd and �1 oddwe choose � = (ap) = �(1)� and � = (bq) = �(0)� , with �(0)� and �(1)� now de�ned by (5.9b).In both cases we have a + b = �1 and p = q = 12(k + 1). If we set � = (� + 
; �) with� = �=
, then �i + �k�i+2 = �i + �2p�i+1 = a+ 
i + �p�i+1 = a+ 
i + b� 
i = a+ b = �1for i = 1; : : : ; k+12 . This implies that the corresponding irreducible representation f�gof SU(k+1) is necessarily selfcontragredient. Moreover its multiplicity in f�(0)� g�f�(1)� gis one.In fact this product contains almost all selfcontragredient irreducible representa-tions f�g with `(�) � k for k odd and �xed �1. This can be seen by noting that for kodd the conditions that ensure f�g is a selfcontragredient irreducible representation ofSU(k + 1) given in table 4 imply that � is of the form (�+ 
; �) with � = �=
, where� = (ap) and � = (bq) with p = q = 12(k + 1), a + b = �1 and a = [�1+12 ]. If �1 is oddthis set of all selfcontragredient irreducible representations f�g coincides with the setof all f�g obtained previously from (5.10) with parameters determined by (5.9b) sothat a = �1+12 . However, if �1 is even the set of all f�g obtained previously from (5.10)with parameters determined by (5.9a) is such that a = �1+22 rather than �12 as requiredto exhaust all possible selfcontragredient irreducible representations f�g with �1 even.The only selfcontragredient irreducible representations f�g missing from f�(0)� g � f�(1)� gare therefore those for which �1 is even and � k+12 = 12�1.These remarks taken in conjunction with Lemma 5.1 then implyProposition 5.3 For �1 � 1 let �� = (�1 + 1; �k�11 ; �1 � 1). Then the irreduciblerepresentations f�g and f��g of SU(k+1) are such that hf�g
p2; f��gi is zero unlessf�g is selfcontragredient, k is odd, and � k+12 6= 12�1. If these three conditions aresatis�ed then hf�g 
 p2; f��gi = 8><>:�1 if k = 1(mod 4), �1 = 0(mod2)or if k = 3(mod 4);1 if k = 1(mod 4), �1 = 1(mod2): (5.11)This in turn allows us to conclude the validity of the following result which in thecase of SU(k+1) adds very signi�cantly to Proposition 4.2 by specifying precisely how



12 R C King$ and B G Wybournez lthe b(�) copies of the adjoint irreducible representation � are distributed between thesymmetric and antisymmetric parts of the Kronecker square of a selfcontragredientirreducible representation f�g. It should be noted that b(f�g) = d(�), the number ofdistinct parts of the partition �.Proposition 5.4 Let f�g and � be an arbitrary �nite-dimensional selfcontragredi-ent irreducible representation and the adjoint irreducible representation, respectively,of SU(k + 1). Thenhf�g 
 f2g; �i =8>>>>><>>>>>: 12d(�) if d(�) is even;12(d(�) � 1) if d(�) is odd and f�g is orthogonal;12(d(�) + 1) if d(�) is odd and f�g is symplectic,hf�g 
 f12g; �i =8>>>>><>>>>>: 12d(�) if d(�) is even;12(d(�) + 1) if d(�) is odd and f�g is orthogonal;12(d(�) � 1) if d(�) is odd and f�g is symplectic.Proof If f�g is selfcontragredient but k is even then from table 5 it is clear thatd(�) is even. In addition if f�g is selfcontragredient and k is odd but � k+12 = 12�1with �1 even, then from the conditions of table 4 we must also have � k+32 = 12�1 sothat a k+12 = 0. Remembering that f�g is selfcontragredient, this implies once morethat d(�) is even. It therefore follows from Proposition 5.3 that hf�g 
 p2; f��gi isnon-zero if and only if d(�) is odd. Moreover the conditions appearing in (5.11)are precisely those appropriate to distinguish between orthogonal and symplecticirreducible representation f�g as spelled out in table 5. Proposition 5.4 then followsfrom the application of Proposition 5.3 to (5.6a) and (5.6b).A related approach to the derivation of Proposition 5.4 has been given by Yangand Wybourne (Yang and Wybourne 1995), who did not however make the connectionwith the evenness or oddness of d(�) and the orthogonal or symplectic nature off�g. While Carre and Leclerc (1995) have derived a combinatorial algorithm for thecomplete resolution of the symmetric and antisymmetric squares of any irreduciblerepresentation �, this algorithm does not appear to provide any way of arriving atProposition 5.4, or indeed its precursor Proposition 5.3, which is as simple as the useof Proposition 5.2 and the exploitation of (5.10).6. Symmetrised Kronecker squares for SO(2k + 1), Sp(2k) and SO(2k)For the classical compact simple Lie groups other than SU(k+1) it is convenient toadopt a completely di�erent approach. This is motivated by the fact that in numerousexamples it has been found that the occurrence of the ajoint irreducible representation



The place of the adjoint representation 13� in the symmetric and antisymmetric squares of a given irreducible representation �has been con�ned to one or other of these two parts, but not both. We concentratetherefore on establishing that the multiplicity of � in one or other of � 
 f2g and�
 f12g is zero for an arbitrary selfcontragredient irreducible representation �.For any such irreducible representation � the starting point is somewhatsurprisingly the consideration of the Kronecker product � � !, where for each of thegroups SO(2k + 1), Sp(2k) and SO(2k) we take ! = !1, the appropriate de�ningirreducible representation given in terms of natural labels by [1], < 1 > and [1],respectively. The relevant products with � may be evaluated either through the use ofWeyl's character formula for chV � and a knowledge of the weights of !, or by meansof Schur function techniques (King et al 1981, Black et al 1983). We obtain using thelatter the results of table 6.The single most notable thing about these results is that all the products aremultiplicity free as a consequence of Lemma 3.1 and the fact that all the terms in � �1,� and �=1 are speci�ed by partitions of weight w� + 1, w� and w� � 1, respectively.This conclusion remains valid even in those special cases for which it is necessary toinvoke the modi�cation rules included in table 6.With the exception of the case SO(2k) with k odd all the irreduciblerepresentations appearing as constituents of each product ��! are selfcontragredient.In this exceptional case we can of course restrict ourselves to the product [�]� [1] with`(�) < k since both [�]� and [�;�]� are not selfcontragredient, as made clear in table3. However, if `(�) = k � 1 then the product [�] � [1] contains the pair of mutuallycontragredient irreducible representations [�; 1]+ and [�; 1]�. It is therefore necessaryto exclude SO(2k) with k odd from the following lemma.Lemma 6.1 In the case of SO(2k + 1), Sp(2k) and SO(2k) with k even:(i) the Kronecker product � � ! of an arbitrary irreducible representation � and thede�ning irreducible representation ! decomposes into a direct sum �+ �+ � � �+ ofmutually distinct, selfcontragredient irreducible representations;(ii) these irreducible representations �, �, : : : are all orthogonal if � and ! are eitherboth orthogonal or both symplectic, and are all symplectic if � is orthogonal and !is symplectic or vice versa;(iii)the multiplicity of occurrence of the identity irreducible representation � in thesymmetric and antisymmetric square of �� ! is such that:h(� � !)
 f12g; �i = 0 if � � and ! are both orthogonal, or (6.1a)� and ! are both symplectic; (6.1b)h(��!)
f2g; �i = 0 if � � is orthogonal and ! is symplectic, or (6.1c)� is symplectic and ! is orthogonal. (6.1d)Proof Part (i) follows from our previous remarks, while part (ii) is an immediateconsequence of the work of Mal'cev (1962), see also Adams (1969), applied to products



14 R C King$ and B G Wybournez lin which the irreducible constituents are selfcontragredient and distinct. In part (iii)it then follows that if, for example, � and ! are both orthogonal, then from (3.7b)h(� � !)
 f12g; �i = h(� + � + � � �)
 f12g; �i= h�
 f12g; �i+ h� 
 f12g; �i+ � � �+ h�� �; �i+ � � � : (6.2)However, since �, �, : : : are all distinct, selfcontragredient, orthogonal irreduciblerepresentations, then h� 
 f12g; �i = h� 
 f12g; �i = � � � = 0 from Propositions 5.1and 5.2, and h� � �; �i = � � � = 0 from (3.9). Thus all terms contributing to (6.2) areidentically zero and the result (6.1a) follows. The results (6.1b), (6.1c) and (6.1d) canall be proved in the same way.This leads inexorably to the following result:Proposition 6.2 If � is an arbitrary irreducible representation of SO(2k + 1) orSO(2k) with k even, thenh(� 
 f2g); [12]i = h(� 
 f12g); [2]i = 0 if � is orthogonal; (6.3a)h(� 
 f12g); [12]i = h(�
 f2g); [2]i = 0 if � is symplectic: (6.3b)If � is an arbitrary irreducible representation of Sp(2k), thenh(� 
 f2g); h2ii = h(� 
 f12g); h12ii = 0 if � is orthogonal; (6.4a)h(� 
 f12g); h2ii = h(� 
 f2g); h12ii = 0 if � is symplectic: (6.4b)Proof In the case of SO(2k + 1) or SO(2k) with k even the de�ning irreduciblerepresentation ! = [1] is orthogonal. Let the irreducible representation � also beorthogonal in accordance with case (6.1a). From (3.7b) we haveh(� � [1])
 f12g; �i= h(� 
 f12g)� ([1]
 f2g); �i+ h(�
 f2g)� ([1]
 f12g); �i= h(� 
 f12g)� ([0] + [2]); �i+ h(� 
 f2g)� ([12]); �i= h� 
 f12g; [0]i+ h� 
 f12g; [2]i+ h�
 f2g; [12]i; (6.5)where use has been made of the decompositions [1]
 f2g = [0] + [2] and [1]
 f12g =[12]. As we are assuming that the irreducible representation � is orthogonal thenh� 
 f12g; [0]i = 0. However, the left hand side of (6.5) vanishes identically by (6.1a)so that all terms on the right must be zero, giving (6.3a) as required. The result(6.3b) may be derived in the same way, making use this time of (3.7a). Similarlyif � is an irreducible representation of Sp(2k) and ! = h1i both (6.4a) and (6.4b)may be derived in the same way using (3.7a) or (3.7b) as appropriate, along withh1i 
 f2g = h2i and h1i 
 f12g = h0i + h12i.Recalling the result h� � �; �i = b(�) from Proposition 4.2 and the relationshipbetween b((a1; : : : ; ak)) and d(�) implied by the connection between Dynkin and naturallabels, we can summarise our results as follows:



The place of the adjoint representation 15Proposition 6.3 The multiplicities of the adjoint irreducible representation � =[12] in the symmetric and antisymmetric squares of the irreducible representations [�]and [�;�] of SO(2k + 1) are given by:h[�]
 f2g; [12]i = 0 and h[�]
 f12g; [12]i = d(�); (6.6a)andh[�;�]
 f2g; [12]i =8><>: 0 if [�;�] is orthogonal;d(�) + 1 if [�;�] is symplectic and `(�) < k;d(�) if [�;�] is symplectic and `(�) = k, (6.6b)h[�;�]
 f12g; [12]i =8><>: d(�) + 1 if [�;�] is orthogonal and `(�) < k;d(�) if [�;�] is orthogonal and `(�) = k;0 if [�;�] is symplectic. (6.6c)Proposition 6.4 The multiplicities of the adjoint irreducible representation � =h2i in the symmetric and antisymmetric squares of the irreducible representations h�iof Sp(2k) are given by:hh�i 
 f2g; h2ii = � 0 if h�i is orthogonal;d(�) if h�i is symplectic; (6.7a)hh�i 
 f12g; h2ii = � d(�) if h�i is orthogonal;0 if h�i is symplectic. (6.7b)Proposition 6.5 The multiplicities of the adjoint irreducible representation � =[12] in the symmetric and antisymmetric squares of the irreducible representations [�],[�]� and [�;�]� of SO(2k) with k even are given by:h[�]
 f2g; [12]i = 0 and h[�]
 f12g; [12]i = d(�) for `(�) < k; (6.8a)h[�]� 
 f2g; [12]i = 0 and h[�]� 
 f12g; [12]i = d(�) for `(�) = k; (6.8b)andh[�;�]� 
 f2g; [12]i = 8><>: 0 if [�;�]� is orthogonal;d(�) + 1 if [�;�]� is symplectic and `(�) < k;d(�) if [�;�]� is symplectic and `(�) = k, (6.8c)h[�;�]� 
 f12g; [12]i = 8><>: d(�) + 1 if [�;�]� is orthogonal and `(�) < k;d(�) if [�;�]� is orthogonal and `(�) = k;0 if [�;�]� is symplectic. (6.8d)Returning to the troublesome case of SO(2k) with k odd, the only selfcontra-gredient irreducible representations are those irreducible representations [�] for which`(�) < k. In the case `(�) < k�1 everything goes through as before with all terms con-tributing to (6.2) vanishing, so that (6.1a) is still valid and implies (6.3a). Di�culties



16 R C King$ and B G Wybournez lare encountered only in the case `(�) = k�1. In this case, over and above well behaveddistinct, selfcontragredient, orthogonal irreducible representations [�], [�], : : : with`(�), `(�), : : : all less than k in (6.2), there now appear the two terms [�; 1]+ and [�; 1]�.At �rst sight the presence of these irreducible representations seems harmless enoughsince they are not selfcontragredient and h[�; 1]+ 
 f12g; �i = h[�; 1]� 
 f12g; �i = 0.On the other hand they are contragredients of one another, so that from (3.9) we haveh([�; 1]+ � [�; 1]�); �i = 1. Hence for SO(2k) with k odd, (6.1a) must be replaced by:h([�]� [1])
 f12g; �i = � 0 if `(�) < k � 1;1 if `(�) = k � 1. (6.9)By means of (6.5) we can therefore only conclude in place of (6.3a) thath([�]
 f2g); [12]i = h([�]
 f12g); [2]i = 0 if `(�) < k � 1; (6.10a)h([�]
 f2g); [12]i+ h([�] 
 f12g); [2]i = 1 if `(�) = k � 1: (6.10b)The last equation has two solutions:(A) h([�]
 f2g); [12]i = 1 and h([�] 
 f12g); [2]i = 0; (6.11a)(B) h([�]
 f2g); [12]i = 0 and h([�] 
 f12g); [2]i = 1: (6.11b)It is not di�cult by exploiting the isomorphism between SO(6) and SU(4) to showthat for k = 3 the solution (A) applies to all [�] such that `(�) = 2. Similarly for allSO(2k) with k odd solution (A) also applies in the case [�] = [1k�1]. The problemmay be unequivocally resolved by considering the case of the full orthogonal groupO(2k) with k odd and then restricting to its subgroup SO(2k). The key result takesthe form:Lemma 6.6 The multiplicities of the adjoint irreducible representation � = [12]and its associate �� = [12]� = [12k�2] in the symmetric and antisymmetric squares ofthe irreducible representations [�] of O(2k) with k odd and `(�) = k � 1 are given by:h[�]
 f2g; [12]i = 0 and h[�]
 f12g; [12]i = d(�); (6.12a)h[�]
 f2g; [12]�i = 1 and h[�]
 f12g; [12]�i = 0: (6.12b)Proof First it should be noted that each irreducible representation [�] of O(2k)with `(�) = k � 1 is orthogonal and possesses an inequivalent associate irreduciblerepresentation [�]� = [�; 12] (King et al 1981). Moreover,[�]� [12] = [� � 12] + [�=1 � 1] + [�=12]: (6.13)Recalling Lemma 3.2 and noting that [� � 12] contains [�; 12] = [�]� with multiplicityone, it follows thath[�]� [12]; [�]i = d(�) and h[�] � [12]; [�]�i = 1: (6.14)



The place of the adjoint representation 17Since both [�] and [12] are selfcontragredient Lemma 3.5 then implies thath[�]� [�]; [12]i = d(�) and h[�] � [�]; [12]�i = 1; (6.15)where use has also been made of the fact that [�]� = [0]� � [�] for all [�], where[0]� = [12k] is the irreducible representation of O(2k) which maps each group elementto its determinant, �1 (King et al 1981). It should be noted that [12]� = [12k�2].The second of the two results in (6.15) can be derived more directly by noting that[�]� [�] =X� [�=� � �=�]: (6.16)Recalling that by hypothesis `(�) = k � 1, it is clear that even taking modi�cationrules (King et al 1981) into account, the only way that a term [12]� = [12k�2] can ariseon the right hand side of (6.16) is if �=� contains 1k�1 for some �. Since `(�) = k � 1such a � exists and is unique. In fact � = �=1k�1 and �=� = 1k�1. Hence as claimedh[�]� [�]; [12]�i = 1.Turning to symmetrised products, it should be noted �rst that the di�cultiesreferred to above which arise in the case of SO(2k) with k odd, do not arise in thecase of O(2k) with k odd. In particular for our orthogonal irreducible representation� = [�] of O(2k) with `(�) = k � 1 and ! = [1] (6.1a) is valid since now in (6.2)the term [�; 1] is irreducible and orthogonal. Thanks to (6.5) this in turn impliesthe validity of (6.3a). Combining this with the �rst part of (6.15) then gives (6.12a).Finally, Littlewood's Theorem III (Littlewood 1958) implies thath[�]
 f2g; [12]�i = hf1k�1g 
 f2g; f12k�2gi (6.17a)h[�]
 f12g; [12]�i = hf1k�1g 
 f12g; f12k�2gi (6.17b)However, if k is odd hf1k�1g 
 f2g; f12k�2gi = 1, and hf1k�1g 
 f12g; f12k�2gi = 0(King et al 1981). Combining (6.17) with the second part of (6.15) then gives (6.12b).The validity of Lemma 6.6 then allows us to complete the analysis of SO(2k) withk odd by means of the following:Proposition 6.7 The multiplicities of the adjoint irreducible representation � =[12] in the symmetric and antisymmetric squares of the irreducible representations [�]of SO(2k) with k odd and `(�) < k are given by:h[�]
 f2g; [12]i = � 0 if `(�) < k � 1;1 if `(�) = k � 1; (6.18a)h[�]
 f12g; [12]i = d(�): (6.18b)Proof As we have already indicated, the case `(�) < k � 1 gives no problem, andthe required result follows from the use of (6.2) to give (6.1a), the subsequent use of(6.5) to give (6.3a) and the observation that h[�] � [�]; [12]i = b(�) = d(�). The case`(�) = k � 1 follows directly from Lemma 6.6 and the observation that under therestriction from O(2k) to SO(2k) we have [�] ! [�] for `(�) = k � 1 and [12]� ! [12].



18 R C King$ and B G Wybournez l7. Symmetrised Kronecker squares for the exceptional groupsThe techniques of section 6 are also appropriate for use with some of theexceptional groups. The trick is to �nd some irreducible representation ! which isselfcontragredient, so that its square contains the adjoint �, and whose weights aremultiplicity free, so that the decomposition of ��! is likely to be multiplicity free forall �. Even this may not be enough as we have seen in the case of SO(2k) with k oddfor which the confounding factor was the occurrence of mutually contragredient pairsof distinct irreducible representations in �� !.However for G2, whose adjoint irreducible representation is (21), it is helpful toconsider the product of an arbitrary irreducible representation (�) with the de�ningirreducible representation ! = !1 = (1). This irreducible representation (1) isorthogonal and its weights all have multiplicity one. In addition all the irreduciblerepresentations of G2 are selfcontragredient. The product ��! takes the form (King1981): (�) � (1) = ( (� � 1) + (� � 12) + (�) if �1 � 2�2;(� � 1) + (� � 12) if �1 = 2�2, (7.1)where the Schur function products are to be evaluated as products of characters ofSU(3) but with any term (�) = (�1; �2) discarded if �1 < 2�2. It can be seen that inall cases (�) � (1) decomposes into a sum of distinct, selfcontragredient, orthogonalirreducible representations. It follows, by the same argument that was applied to (6.2),that: h((�) � (1)) 
 f12g; �i = 0: (7.2)As in (6.5) we now obtainh((�) � (1)) 
 f12g; �i= h((�) 
 f12g) � ((1) 
 f2g); �i + h((�) 
 f2g)� ((1) 
 f12g); �i= h((�) 
 f12g) � ((0) + (2)); �i + h((�) 
 f2g)� ((1) + (21)); �i= h(�) 
 f12g; (2)i + h(�) 
 f12g; (1)i + h(�) 
 f2g; (21)i; (7.3)where use has been made of the decompositions (1)
f2g = (0)+(2) and (1)
f12g =(1) + (21), and the fact that (�) is orthogonal. It follows that all three terms on theright hand side of (7.3) must be zero. In particular we haveh(�) 
 f2g; (21)i = 0: (7.4)Combining this with the results of section 4 and expressing b((a1; a2)) in terms of �1and �2 we arrive at:Proposition 7.1 The multiplicities of the adjoint irreducible representation � =(21) in the symmetric and antisymmetric squares of the irreducible representation (�)



The place of the adjoint representation 19of G2 are given by:h(�) 
 f2g; (21)i = 0; (7.5a)h(�) 
 f12g; (21)i = � 2 if �1 > 2�2 > 0;1 if �1 = 2�2 > 0 or �1 > 2�2 = 0. (7.5b)Proceeding in exactly the same way for E7 but now taking ! = !7 = (16) we have(King 1981): (�) � (16) = (� � 12) + (� � 16) (7.6)where Schur function products are to be evaluated as products of characters of SU(8)but with any term (�) = (�1; : : : ; �7) discarded if �1 < �2 + �3 + �4 + �5 � �6 � �7.Once again all terms in the decomposition (7.6) are distinct, selfcontragredientirreducible representations which are either all orthogonal or all symplectic accordingas w� = 0(mod 4) or 2(mod4), respectively. Since ! = (16) is symplectic, it follows asin (6.1b) and (6.1c) thath((�) � (16)) 
 f12g; �i = 0 if (�) is symplectic; (7.7a)h((�) � (16)) 
 f2g; �i = 0 if (�) is orthogonal. (7.7b)Using (3.8), the left hand sides of these two equations may then be expanded as in(6.5) or (7.3), with the symmetric and antisymmetric squares of ! given by (Wybourneand Bowick 1977) (16)
f2g = (216) + (26) and (16)
f12g = (0) + (2512). This leadsto the conclusion that:h(�) 
 f12g; (216)i = 0 if (�) is symplectic; (7.8a)h(�) 
 f2g; (216)i = 0 if (�) is orthogonal. (7.8b)By making use of (3.6) and of Proposition 4.2, as applied to E7, we can infer thefollowing:Proposition 7.2 The multiplicities of the adjoint irreducible representation � =(216) in the symmetric and antisymmetric squares of the irreducible representations(�) of E7 are given by:h(�)i 
 f2g; (216)i = � 0 if (�) is orthogonal;b((�)) if (�) is symplectic; (7.9a)h(�) 
 f12g; (216)i = � b((�)) if (�) is orthogonal;0 if (�) is symplectic. (7.9b)This completes the happy part of the story regarding the exceptional groups. Inthe case of both F4 and E8 it is not possible to �nd any ! such that for all irreduciblerepresentations � the decomposition of the product � � ! is multiplicity free. The



20 R C King$ and B G Wybournez lbest that can be done is to take ! = !1 = (1) in F4 and ! = !1 = (217) in E8. Thefact that these irreducible representations have zero weights (0) whose multiplicitiesare 2 and 8, respectively, ensures that in almost all casesh(� � !1) 
 f12g; �i 6= 0; (7.10)even though all irreducible representations of F4 and E8 are orthogonal. This isanalogous to the appearance of a non-vanishing term in (6.9) for SO(2k) with k odd.It thwarts our attempt to use (3.8) and the symmetrised Kronecker squares of (1) toseparate unambiguously the multiplicities of � in �� � into contributions to �
 f2gand �
 f12g. Nonetheless, on the basis of our accumulated data, we are tempted tomake the following conjecture.Conjecture 7.3 The multiplicities of the adjoint irreducible representation � inthe symmetric and antisymmetric squares of the irreducible representations � of F4and E8 are given by:h�
 f2g; �i = 0; (7.11a)h�
 f12g; �i = b(�): (7.11b)The case of E6 appears to be intractable for a combination of reasons. Firstlyit does not possess a selfcontragredient irreducible representation whose weights aremultiplicity free. Indeed its simplest selfcontragredient irreducible representation isthe adjoint, whose zero weight has multiplicity given by the rank 6. This impliesthat the techniques used for G2 for example will not lead to a unique resolution ofthe multiplicity problem. In this sense it is analagous to F4 and E8. However itis worse since the products � � ! contain irreducible representations which are notselfcontragredient even when both � and ! are orthogonal. In fact E6 is more closelyrelated to SU(k + 1) which we have seen required rather special treatment. In thiscase we are tempted, on the basis it has to be said of very little data, to conjecture:Conjecture 7.4 Let � and � be an arbitrary �nite-dimensional selfcontragredientirreducible representation and the adjoint irreducible representation, respectively, ofE6. Then h�
 f2g; �i =8><>: 12b(�) if b(�) is even;12(b(�) � 1) if b(�) is odd;h�
 f12g; �i =8><>: 12b(�) if b(�) is even;12(b(�) + 1) if b(�) is odd.AcknowledgmentsThe work of BGW was supported by Polish KBN Grant 18/p3/94/07 with someof the work being done at the Max-Planck-Instit�ut f�ur Astrophysik at Garching.



The place of the adjoint representation 21ReferencesAdams J F 1969 Lectures on Lie Groups New York: W A BenjaminBlack G R E, King R C and Wybourne B G 1983 J. Phys. A: Math. Gen. 16 1555-1589Bremner M, Moody R V and Patera J 1985 Tables of Dominant Weight Multiplicities forRepresentations of Simple Lie Algebras New York: M DekkerButler P H and King R C 1974 Can. J. Math. 26 328-339Carre C and Leclerc B 1995 J. Alg. Comb. 4 201-231Dynkin E B 1957 Amer. Math. Soc. Transl. Ser. 2 6 245-378Elashvili A G 1992 Adv. Sov. Math. 57-64Gell-Mann M and Ne'eman Y 1964 The Eightfold Way New York: BenjaminHumphreys J E 1972 Introduction to Lie Algebras and Representation Theory New York: SpringerJudd B R 1963 Operator Techniques in Atomic Spectroscopy New York: McGraw-HillKing R C 1981 J. Phys. A: Math. Gen. 14 77-83King R C and Al-Qubanchi A H A 1981 J. Phys. A: Math. Gen. 14 15-49King R C, Luan Dehuai and Wybourne B G 1981 J. Phys. A: Math. Gen. 14 2509-2538Littlewood D E 1950 The Theory of Group Characters 2nd edn Oxford: ClarendonLittlewood D E 1951 Proc. R. Soc.A 209 333-352Littlewood D E 1958 Can. J. Math 10 17-32Macdonald I G 1995 Symmetric Functions and Hall Polynomials 2edn Oxford: Oxford University PressMal'cev A I 1962 Amer. Math. Soc. Transl. Ser 1 9 172-213McKay W and Patera J 1981 Tables of Dimensions, Indices and Branching Rules for Representationsof Simple Lie Algebras New York: M DekkerMehta M L 1966 J. Math. Phys. 7 1824-1832Mehta M L and Srivastava P K 1966 J. Math. Phys. 7 1833-1835Pais A 1966 Rev. Mod. Phys. 38 215-255Racah G 1965 Group Theory and Spectroscopy (Springer Tracts in Modern Physics v37 Berlin: SpringerWybourne B G and Bowick M J 1977 Aust. J. Phys. 30 259-286Yang M and Wybourne B G 1995 J. Phys. A: Math. Gen. 28 7011-7017�SCHUR is an interactive C package for calculating properties of Lie groups and symmet-ric functions. Distributed by: S. Christensen, P.O. Box 16175, Chapel Hill, NC 27516USA. e-mail: steve@scm.vnet.net A detailed description can be seen by WEB users athttp://scm.vnet.net/Christensen.html/



22 R C King$ and B G Wybournez lTables and table captionsTable 1. Natural and Dynkin labels for the adjoint irreducible representation � of thecompact simple Lie groups G of rank k.G Adjoint irreducible representation � Dynkin label ((a1; a2; : : : ; ak))SU (k + 1) = Ak f1; 1g = f21k�1g ((1000 � � �000))SO(2k + 1) = Bk [12] ((010 � � �000))Sp(2k) = Ck h2i ((200 � � �000))SO(2k) = Dk [12] ((010 � � �000))E6 (2; 0) ((000001))E7 (216) ((1000000))E8 (217) ((10000000))F4 (12) ((1000))G2 (21) ((10))
Table 2. The irreducible representation � contragredient to each irreduciblerepresentation � = ((a1; : : : ; ak)) of SU (k + 1), SO(2k) with k odd, and E6.G � � ((a1; a2; : : : ; ak�1; ak))SU (k + 1) = Ak f�g f�g with �1 = �1 and ((ak; ak�1; : : : ; a2; a1))�i = �1 � �k�i+2 for i = 2; : : : ; kSO(2k) [�]� [�]� ((a1; : : : ; ak�2; ak; ak�1))with k odd [�;�]� [�;�]�E6 (�0; �) (�0; �) with �1 = �1 and ((a5; a4; a3; a2; a1; a6))�i = �1 � �7�i for i = 2; : : : ; 5



The place of the adjoint representation 23Table 3. Orthogonal and symplectic irreducible representations � of the Lie group Gof rank k in terms of natural labels.G Selfcontragredient � Orthogonal SymplecticSU (k+1) f�g with �i = �1��k�i+2 k = 0; 2; 3(mod4)for 2 � i � [k+12 ] k = 1(mod4); �1 = 0(mod2) k = 1(mod4); �1 = 1(mod2)SO(2k+1) [�] all[�;�] k = 0; 3(mod4) k = 1; 2(mod4)Sp(2k) h�i w� = 0(mod2) w� = 1(mod2)SO(2k) [�] all[�]� k = 0(mod2) all selfcontragredient[�;�]� k = 0(mod2) k = 0(mod4) k = 2(mod4)G2 (�) allF4 (�) all(�;�) allE6 (�0;�) with all selfcontragredient�1 = �2 + �5 = �3 + �4E7 (�) w� = 0(mod4) w� = 2(mod4)E8 (�) allTable 4. Orthogonal and symplectic irreducible representations � = ((a1; : : : ; ak)) ofthe Lie group G of rank k in terms of Dynkin labels.G Selfcontragredient � Orthogonal SymplecticSU (k+1) ai = ak�i+1 k = 0; 2; 3(mod4)for i = 1; : : : ; [k2 ] a[ k+12 ] = 0(mod2) k = 1(mod4) a[ k+12 ] = 1(mod2) k = 1(mod4)SO(2k+1) all ak = 0(mod2) all kak = 1(mod2) k = 0; 3(mod4) ak = 1(mod2) k = 1; 2(mod4)Sp(2k) all a1 + a3 + a5 + � � � = 0(mod2) a1 + a3 + a5 + � � � = 1(mod2)SO(2k) k = 0(mod4) all allk = 1; 3(mod4) ak�1 = ak all selfcontragredientk = 2(mod4) all ak�1 + ak = 0(mod2) ak�1 + ak = 1(mod2)G2 all allF4 all allE6 a1 = a5; a2 = a4 all selfcontragredientE7 all a4 + a6 + a7 = 0(mod2) a4 + a6 + a7 = 1(mod2)E8 all all



24 R C King$ and B G Wybournez lTable 5. The Schur function decomposition of Kronecker products of the form �� !for SO(2k + 1), Sp(2k) and SO(2k).G � � ! ConstraintsSO(2k + 1) [�]� [1] = [� � 1] + [�=1] `(�) � kwith [�; 1] = [�] if `(�) = k;[�;�]� [1] = [�;� � 1] + [�;�] + [�;�=1] `(�) � kwith [�;�; 1] = 0 if `(�) = k.Sp(2k) h�i � h1i = h� � 1i + h�=1i `(�) � kwith h�; 1i = 0 if `(�) = k.SO(2k) [�]� [1] = [� � 1] + [�=1] `(�) < kwith [�; 1] = [�; 1]+ + [�; 1]� if `(�) = k � 1;[�]� � [1] = [� � 1]� + [�=1]� `(�) = kwith [�; 1]� = 0 and [�]� = [�] if `(�) < k;[�;�]� � [1] = [�;� � 1]� + [�;�]�+ [�;�=1]� `(�) � kwith [�;�; 1]� = [�;�]� = 0 if `(�) = k.


