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1. Introduction

The calculation of the matrix elements of the generators of a compact simple Lie
group ¢ when acting on states spanning a particular finite-dimensional irreducible
representation A of G is a common problem in applications of Lie groups to physics
(Judd 1963, Racah 1965). The generators of the group G transform as the adjoint
irreducible representation 6 of G. A knowledge of the place of 6 in the Kronecker
square A X A of an arbitrary irreducible representation A is of significance in evaluating
matrix elements of group generators. It is well known, for example, that the 8-
dimensional adjoint representation 6 of the group SU(3) occurs with multiplicity two
in the Kronecker square € x #. This is an important feature of the quark model
(Gell-Mann and Ne’eman 1964, Pais 1966).

Within this model couplings are further influenced by the fact that in the
decomposition of the Kronecker square 8 x € into its symmetric and antisymmetric
parts, 8 @ {2} and 6 @ {1?} respectively, the adjoint appears with multiplicity one in
each part. However, this equality of multiplicities of the adjoint # in the symmetric
and antisymmetric parts of the Kronecker square of an arbitrary finite-dimensional
irreducible representation A of an arbitrary compact simple Lie group G, while not
being untypical in the case of SU(k + 1), is the exception rather than the rule for the
other compact simple Lie groups. In many instances the occurrence of 6 is confined
to just one or other of these two parts.

Indeed this work arose from observations based on the resolution of Kronecker
squares of irreducible representations of the compact simple Lie groups into their
symmetric and antisymmetric parts using SCHUR*. The results obtained in this way
led us to pose the question: “When does the adjoint € occur only in the symmetric
or only in the antisymmetric part of the Kronecker square of a given irreducible
representation A of G?”. Herein we give an answer to this question in the form
of propositions covering SU(k + 1), SO(2k + 1), Sp(2k), SO(2k), E; and G2, and
conjectures covering the remaining cases, Fg, Fs and Fj;. At the same time we
provide explicit formulae for the relevant multiplicities of occurrence of the adjoint.
Throughout we take advantage of the fact that the representation theory of each
compact simple Lie group G is determined by that of the corresponding complex
simple Lie algebra g.

In section 2 the notation for irreducible representations and their characters is
established, while in section 3 some preliminary results are presented which follow
from Weyl’s character formula and the algebra of Schur functions. The multiplicity of
occurrence of the adjoint irreducible representation # in the Kronecker square A x A is
determined in section 4 for all irreducible representations A of each compact simple Lie
group G. In particular it is shown that this multiplicity is nonvanishing if and only
if A is both nontrivial and selfcontragredient. The irreducible representations of G
which are selfcontragredient are identified in section 5, and further classified as either

orthogonal or symplectic. This distinction is particularly important in determining the



multiplicities of occurrence of the adjoint irreducible representation € in the symmetric
and antisymmetric squares, A @ {2} and A\ @ {1?}, respectively. This determination
is carried out for SU(k 4 1) in section 6. The remaining classical compact simple

Lie groups , SO(2k + 1), Sp(2k) and SO(2k) are dealt with in section 7, while the

exceptional simple Lie groups are covered in section 8.

2. Natural and Dynkin labels for irreducible representations.

Each compact simple Lie group G is associated with the unique compact real
form of a complex simple Lie algebra g, and their finite-dimensional irreducible
representations A are in one-to-one correspondence. FEach of these irreducible
representations is defined, up to equivalence, by its highest weight A. This highest
weight A can itself be specified in more than one way, using for example, either Dynkin
labels (Dynkin 1957, McKay and Patera 1981) or natural labels involving partitions
(Wybourne and Bowick 1977, King and Al-Qubanchi 1981, Black et al 1983). Of these
the former have the advantage of allowing all compact simple Lie groups to be dealt
with in a uniform manner, while the latter are particularly useful in dealing with the
four infinite series of compact classical simple Lie groups in a rank independent way.

Let g be the complex simple Lie algebra associated with the compact simple Lie
group G. Let h be the Cartan subalgebra of g and let h* be the dual of h. Let A and
IT denote the sets of roots and simple roots, respectively, of g. For each «; € II let
af = 2a;/(oy, «;), where (-,-) signifies the inner product on h*.

Each finite-dimensional irreducible representation A of g corresponds to a highest
weight module V* and is specified up to equivalence by its highest weight \. If
g has rank & then the corresponding Dynkin labels are given by a;, = (A, ) for

i = 1,...,k. In the basis of fundamental weights (Bremner et al 1985) w, with
(wi,af) = ;5 for i,5 = 1,2,...,k, we have A = Ele a;w;, and it is convenient to
write A = ((ay,a2,...,a;)). Of necessity A is dominant with each component a; a

non-negative integer. A quantity of particular interest in what follows is the number
of non-vanishing Dynkin labels a;, which we refer to as the breadth of A and denote
by b(\).

Alternatively we can make use of partitions to specify irreducible representations
of G. Let A = (A, Ag, ..., Ayy)) signify a partition of length ¢()\) and weight wy. The
parts A\; of A for @ = 1,2,...,( are positive integers, with \y > Ay > -+ > Ay > 0,
whose sum is w). Let the number of distinct parts of A be d(A), a key parameter in
what follows.

All the finite-dimensional irreducible representations of the classical and excep-
tional Lie groups G may be labelled by means of partitions (Wybourne and Bowick
1977, King and Al-Qubanchi 1981, Black et a/ 1983). This labelling is natural in the
sense that it indicates the tensor or spinor structure of corresponding modules of G.
The precise connection between Dynkin labels and natural labels has been spelled out
in detail by King and Al-Qubanchi (1981), with a further refinement in the labelling
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being provided by Black et al (1983). We refer the reader to these papers for much of
the notation employed here. This notation is such that the representation labels are
to be identified with characters of the corresponding representations of both G and
g. In this way no distinction need, nor will be made between characters of G and g,

although in general we choose to talk about characters or irreducible representations

of G.

3. Preliminary lemmas

If we work in terms of natural labels involving partitions then the connection with
Schur functions provides a uniform framework in which to describe the decomposition
of Kronecker products of all irreducible representations of all the classical compact
simple Lie groups, independent of their rank (Black et al 1983). At the heart of these
methods lies the fact that the characters of the irreducible representations A can all
be expressed in terms of Schur functions whose products and quotients are described
by the Littlewood-Richardson rule (Littlewood 1950, Macdonald 1995). As usual we
denote Schur function products and quotients by - and /, while symmetrised products
or plethysms are denoted by @. Recalling our definition of d(\) as the number of
distinct parts of the partition A, the following two lemmas then follow trivially from
the properties of Schur functions:

Lemma 3.1 A-1 and A\/1 contain d(X) + 1 and d(\) distinct terms, respectively.

Lemma 3.2 (\/1) -1 contains A with multiplicity d(\).

On the other hand if we work in terms of formal exponentials the key tool at our
disposal is Weyl’s character formula (Humphreys 1972):

EwEW e(w)ew(/\-l-p)
EwEW e(w)ew(p) 7

where the summations are over all elements w of the Weyl group W of g, e(w) is the

chV? =

(3.1)

parity or signature of w, and p is half the sum of the positive roots of g. The Weyl
group W is generated by the reflections r;, with ¢ = 1,... %k, whose action on any
weight o is defined by r;(p) = p — (g, o oo I w = ryry, -+ -1y, then e(w) = (=1)".
The expansion of (3.1) in the form:
chV = Z mﬁe“, (3.2)
ueEh*
A

e

Weyl’s character formula (3.1) with A replaced by u also serves to define formal

serves to define the weights p of V* and their multiplicities m

characters chV* for any weight p of any complex simple Lie algebra g of rank k& whose
Weyl group is W. For such characters it is easy to derive from (3.1):

Lemma 3.3 chV* = e(w)chV¥ )= for any w € W.

Lemma 3.4 cAV* =0 if (p,a)) = =1 for any i € {1,... k}.



The adjoint irreducible representation € of each compact simple Lie group G is
identified in table 1 in terms of both natural and Dynkin labels. This irreducible
representation 6 is characterised by the fact that its weights coincide with the set A
of all roots « of g, each with multiplicity one, together with the zero vector with
multiplicity equal to the rank k of g. The expansion (3.2) of Weyl’s character formula

for the adjoint irreducible representation 8 therefore takes the form:

chVezkl—l—Zea:kl—l—Zew(a) for any w € W, (3.3)
a€A a€A
where the last step depends on the fact that A is invariant under the action of the
Weyl group W.
Turning, more generally, to arbitrary representations of G, the symmetric, bilinear,
inner product (-,-) on the set of characters of equivalence classes of irreducible

representations of G is such that

chV I = chVAehVH = Z</\ X p,v)yehV?. (3.4)
where (A Xy, v) is the multiplicity of occurrence of the irreducible representation v in
the Kronecker product A x p, and the sum is taken over all irreducible representations
vofg.

Here we are particularly interested in the decomposition of the Kronecker square
A X A of an irreducible representation A into its symmetric and antisymmmetric parts
A® {2} and A @ {1%}. If A and B denote arbitrary linear combinations of irreducible

representations of a compact simple Lie group G, then the algebra of plethysms is such

that (Littlewood 1950):

Ax A =A@ {2} +Aw{1*} (3.5)
(A+B)e{2} =40 {2}+AxB+Bw{2}; (3.6a)
(A+B)o{1*} =A@ {1’} + Ax B+ B {1*}; (3.6b)
(AxB)ye{2} =(Ae{2}) x (B {2})+(4a{1*}) x (B {1?}); (3.7a)
(AxB)e {1’} =(Ae{2}) x (B {1’})+ (A2 {1°}) x (B @ {2}). (3.7b)

It follows from (3.5) that the multiplicities of occurrence of the adjoint irreducible
representation € in the Kronecker square, the symmetrised and the antisymmetrised

squares of an arbitrary irreducible representation A of a simple Lie group G are such
that:

(A x N 0) = (@ {2},0) + (A @ {1°},6). (3.8)

To every irreducible representation A of a compact simple Lie group ¢ there
corresponds a contragredient or dual irreducible representation A such that if  denotes

the trivial, identity, 1-dimensional irreducible representation of G, then

(A pm) = 6,5 (3.9)



. v B o D 7 A

An irreducible representation A is said to be selfcontragredient if A = .

The contragredient A of A is characterised by the fact that the weights of X are
equal to the weights of A taken with opposite sign, but no change in multiplicity
(Mal’cev 1962). Clearly the adjoint irreducible representation 6 is selfcontragredient
since its only nonvanishing weights are the roots o € A, each having multiplicity one,
and o € A implies —a € A.

More generally, all the irreducible representations A of SO(2k+1), Sp(2k), SO(2k)
with k even, E;, Eg, F; and G5 are selfcontragredient so that A = \. In the case of
SU(k41), SO(2k) with k odd, and Eg the irreducible representations A contragredient

to A are given in table 2 in terms of both natural and Dynkin labels.

An alternative characterisation of selfcontragredient irreducible representations of

G is provided by the following proposition which follows immediately from (3.9):

Proposition 3.5 The irreducible representation \ of a compact simple Lie group G
is selfcontragredient iof and only if (A x X\, n) =1, where n is the identity representation

of G.

If an irreducible representation A of a compact simple Lie group ¢ is not
selfcontragredient then its character is complex. In the case of a selfcontragredient
irreducible representation A the character is real, and the representation matrices
themselves are either orthogonal or symplectic according as their Kronecker square
supports a symmetric or an antisymmetric bilinear form. More precisely, bearing in
mind (3.5) and Proposition 3.5 which imply that there are indeed only two possibilities,

we have:

Proposition 3.6 A selfcontragredient irreducible representation N\ of a compact
simple Lie group G 1s orthogonal if (A\@{2},n) = 1 and is symplectic if (A\@{1?},n) =1,

where n 1s the identity irreducible representation of G.

The identification of orthogonal and symplectic irreducible representations for all
the compact simple Lie groups is well-known (Dynkin 1957, Mal’cev 1962, Mehta 1966,
Mehta and Srivastava 1966, Butler and King 1974, McKay and Patera 1981). The data

is summarised in tables 3 and 4 in terms of natural and Dynkin labels, respectively.

The following lemmas regarding arbitrary irreducible representations A, p and v
of a simple Lie group G whose adjoint irreducible representation is 6 may be readily

derived and are of considerable use in what follows:

Lemma 3.7 (A x u,v) = (A x 7, 71).

Lemma 3.8 (A x A\, 8) = (A x 6, ).

For the record it should also be noted that an inspection of the tabulation of
roots @ € A of each simple Lie group G in the basis of fundamental weights w;

given by Bremner et al (1985) reveals that for the highest weight A of any irreducible

representation of G:

Lemma 3.9 A +a # X for any o € A,



4. Kronecker squares

We are interested in the multiplicity of occurrence of the adjoint irreducible
representation 6 in the Kronecker square A x A of each finite-dimensional irreducible
representation A of each compact simple Lie group G. From Lemma 3.8 the required
multiplicity is that of X in the Kronecker product A x 6.

However, from (3.1) and (3.3)

w(Atpta)
BVAhV = hohvt 4 3 e (0 —
a€EA EwEW e(w)ew ’
= keh V) ch VA, (4.1)

aEA

where A + @ may or may not be dominant. There are three cases to consider:

(i) if A+ « is dominant there is no problem since chV M is standard.

(ii) if A+« is not dominant but there exists any ¢ € {1,..., k} such that (A +a, ;) =
—1 then ¢AV™M* = 0 by virtue of Lemma 3.4. In such a case we say that A + « is
null.

(iii)if A + o is not dominant and not null then there exists ¢ € {1,...,k} such that
(A + @,aY) < —2 and the corresponding contribution chV** to (4.1) must be
standardised through the use of Lemma 3.3.

For example, if @« = —a; for some ¢ € {1,...,k} then (A +a,a)) = (A —a;,a)) =

a; =2 and (A +a,a)) = (A —a;,a)) = a; — (a;,a)) > a; > 0 for all j # . It follows

that A — «; is dominant if a; > 2 and null if a; = 1, but is non-dominant and non-null

if a; = 0. However, if a; = 0 we have
rfA—ai+p)—p=A—a;,—(A—a;+p,a))a; = X —aqa; = N, (4.2)

since (p,a)) =1 for all ¢ — 1,2,..., k. It then follows from Lemma 3.3 with w = r,
that

chVA=% = —chVA if a; = 0. (4.3)

More generally, in case (iii) since A is dominant with (A, o)) = a; > 0 for
all © € {1,...,k}, there must exist ¢ € {1,...,k} such that (a,a)) = —p with
p > a;+ 2 > 2. However, («,3Y) € {0,£1,42, 43} for all 5 € A (Humphreys
1972), so there are just two possibilities, namely p = 2 and p = 3, with the latter
only occuring in the case G = G5. Moreover, an examination of the tables of Bremner
et al (1985) shows that for any given o € A if (a, ) = —p for some ¢ € {1,...,k}
with p = 2 or 3 then that value of ¢z is unique. We can distinguish between the two
possibilities: (a) o = —q; and (b) o # —a;. The first of these has already been dealt
with. In fact it is the only possibility for each of the simply laced algebras Ay, Dy,
FEs, E7 and Es.



Turning to case (b), if & # —a; then « is not a multiple of «; since the only other
possibility is @ = +4a; in which case (a,q;) = —p = 2, in contradiction with the

requirement that p = 2 or 3. However, if « is not a multiple of «;, then
ria) =a—(a,a) )y = a + pay, (4.4)

and there necessarily exists a chain of roots o + ra; with r = 0,1,...,p (Humphreys

1972). In addition,
ri(/\—l—oz—l—p)—,o:/\—I—oz—(/\—l—oz—l—,o,oziv)ozi:/\—I—oz—(ai—p—l—l)ozi:/\—I—ﬂ,(4.5)

where 8 = a + qa; with ¢ = p — 1 — q;. Recalling that p > a; + 2 and a; > 0 it follows
that 1 < ¢ < p, so that 3 is necessarily a root. Thus, from (4.5) and Lemma 3.3

chVAY = —ch VM with 8= a + qa; € A, (4.6)

and we have a cancellation of contributions to (4.1) of the terms arising from o € A
and # € A. To be sure that this is the end of the story we have to be sure that all
the 3 obtained by means of (4.5) from different o are distinct.

It is to be noted that having identified all relevant o and : from the tables of
Bremner et al (1985), then 8 = a + go; with ¢ restricted to be 1 or 2. In fact if p =2
then the condition p > a;4+2 > 2 implies that a; = 0 so that ¢ = 1. For the non-simply
laced algebras By, C, Fy and G, this covers all possibilities except in the case of G,
for which it is necessary to consider p = 3. In this case we have either a; = 1 so that
g = 1 as before, or a; = 0 so that ¢ = 2. Again consulting the tables of Bremner et
al (1985) to obtain the list of roots = « + g, it is indeed found in every case that
the (3 arising from different o are distinct. Moreover in every case (3,a}) € {0,£1}
for all j € {1,...,k} so that A+ f3 is either dominant or null. In all cases we therefore
have the cancellation of contributions to (4.1) implied by (4.6), although in some cases
these contributions are in fact null.

Applying (4.3) and (4.6) to (4.1), together with the observations made regarding
cases (i) and (ii), we have the following:

Proposition 4.1 Let A\ be any finite-dimensional irreducible representation of a
compact simple Lie group G whose adjoint irreducible representation us 6, and let b(\)

be the number of non-vanishing components of the Dynkin label X = ((aq,...,ar)).
Then

chVAeh VI = b\ )eh VA + ) ch Ve,

aEAN

where A" is the set of roots o € A such that X\ + « 1is dominant, and there exists no
e A such that ri( A+ +p)=A+a+p foranyi € {1,... k}.
Thanks to Lemmas 3.8 and 3.9 this immediately gives us one of our key results:
Proposition 4.2 For any compact simple Lie group G, the multiplicity of

occurrence of the adjoint irreducible representation 6 in the Kromecker square of



any finite-dimensional irreducible representation A 1s non-zero if and only if A 1s
selfeontragredient. If X is selfcontragredient this multiplicity is given by (A X X, 60) =
b(A), where b(A) is the number of non-vanishing components of the Dynkin label
A= ((a1,...,aL)).

The above proposition was stated earlier by Elashvili (1992) but he provided only

a partial proof of its validity. In particular he gave no justification of the fact that

(A X A, 0) is equal to b(\).

5. Symmetrised Kronecker squares for SU(k + 1)

While the results of section 4 embodied in Propositions 4.1 and 4.2 are completely
general in the sense that they apply to any compact simple Lie group G, it is worth
pointing out that the same results may be derived rather easily using Schur function
methods in the case of SU(k + 1).

In terms of natural labels an arbitrary finite-dimensional irreducible representation
is denoted by {A}, where A is a partition of length ¢(\) < k, and the adjoint irreducible
representation is given by § = {2171}, The Kronecker product {\} x {21*~1} may be
evaluated quite readily through the use of the Littlewood-Richardson rule (Littlewood
1950, Macdonald 1995). However, it is advantageous to make use of the freedom
associated with the constraint xyxy--- x5y = 1, which applies to all Schur functions
corresponding to characters of SU(k + 1), to express § = {21¥7!} in the form {1;1}.
This composite partition notation emphasises the fact that the adjoint irreducible
representation § = {1;1} of SU(k + 1) appears in the decomposition of the Kronecker
product of the defining, fundamental irreducible representation w; = {1} and its
contragredient wy, = {1*} = {1}. This product takes the form:

{1} < {1} ={L:1} + {o}. (5.1)

With this notation (Black et al 1983), the Kronecker product of an arbitrary
irreducible representation{A} of SU(k + 1) with the adjoint irreducible representation

decomposes in accordance with the formula

D)< (T = {TA- 1)+ {(V/1) - 1), (5.2)

In general modification rules (Black et al 1983) may have to be brought into play.
However, since ((\) < k all terms in (5.2) are standard except the term {I;\ 1} if
{(\) =k, and in such a case {I; A, 1} is identically zero.

It then follows from Lemma 3.2 that the multiplicity of {\} in the Kronecker
product (5.2) is given by:

(A} x 6, {A}) = d(\). (5.3)

Lemma 3.5 then implies that if {\} is selfcontragredient then

({A} < {A}, ) = d(A). (5:4)
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That this is in agreement with Proposition 4.2 may be seen by noting (King and Al-
Qubanchi 1981) that a; = A\; — Ay for e = 1,... k and a; = A\;. Hence the number of
non-vanishing components of the Dynkin label (a1, ..., a;)) coincides with the number
of distinct parts of the partition (Ay,..., Ayy)) with £(A) <k —1, that is b(A) = d()).

Turning now to symmetrised squares, the algebra of Schur functions is such that:

M {Ab={ e ={ e {2+ {(\ e {17, (5.5a)
{Mep={o{2}-{\ o {17 (5.50)

where p; and p, are power sum functions (Littlewood 1950, Macdonald 1995). Thus
if {\} is selfcontragredient

()0 £2).6) = 5 (d0) + (A} ©p2.0)). (5.64)
() © (120,6) = 5 (400 — () ©2.6)), (5.60)

where it is now appropriate to make use of the freedom in the choice of Schur functions
corresponding to characters of SU(k+1) to take § = {6, }, with the partition 8, defined
by 6y = (A;+1, \i71, A\, —1). This ensures that for any selfcontragredient {\}, for which
A necessarily has weight wy = 1(k 4 1)A;, the Kronecker square {A} x {A} = {A- A}
contains {0, } with 6, of weight (k 4+ 1)A;, without the necessity of modification.

A very efficient method of evaluating {A\} ® p, has been provided by Littlewood
(1951) for any positive integer r. This involves the notions of r-core (or r-residue),
r-sign and r-quotient of an arbitrary partition . In the case r = 2 Littlewood’s key
theorem implies (Carré and Leclerc 1995, Yang and Wybourne 1995) the following:

Lemma 5.1 Let the 2-core of pu be fi, let the 2-sign of p be sign(p), and let the
2-quotient of p be sign(p)p©uM), then

(A} @ p2o {p}) = el @} - {nM) {A)) (5.7)

where if /i # 0 then €, = 0, while if i = 0 then ¢, = £1 according as the sign(u) = +.
In the case of interest, namely y = 6 = 6,, we have (Yang and Wybourne 1995):
Proposition 5.2 For \; > 1 let 6, = (A + 1, /\’1“_1, A —1). Then

0 it k=0,2(mod4);

€g, = {4 —1 if k= 3(mod4); (5.8)
—(=1)™ if k= 1(mod4),

while for k odd and A\ even

B0y = {2 a0 = {(M ) (5.90)

and for k odd and \i odd

Al—]_ E+1

o) = {5

A1 kl}

} and {93”}:{( )% (5.95)



It is particularly noteworthy that the partitions 9&0) and 9(;) are rectangular in
that they define rectangular Young diagrams. This ensures that the 2-quotients are
easy to write down since for any pair of such partitions o = (a?) and g = (b?), with

a > band p > ¢, we have

{a} < {8} = {(a") - (b")} = > _{(a +7,8/7)}, (5.10)

where the summation is over all those partitions v such that v; < b and ((v) < ¢.
Moreover the quotient (/7 consists of a single term 6 whose parts are given by
6, = b— 441 for r =1,...,¢, and the multiplicity of each term {v} = {(a +v,6)}
in (5.10) is just one.

To evaluate {9&0)} : {9&0)} using (5.10) we choose, for k odd and A\; even, a = (a?) =
0 and 8 = (1) = 6" with 6 and 6" defined by (5.9a), while for k odd and A; odd
we choose a = (a?) = 9(;) and 3 = (b?) = 9&0), with 9&0) and 9(;) now defined by (5.9b).
In both cases we have a + b=\ and p = ¢ = %(k +1). If we set v = (a4 v,0) with
6=0/v,then vi+v4_iyo = vi+vop i1 = a+vi+0p_iy1 =a+vi+b—y, =a+b= X\
fore=1,..., kzi This implies that the corresponding irreducible representation {v}
of SU(k+1) is necessarily selfcontragredient. Moreover its multiplicity in {9&0)} : {9(;)}
1s one.

In fact this product contains almost all selfcontragredient irreducible representa-
tions {A} with ¢(\) < k for k odd and fixed A\y. This can be seen by noting that for k
odd the conditions that ensure {A} is a selfcontragredient irreducible representation of
SU(k+ 1) given in table 4 imply that A is of the form (« 4+, 6) with é = 3/~, where
o= (a’)and = (b*) withp=¢g=2(k+1),a+b= X\ and a = [MT'H] If A\ is odd
this set of all selfcontragredient irreducible representations {A} coincides with the set
of all {r} obtained previously from (5.10) with parameters determined by (5.9b) so
that a = MT'H However, if A1 is even the set of all {v} obtained previously from (5.10)

with parameters determined by (5.9a) is such that a = Al;'z rather than A2_1 as required
to exhaust all possible selfcontragredient irreducible representations {A} with Ay even.
The only selfcontragredient irreducible representations {A} missing from {9&0)} : {9(;)}
are therefore those for which A; is even and /\k% = %/\1.

These remarks taken in conjunction with Lemma 5.1 then imply

Proposition 5.3 For A\ > 1 let 8, = (A + 1, M= — 1). Then the irreducible
representations {\} and {0\} of SU(k+1) are such that ({\} @p2,{0\}) us zero unless
{A} 1is selfcontragredient, k is odd, and /\k% +* %/\1. If these three conditions are

satisfied then
-1 if k =1(mod4), Ay = 0(mod2)
({A\} @ p2, {0,}) = or if k = 3(mod4); (5.11)
1 it k =1(mod4), Ay = 1(mod2).

This in turn allows us to conclude the validity of the following result which in the

case of SU(k+1) adds very significantly to Proposition 4.2 by specifying precisely how
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the b(\) copies of the adjoint irreducible representation 6 are distributed between the
symmetric and antisymmetric parts of the Kronecker square of a selfcontragredient
irreducible representation {A}. It should be noted that b({\}) = d(\), the number of
distinct parts of the partition A.

Proposition 5.4 Let {\} and 6 be an arbitrary finite-dimensional selfcontragredi-

ent wrreducible representation and the adjoint irreducible representation, respectively,

of SU(k+1). Then

%d(/\) if d(\) is even;
1

{ e {2},0) = §(d(/\) —1) if d()\)is odd and {A} is orthogonal;
%(d(/\) +1) if d(A)is odd and {\} is symplectic,
1
§d(/\) if d(\) is even;
1

({\} @ {17},6) = §(d(/\) +1) ifd(N)is odd and {A} is orthogonal;
1

—(d(A)—1) if d(\) is odd and {A} is symplectic.

Proof If {\} is selfcontragredient but & is even then from table 5 it is clear that

d(\) is even. In addition if {A} is selfcontragredient and k is odd but Apy = %/\1
2
with A even, then from the conditions of table 4 we must also have Axys = %/\1 SO
2
that axn = 0. Remembering that {A} is selfcontragredient, this implies once more

2

that d(\) is even. It therefore follows from Proposition 5.3 that ({A} @ pq,{6,\}) is
non-zero if and only if d(A) is odd. Moreover the conditions appearing in (5.11)
are precisely those appropriate to distinguish between orthogonal and symplectic
irreducible representation {A} as spelled out in table 5. Proposition 5.4 then follows
from the application of Proposition 5.3 to (5.6a) and (5.6b).

A related approach to the derivation of Proposition 5.4 has been given by Yang
and Wybourne (Yang and Wybourne 1995), who did not however make the connection
with the evenness or oddness of d(\) and the orthogonal or symplectic nature of
{A}. While Carre and Leclerc (1995) have derived a combinatorial algorithm for the
complete resolution of the symmetric and antisymmetric squares of any irreducible
representation A, this algorithm does not appear to provide any way of arriving at
Proposition 5.4, or indeed its precursor Proposition 5.3, which is as simple as the use
of Proposition 5.2 and the exploitation of (5.10).

6. Symmetrised Kronecker squares for SO(2k + 1), Sp(2k) and SO(2k)

For the classical compact simple Lie groups other than SU(k+1) it is convenient to
adopt a completely different approach. This is motivated by the fact that in numerous

examples it has been found that the occurrence of the ajoint irreducible representation



6 in the symmetric and antisymmetric squares of a given irreducible representation A
has been confined to one or other of these two parts, but not both. We concentrate
therefore on establishing that the multiplicity of 6 in one or other of A ® {2} and
A @ {1%} is zero for an arbitrary selfcontragredient irreducible representation .

For any such irreducible representation A the starting point is somewhat
surprisingly the consideration of the Kronecker product A x w, where for each of the
groups SO(2k 4+ 1), Sp(2k) and SO(2k) we take w = wq, the appropriate defining
irreducible representation given in terms of natural labels by [1], <1 > and [1],
respectively. The relevant products with A may be evaluated either through the use of
Weyl’s character formula for ¢hV* and a knowledge of the weights of w, or by means
of Schur function techniques (King et ol 1981, Black et al 1983). We obtain using the
latter the results of table 6.

The single most notable thing about these results is that all the products are
multiplicity free as a consequence of Lemma 3.1 and the fact that all the termsin A-1,
A and A/1 are specified by partitions of weight wy, + 1, wy and w, — 1, respectively.
This conclusion remains valid even in those special cases for which it is necessary to
invoke the modification rules included in table 6.

With the exception of the case SO(2k) with k& odd all the irreducible
representations appearing as constituents of each product A x w are selfcontragredient.
In this exceptional case we can of course restrict ourselves to the product [A] x [1] with
(X)) < k since both [A]l+ and [A; A]+ are not selfcontragredient, as made clear in table
3. However, if {(\) = k — 1 then the product [A] x [1] contains the pair of mutually
contragredient irreducible representations [A, 1]4 and [A,1]_. It is therefore necessary
to exclude SO(2k) with k& odd from the following lemma.

Lemma 6.1 In the case of SO(2k + 1), Sp(2k) and SO(2k) with k even:

(i) the Kronecker product A X w of an arbitrary irreducible representation A and the
defining 1rreducible representation w decomposes into a direct sum p+v+---+ of
mutually distinct, selfcontragredient irreducible representations;

(ii) these irreducible representations p, v, ... are all orthogonal if X and w are either
both orthogonal or both symplectic, and are all symplectic if X 1s orthogonal and w
18 symplectic or vice versa;

(iii) the multiplicity of occurrence of the identity irreducible representation n in the

symmetric and antisymmetric square of A X w 1s such that:

) ) A and w are both orthogonal, or (6.1a)
(Axw)e{1%},n) =0 if .
A and w are both symplectic; (6.10)
_( Ais orthogonal and w is symplectic, or (6.1¢)
Orwam=0 il aland
A is symplectic and w is orthogonal. (6.1d)

Proof Part (i) follows from our previous remarks, while part (ii) is an immediate

consequence of the work of Mal’cev (1962), see also Adams (1969), applied to products
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in which the irreducible constituents are selfcontragredient and distinct. In part (iii)
it then follows that if, for example, A and w are both orthogonal, then from (3.7b)

(Axw)ya {1’y =((p+v+--)@{1%},n)
= (po{Ly) + o {® L)+ + (uxvn) +- (6.2)

However, since p, v, ... are all distinct, selfcontragredient, orthogonal irreducible
representations, then (¢ @ {1*},n) = (v ® {1*},n) = --- = 0 from Propositions 5.1
and 5.2, and (¢ X v,n) = --- = 0 from (3.9). Thus all terms contributing to (6.2) are
identically zero and the result (6.1a) follows. The results (6.1b), (6.1¢) and (6.1d) can
all be proved in the same way.

This leads inexorably to the following result:

Proposition 6.2 If A is an arbitrary iwrreducible representation of SO(2k + 1) or
SO(2k) with k even, then

(N {21),[1%]) = (A @ {1?}),[2]) =0 if X is orthogonal; (6.3a)
(AN {1*)),[1°]) = (M@ {2}),[2]) = 0 if X is symplectic. (6.30)

If X is an arbitrary irreducible representation of Sp(2k), then

(N @1{2}),(2)) = (A @ {1*}),(1%)) = 0 if X is orthogonal; (6.4a)
(N {11, 2)) = (A @ {2}),(1%)) = 0 if \ is symplectic. (6.40)

Proof In the case of SO(2k + 1) or SO(2k) with k even the defining irreducible
representation w = [1] is orthogonal. Let the irreducible representation A also be

orthogonal in accordance with case (6.1a). From (3.7b) we have

(A< [1) @ {17}, m)

= (@ {1*) < (] e {2}).n) + (A @ {2}) x (1] @ {1°}),7)
(A @ {271 < ([0] + [2]),m) + (A @ {2}) x ([1°]). m)
= (A @ {1"L[0) + (Ao {171 [2) + (A @ {2}, [17)), (6.5)

where use has been made of the decompositions [1] @ {2} = [0] 4+ [2] and [1] @ {1*} =
[1%]. As we are assuming that the irreducible representation A is orthogonal then
(A @ {1%},[0]) = 0. However, the left hand side of (6.5) vanishes identically by (6.1a)

so that all terms on the right must be zero, giving (6.3a) as required. The result

X
X

(6.3b) may be derived in the same way, making use this time of (3.7a). Similarly
if A is an irreducible representation of Sp(2k) and w = (1) both (6.4a) and (6.4b)
may be derived in the same way using (3.7a) or (3.7b) as appropriate, along with
(1) @ {2} = (2) and (1) © {12} = (0) + (17).

Recalling the result (A x A, 6) = b(\) from Proposition 4.2 and the relationship
between b((ay, ..., ax)) and d(\) implied by the connection between Dynkin and natural

labels, we can summarise our results as follows:



Proposition 6.3 The multiplicities of the adjoint wrreducible representation 6 =

[1%] in the symmetric and antisymmetric squares of the irreducible representations [\

and [A; A] of SO(2k + 1) are given by:

(M@ {21 [1°) =0 and ([\] @ {1}, [1*]) = d()), (6.6a)
and
0 if [A; A] is orthogonal;
(AN @ {2}, [1%]) =< d\)+1 if [A; A] is symplectic and ((\) < k; (6.60)
d(\) if [A; A] is symplectic and ((\) = k,
dA)+1 if [A; A] is orthogonal and ((\) < k;
([A; ] @ {17}, [17]) = £ d()) if [A; A] is orthogonal and ((\) = k; (6.6¢)
0 if [A; )] is symplectic.

Proposition 6.4 The multiplicities of the adjoint wrreducible representation 6 =
(2) in the symmetric and antisymmetric squares of the irreducible representations (\)
of Sp(2k) are given by:

[0 if (\) is orthogonal;

WA @21 2) = {d(/\) if (A\) is symplectic; (6.7)
d( A if (A) is orthogonal,

(@ {17, (2)) = {O( | if 2/\§ 18 sy:npictic. (6.75)

Proposition 6.5 The multiplicities of the adjoint wrreducible representation 6 =

[1%] in the symmetric and antisymmetric squares of the irreducible representations )],

A+ and [A; N+ of SO(2k) with k even are given by:

(N @{2},[17]) =0 and ([\] @ {1%},[1%]) = d(\) for £(\) < k; (6.8a)
((Nx© {2} [1°]) =0 and ([(Nz @ {17}, [1°]) =d(A) for £(A) =k (6.80)
and
0 if [A; A]x is orthogonal;
(AN e @ {2}, [1%) =< d(\) +1 if [A; A]1 is symplectic and ((\) < k;  (6.8¢)
d(\) if [A; A]x is symplectic and ((\) = k,
dA)+1 if [A; A]+ is orthogonal and ((\) < k;
([A; N+ @ {17}, [17]) = < d(N) if [A; A]1 is orthogonal and ((\) = k;  (6.84d)
0 if [A; A+ is symplectic.

Returning to the troublesome case of SO(2k) with k odd, the only selfcontra-
gredient irreducible representations are those irreducible representations [A] for which
U(N\) < k. In the case {(\) < k—1 everything goes through as before with all terms con-
tributing to (6.2) vanishing, so that (6.1a) is still valid and implies (6.3a). Difficulties
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are encountered only in the case ((A) = k—1. In this case, over and above well behaved
distinet, selfcontragredient, orthogonal irreducible representations [p], [v], ... with
Up), U(v), ... allless than k in (6.2), there now appear the two terms [, 1] and [, 1]-.
At first sight the presence of these irreducible representations seems harmless enough
since they are not selfcontragredient and ([, 1]y @ {1?},7) = ([\,1]- @ {1?},5) = 0.
On the other hand they are contragredients of one another, so that from (3.9) we have

(A, 1]+ x [Ny 1]2),n) = 1. Hence for SO(2k) with k odd, (6.1a) must be replaced by:

0 if 0\ <k—1;

@<y = {1 LT (6.9)

By means of (6.5) we can therefore only conclude in place of (6.3a) that

(N @ 2012 = (N @ {1}, =0 6N <k-1  (6.10a)
(N @ 2D + (W@ {12 [2) =1 6N =k-1.  (6.100)

The last equation has two solutions:

(A (e {2h. 1) =1 and (([Ao{1"}).[2])
B) (M@ {2}),[1°]) =0 and (([A]@{1*}).[2]) =

It is not difficult by exploiting the isomorphism between SO(6) and SU(4) to show
that for k& = 3 the solution (A) applies to all [A] such that ¢(\) = 2. Similarly for all
SO(2k) with k odd solution (A) also applies in the case [A\] = [1*7!]. The problem
may be unequivocally resolved by considering the case of the full orthogonal group
O(2k) with k odd and then restricting to its subgroup SO(2k). The key result takes
the form:

0;  (6.11a)
1. (6.110)

Lemma 6.6 The multiplicities of the adjoint irreducible representation 6 = [1%]
and its associate 0 = [12]* = [1272] in the symmetric and antisymmetric squares of
the irreducible representations [A] of O(2k) with k odd and (X)) =k — 1 are given by:

(Mo {2} 1) =0 and (A {17}, [17]) = d(\); (6.12a)
(o 2117 =1 and (Mo {12,177 =0 (6.120)
Proof First it should be noted that each irreducible representation [A] of O(2k)

with {(A) = k — 1 is orthogonal and possesses an inequivalent associate irreducible
representation [A]* = [\, 1?] (King et ol 1981). Moreover,

] % [12] = [A- 17 + [\/1- 1] + [A/17). (6.13)

Recalling Lemma 3.2 and noting that [\ - 1?] contains [\, 1?] = [A]* with multiplicity

one, it follows that

(A< [ [A) = d(A) and  ([A] x [1°],[A]) = 1. (6.14)



Since both [A] and [1%] are selfcontragredient Lemma 3.5 then implies that

(A< [AL 7)) = d(A) and ([A] < [AL[17]7) =1, (6.15)
where use has also been made of the fact that [u]* = [0]* x [p] for all [g], where
[0]* = [1?*] is the irreducible representation of O(2k) which maps each group element

to its determinant, =1 (King et al 1981). It should be noted that [1%]* = [12¢72].
The second of the two results in (6.15) can be derived more directly by noting that

] x AT =)A€ A€l (6.16)

3

Recalling that by hypothesis ¢(\) = k — 1, it is clear that even taking modification
rules (King et al 1981) into account, the only way that a term [12]* = [1%72] can arise
on the right hand side of (6.16) is if A/ contains 1¥~! for some £. Since ((\) = k — 1
such a £ exists and is unique. In fact £ = \/1¥7! and \/¢ = 1¥~!. Hence as claimed
(] % L [17°) = 1.

Turning to symmetrised products, it should be noted first that the difficulties
referred to above which arise in the case of SO(2k) with k& odd, do not arise in the
case of O(2k) with k odd. In particular for our orthogonal irreducible representation
A = [A] of O(2k) with {(A) = k — 1 and w = [1] (6.1a) is valid since now in (6.2)
the term [A,1] is irreducible and orthogonal. Thanks to (6.5) this in turn implies
the validity of (6.3a). Combining this with the first part of (6.15) then gives (6.12a).
Finally, Littlewood’s Theorem III (Littlewood 1958) implies that

(o {207 =({1"" e {23, {1%77) (6.17a)
(Ao {1}, 7)) = (1" @ {173, {177)) (6.170)

However, if k is odd ({1"71} @ {2}, {1%7%}) = 1, and ({1*7'} @ {1%},{1%7%}) = 0
(King et ¢l 1981). Combining (6.17) with the second part of (6.15) then gives (6.12b).
The validity of Lemma 6.6 then allows us to complete the analysis of SO(2k) with
k odd by means of the following:
Proposition 6.7 The multiplicities of the adjoint wrreducible representation 6 =

[1%] in the symmetric and antisymmetric squares of the irreducible representations [\

of SO(2k) with k odd and ((\) < k are given by:

) 0 N <k-1;
e ={] S (6,150
& (7 10) = dO) (6.180)

Proof As we have already indicated, the case {(\) < k — 1 gives no problem, and
the required result follows from the use of (6.2) to give (6.1a), the subsequent use of
(6.5) to give (6.3a) and the observation that ([A] x [A],[1%]) = b(\) = d()\). The case
UN) = k — 1 follows directly from Lemma 6.6 and the observation that under the
restriction from O(2k) to SO(2k) we have [\] — [\] for £(\) =k — 1 and [1*]* — [1%].
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7. Symmetrised Kronecker squares for the exceptional groups

The techniques of section 6 are also appropriate for use with some of the
exceptional groups. The trick is to find some irreducible representation w which is
selfcontragredient, so that its square contains the adjoint 6, and whose weights are
multiplicity free, so that the decomposition of A x w is likely to be multiplicity free for
all A. Even this may not be enough as we have seen in the case of SO(2k) with k odd
for which the confounding factor was the occurrence of mutually contragredient pairs
of distinct irreducible representations in A X w.

However for GGy, whose adjoint irreducible representation is (21), it is helpful to
consider the product of an arbitrary irreducible representation (A) with the defining
irreducible representation w = w; = (1). This irreducible representation (1) is
orthogonal and its weights all have multiplicity one. In addition all the irreducible
representations of Gy are selfcontragredient. The product A X w takes the form (King

1981):

M-+ A1)+ () if Ay > 2\

(A1) 4+ (X-1%) if A = 2),, (1)

(A)X(l)Z{

where the Schur function products are to be evaluated as products of characters of
SU(3) but with any term (u) = (g1, p2) discarded if 11 < 2ps. It can be seen that in
all cases (A) x (1) decomposes into a sum of distinct, selfcontragredient, orthogonal
irreducible representations. It follows, by the same argument that was applied to (6.2),
that:

(V) x (1) @ {17},n) =0. (7.2)

As in (6.5) we now obtain

() x (1) @ {17},m)

(V) @ {171) x (1) @ {2}),m) + (M) @ {2}) x (1) @ {1°}).m)
((

(

A) @ {171 X ((0) +(2)),m) + (V) @ {2}) x (1) +(21)). )
A @ {17} (2)) + () @ {17, (1) + (V) @ {2}, (21)), (7.3)

where use has been made of the decompositions (1)@ {2} = (0)+(2) and (1)@ {1*} =
(1) 4+ (21), and the fact that ()) is orthogonal. It follows that all three terms on the
right hand side of (7.3) must be zero. In particular we have

(M) @{2},(21)) = 0. (7.4)

Combining this with the results of section 4 and expressing b((a1, az2)) in terms of A\

e~

and Ay we arrive at:
Proposition 7.1 The multiplicities of the adjoint wrreducible representation 6 =

(21) in the symmetric and antisymmetric squares of the irreducible representation ()



of Gy are given by:
(V) ®{2},(21)) =0; (7.54)

(e {13, 1) = { T VT S P WP T L

Proceeding in exactly the same way for E; but now taking w = w; = (1°) we have

(King 1981):
(M) x (1%) = (A -1%) + (A -19) (7.6)

where Schur function products are to be evaluated as products of characters of SU(8)
but with any term (u) = (1, ..., pr) discarded if py < prg + ps + pa + p15 — pe — pir.
Once again all terms in the decomposition (7.6) are distinct, selfcontragredient
irreducible representations which are either all orthogonal or all symplectic according
as wy = 0(mod4) or 2(mod4), respectively. Since w = (1°) is symplectic, it follows as

in (6.1b) and (6.1¢) that

(N x (19) @ {1%}, ) =0 if ()\) is symplectic; (7.7a)
(M) x(1%) @ {2},7) =0 if ()\) is orthogonal. (7.70)

Using (3.8), the left hand sides of these two equations may then be expanded as in
(6.5) or (7.3), with the symmetric and antisymmetric squares of w given by (Wybourne
and Bowick 1977) (16) ® {2} = (216) + (26) and (16) ® {1*} = (0)+ (2512). This leads

to the conclusion that:

(V) @ {1%},(21%)) =0 if (\) is symplectic; (7.8a)
(N) @{2},(21%)) =0 if ()\) is orthogonal. (7.80)

By making use of (3.6) and of Proposition 4.2, as applied to E7, we can infer the
following:
Proposition 7.2 The multiplicities of the adjoint wrreducible representation 6 =

(21°) in the symmetric and antisymmetric squares of the irreducible representations

() of E7 are given by:

\ 51 (916} — 0 if (A) is orthogonal; -9

W)@ 12), (210) = {b((/\)) if (X) is symplectic; (7.90)
b((A if (A) is orthogonal,

()@ {19, (217) = {0(( ! if E/\; 18 sy:npictic. (7.95)

This completes the happy part of the story regarding the exceptional groups. In
the case of both F; and Eg it is not possible to find any w such that for all irreducible

representations A the decomposition of the product A x w is multiplicity free. The
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best that can be done is to take w = w; = (1) in Fy and w = w; = (217) in Fg. The
fact that these irreducible representations have zero weights (0) whose multiplicities

are 2 and 8, respectively, ensures that in almost all cases

(A xwi) @ {1}, n) # 0, (7.10)

even though all irreducible representations of F; and Eg are orthogonal. This is
analogous to the appearance of a non-vanishing term in (6.9) for SO(2k) with k& odd.
It thwarts our attempt to use (3.8) and the symmetrised Kronecker squares of (1) to
separate unambiguously the multiplicities of 8 in A X A into contributions to A @ {2}
and A ® {1?}. Nonetheless, on the basis of our accumulated data, we are tempted to
make the following conjecture.

Conjecture 7.3 The multiplicities of the adjoint irreducible representation 6 in
the symmetric and antisymmetric squares of the irreducible representations A of Fj

and Eg are given by:

(A@{2},6) =0; (7.11a)
(A @ {17},6) = b(\). (7.11b)

The case of Fg appears to be intractable for a combination of reasons. Firstly
it does not possess a selfcontragredient irreducible representation whose weights are
multiplicity free. Indeed its simplest selfcontragredient irreducible representation is
the adjoint, whose zero weight has multiplicity given by the rank 6. This implies
that the techniques used for G, for example will not lead to a unique resolution of
the multiplicity problem. In this sense it is analagous to F; and FEg. However it
is worse since the products A X w contain irreducible representations which are not
selfcontragredient even when both A and w are orthogonal. In fact Eg is more closely
related to SU(k + 1) which we have seen required rather special treatment. In this
case we are tempted, on the basis it has to be said of very little data, to conjecture:

Conjecture 7.4 Let A\ and 0 be an arbitrary finite-dimensional selfcontragredient

wrreducible representation and the adjoint irreducible representation, respectively, of

Es. Then

1b(/\) if b(A) is even;
(M@{2h6) =173

5(6(/\) -1) if b(A) is odd;

1b(/\) if b(A) is even;

(Ao {12),6) =< ]
SO +1) i b(A) s odd.
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Tables and table captions

Table 1. Natural and Dynkin labels for the adjoint irreducible representation 6 of the
compact simple Lie groups G of rank k.

g Adjoint irreducible representation @ | Dynkin label (ay,a,, ..., a;))
SUk+1) =4, |{1;1} = {211} (1000 - - - 000))

SO(2k +1) = B, |[17] (010 ---000)

Sp(2k) = C, (2) (200 - - -000))

SO(2k) = D, [17] (010 ---000)

Ey (2;0) ((000001))

E, (21%) ((1000000))

Fq (217) ((10000000))

7, ) (1000)

Gy @) (10)

Table 2. The irreducible representation A contragredient to each irreducible

representation A = ((aq, ..., a;)) of SU(k + 1), SO(2k) with k odd, and Fj.

G A A (ay,aq,. . ap_y,az))

SUk+1)=A, [{A} {A} with A, = A, and (ap,ap_q,- - aq,ay)
XZ» = A = Ay fori=2,..k

SO(2k) (Al (M (ay, s ag_grap, ag_y))

with & odd [As Al [[As AL

L (Ag,A) [(Ag,A) with A; = A, and (a5, ay, ag, ay, ay, ag))
A=A —A_;fori=2,...,5




Table 3. Orthogonal and symplectic irreducible representations A of the Lie group G
of rank k in terms of natural labels.

G Selfcontragredient A Orthogonal Symplectic
SU(k+1) [{A} with A, = A =X, _,o [k =0,2,3(mod4)
for 2 <i< [%] k= 1(mod4), \; = 0(mod2) | k = 1(mod4), \; = 1(mod2)
SO2k+1) | [A] all
[A;A] k =0,3(mod4) k=1,2(mod4)
Sp(2k) (A w, = 0(mod2) wy, = 1(mod2)
SO(2k) [A] all
(Al k = 0(mod2) all selfcontragredient
[A; Al k= 0(mod2) k = 0(mod4) k = 2(mod4)
G, (N) all
F, (N) all
(A ) all
Ey (Ag; A) with all selfcontragredient
A=A+ A=A+ A
E. (N) w, = 0(mod4) w, = 2(mod4)
Eq (N) all
Table 4. Orthogonal and symplectic irreducible representations A = ((ay,...,a;)) of
the Lie group G of rank k in terms of Dynkin labels.
G Selfcontragredient A Orthogonal Symplectic
SU(k+1) |a; = ap_; 4y k=0,2,3(mod4)
for i=1,...,[%] gy = 0(mod2) k = 1(mod4) gy = 1(mod2) k = 1(mod4)
SO(2k+1)| all a, = 0(mod2) all k
a, = 1(mod2) k = 0,3(mod4) |a;, = 1(mod2) k = 1,2(mod4)
Sp(2k) all ay tag+as+---=0(mod2) |a, +as+as+---=1(mod2)
SO2k) |k =0(mod4) all all
k=1,3(mod4) a,_, = a;| all selfcontragredient
k = 2(mod4) all ap_1 + a, = 0(mod2) ap_1 + a, = 1(mod2)
G, all all
F, all all
By ay = g, 0y = ay all selfcontragredient
E. all a, + ag+ a; = 0(mod2) a, + ag+a; = 1(mod2)
Fg all all




. v B o D 7 A -

Table 5. The Schur function decomposition of Kronecker products of the form A x w
for SO(2k + 1), Sp(2k) and SO(2k).

g AXw Constraints

SO2k+ 1) |[A]l x[1] =[x 1]+ [A/1] LX) <k
with [A, 1] = [A] if £(A) = k;
AN [ = [A A1+ AN+ [AMT] |6 <k
with [A; A, 1] = 0 if £(X) = k.

SpER) [ < (1) = (1) + (/1) o)<k
with (A, 1) = 0 if £(X) = k.

SO(2k) [A] x [1] = [A - 1] 4+ [A/1] LX) < k
with [A, 1] = [\ 1]+ A 1] if 4) =k = 1;
W = (1= -1+ /1, () = k
with [A, 1], = 0 and [pu], = [p] if €(p) < k;
(AN % [1] = (A A 1]+ [A5 A + [A M1, | €0 < k
with [A; A 1], = [A; /\]jF =0if {(N) = k.




