
Optimal transfer function neural networks

Norbert Jankowski and Włodzisław Duch

Department of Computer Methods Nicholas Copernicus University
ul. Grudziądzka5, 87–100 Torún, Poland, e-mail:{norbert,duch}@phys.uni.torun.pl

http://www.phys.uni.torun.pl/kmk

Abstract. Neural networks use neurons of the same type in each layer but such
architecture cannot lead to data models of optimal complexity and accuracy. Net-
works with architectures (number of neurons, connections andtype of neurons)
optimized for a given problem are described here. Each neuron may implement
transfer function of different type. Complexity of such networks is controlled by
statistical criteria and by adding penalty terms to the error function. Results of
numerical experiments on artificial data are reported.

1 Introduction

Artificial neural networks approximate unknown mappingsF ∗ between pairs〈xi ,yi〉,
for i = 1, . . . ,n for set of observationsS . For this setF(x i) = yi , whereF(·) is an output
of a neural network (in general a vector). The performance of the trained network
depends on the learning algorithm, number of layers, neurons, connections and on the
type of transfer functions computed by each neuron. To avoid over- and underfitting
of the data thebias–variance[1] should be balanced by matching the complexity of
the network to the complexity of the data [6, 3].

Complexity of the model may be controlled by Bayesian regularization methods
[8, 1, 9], using ontogenic networks that grow and/or shrink [4, 7] and judicious choice
of the transfer functions [3, 5]. All these methods are used in optimal transfer func-
tion neural networks (OTF-NN) described in the next section. Some experiments on
artificial data are presented in the third section and a few conclusions are given at the
end of this paper.

2 Optimal transfer function neural networks

Accuracy of MLP and RBF networks on the same data may significantly differ [3].
Some dataset are approximated in a better way by combinations of sigmoidal function
σ(I) = 1

1+e−I , where the activationI(x;w) = wtx+ w0, while other datasets are rep-

resented in an easier way using gaussian functionsG(D,b) = e−D2/b2
with distance

Support by the Polish Committee for Scientific Research, grant 8 T11C 006 19, is gratefully acknowl-
edged.

functionD(x; t) =
[
∑d

i=1(xi − ti)2
] 1

2 . More flexible transfer functions may solve this
problem. In [3] bicentral transfer functions that use 3N parameters per neuron were
described (gaussian functions use 2N or N +1, and sigmoidal function useN+1 pa-
rameters). Here a constructive network optimizing the type of transfer functions used
in each node is described. The OTF neural model is defined by:

F(x) = o

(
∑
i

wihi [Ai(x;pi)]

)
(1)

wherehi(Ai(·)) ∈ H (H is the set of basis functions) is transfer function (hi(·) is the
output function,Ai(·) is activation function), andpi is the vector of adaptive parame-
ters for neuroni. An identity or a sigmoidal function is used foro(·) output function of
whole network. Sigmoidal outputs are useful for estimation of probabilities but may
significantly slow down the training process.

The network defined by Eq. 1 may use arbitrary transfer functionhi(·). In the
next section gaussian output function with scalar product activationGI (x,w) = exT w

is used together with gaussian and sigmoidal transfer functions in one network. The
gradient descend algorithm was used to adapt the parameters. Network architecture
may be controlled during learning by the criteria proposed below.

Pruning: in the first version of MBFN the weight elimination method proposed
by Weigend (at. al.) [9] is used:

Ewe(F,w) = E0(F)+λ
M

∑
i=1

w2
i /w2

0

1+w2
i /w2

0

=
M

∑
i=1

[F(xi)−yi]2 +λ
M

∑
i=1

w2
i /w2

0

1+w2
i /w2

0

(2)

wherew0 factor is usually around 1, andλ is either a constant or is controlled by the
learning algorithm described in [9].M is the number of neurons.

Statistical pruning is based on a statistical criterion leading to inequalityP

P :
L

Var[F(x;pn)]
< χ2

1,ϑ L = min
i

w2
i

σwi

(3)

whereχ2
n,ϑ is ϑ% confidence onχ2 distribution for one degree of freedom, andσwi

denotes the variance ofwi . Neurons are pruned if the saliencyL is too small and/or
the uncertainty of the network outputRy is too big.

Varianceσwi may be computed iteratively:

σn
wi

=
N−1

N
σn−1

wi
+

1
N

[
∆wi

n−∆wi
n
]2

(4)

∆wi
n =

N−1
N

∆wi
n−1 +

1
N

∆wn
i (5)

wheren defines iteration, and∆wn
i = wn

i −wn−1
i . N defines thetail length.

A criterion for network growth is based on a hypothesis for the statistical inference
of model sufficiency, defined as follows [6]:

H0 :
e2

Var[F(x;p)+η]
< χ2

M,θ (6)

whereχ2
n,θ is θ% confidence onχ2 distribution forn degree of freedom,e= y− f (x;p)

is the error andη] is variance of data. The variance is computed one time per epoch
using the formula:

Var[F(x;pn)] =
1

N−1∑
i

[
∆F(xi ;pn)−F(x j ;pn)

]2
(7)

or an iterative formula:

Var[F(x;pn)] =
N−1

N
Var[F(x;pn−1)] +

1
N

[
∆F(xi ;pn)−F(x j ;pn)

]2
(8)

where∆F(xi;pn) = F(xi ;pn)−F(xi ;pn−1). N, as before, defines thetail length.

−10

−5

0

5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

XY

Z

−10 0 10
−10

−5

0

5

10

X

Y

−10

−5

0

5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

XY

Z

−10 0 10
−10

−5

0

5

10

X

Y

−10

−5

0

5

10

−10

−5

0

5

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

XY

Z

−10 0 10
−10

−5

0

5

10

X

Y

−10

−5

0

5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

XY

Z

−10 0 10
−10

−5

0

5

10

X

Y

−10

−5

0

5

10

−10

−5

0

5

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

XY

Z

−10 0 10
−10

−5

0

5

10

X

Y

−10

−5

0

5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

XY

Z

−10 0 10
−10

−5

0

5

10

X

Y

Figure 1: Extended conic functions

OTF-NN version II In this version of the OTF-NN model an extension of conic
activation functions (Fig. 1) introduced by Dorffner [2] is used:

AC(x;w, t,b,α,β) = −[αI(x− t;w)+βD(x, t,b)] (9)

The output function is sigmoidal. Such functions change smoothly from gaussianto
sigmoidal. A new penalty term is added to the error function:

Ewe(F,w) = E0(F)+λ
M

∑
i=1

[
α2

i /α2
0

1+α2
i /α2

0

· β2
i /β2

0

1+β2
i /β2

0

]
(10)

allowing the learning algorithm to simplify the conic activation leaving sigmoidal or
gaussian function.

3 Results

XOR XOR is the most famous test problem. How do different OTF solutions look
like? OTF-NN network with 4 nodes, 2 of sigmoidal and 2 of gaussian character has
been initialized with random values (between -0.5 and 0.5) for weights and centers.
After some learning period theλ parameter of 2 has been increased to obtain simple
structure of the network. Weight elimination has been especially effective for weights
between hidden and output layers.

−1
−0.5

0
0.5

1
1.5

2

−1

−0.5

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

(a)

−1
−0.5

0
0.5

1
1.5

2

−1

−0.5

0

0.5

1

1.5

2
0

0.5

1

1.5

2

(b)

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

1.5

2

−2
0
2

(c)

−1
−0.5

0
0.5

1
1.5

2
−1

−0.5

0

0.5

1

1.5

2

−1

0

1

2

3

4

5

(d)

−1
−0.5

0
0.5

1
1.5

2

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

(e)

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

1.5

(f)

−1
−0.5

0
0.5

1
1.5

2

−1

−0.5

0

0.5

1

1.5

2
−0.5

0

0.5

1

1.5

2

(g)

−1
−0.5

0
0.5

1
1.5

2

−1

−0.5

0

0.5

1

1.5

2

−0.5

0

0.5

1

(h)

Figure 2: Various solutions for the XOR problem

Using such network the training process (taking 2 000 – 10 000 iterations) may
finish with different correct solutions. Subfigures a)–b) of Fig. 2 present solutions
found by OTF network. Some of them use combinations of gaussian functions (a),
b) and c)), other combinations of sigmoidal and guassian functions; a combination
of two sigmoidal functions is very hard to find if any gaussian nodes are present.
Subfigure h) in Fig. 2 presents the simplest solution using a single neuron (!) in the
hidden layer, constructed from gaussian output function with inner product activation
function. Each network which had just one such neuron removes all others as spurious.

Half-sphere + half-subspace. The 2000 data points were created as shown in Fig.
3. The initial OTF network has 3 gaussian and 3 sigmoidal neurons. The simplest
and optimal solution consists of one gaussian and one sigmoidal node (Fig. 3b), al-
though 3 sigmoids give also an acceptable solution, Fig.??c. The number of learning

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a)

−2−1.5−1−0.500.511.52

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0

0.5

1

(b)

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

0

0.5

1

(c)

Figure 3: Half-sphere+ half-subspace

epochs was 500 and the final accuracy was around 97.5–99%. Similar test made in
10-dimensional input space gave 97.5–98% correct answers. The final networks had
2 or 3 neurons, depending on the pruning strength.

−1 0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(a)

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0

0.5

1

(b)

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0

0.5

1

(c)

Figure 4: Triangle

Triangle. 1000 points were generated as shown in Fig. 4. The OTF-NN started
with 3 gaussian and 3 sigmoidal neurons. The optimal solution for this problem is
obtained by 3 sigmoidal functions. The problem is hard because gaussians quickly
cover the inner part of the triangle (Fig.??c), nevertheless our network has found
the optimal solution, Fig.??b. The problem cannot be solved with identity output
function, sigmoidal output function must be used. The number of the learning epoch
was 250 and the final accuracy between 98–99%.

4 Conclusions

First experiments with Optimal Transfer Function networks were presented here. Prun-
ing techniques based on statistical criteria allow to optimize not only the parameters
but also the type of functions used by the network. Results on artificial data are very

encouraging. Trained OTF networks select appropriate functions for a given problem
creating architectures that are well-matched for a given data. Small networks may not
only be more accurate but also should allow to analyze and understand the structure
of the data in a better way. OTF networks will now be tested on real data.

References

[1] C. M. Bishop.Neural Networks for Pattern Recognition. Oxford University Press,
1995.

[2] G. Dorffner. A unified framework for MLPs and RBFNs: Introducing conic sec-
tion function networks.Cybernetics and Systems, 25(4):511–554, 1994.

[3] W. Duch and N. Jankowski. Survey of neural transfer functions.Neural Comput-
ing Surveys, 2:163–212, 1999.

[4] E. Fiesler. Comparative bibliography of ontogenic neural networks. InProceed-
ings of the International Conference on Artificial Neural Networks, pages 793–
796, 1994.

[5] N. Jankowski. Approximation with RBF-type neural networks using flexible local
and semi-local transfer functions. In4th Conference on Neural Networks and
Their Applications, pages 77–82, Zakopane, Poland, May 1999.

[6] N. Jankowski and V. Kadirkamanathan. Statistical control of RBF-like networks
for classification. In7th International Conference on Artificial Neural Networks,
pages 385–390, Lausanne, Switzerland, October 1997. Springer-Verlag.

[7] N. Jankowski and V. Kadirkamanathan. Statistical control of growing and pruning
in RBF-like neural networks. InThird Conference on Neural Networks and Their
Applications, pages 663–670, Kule, Poland, October 1997.

[8] T. Poggio and F. Girosi. Network for approximation and learning.Proceedings of
the IEEE, 78:1481–1497, 1990.

[9] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization by weight
elimination with application to forecasting. In R. P. Lipmann, J. E. Moody, and
D. S. Touretzky, editors,Advances in Neural Information Processing Systems 3,
pages 875–882, San Mateo, CA, 1991. Morgan Kaufmann.

http://www.phys.uni.torun.pl/publications/kmk/ps-files/99ncs.ps.gz
http://www.phys.uni.torun.pl/publications/kmk/ps-files/99zakop-nj.ps.gz
http://www.phys.uni.torun.pl/publications/kmk/ps-files/icann97nj.ps.gz
http://www.phys.uni.torun.pl/publications/kmk/ps-files/kule97.ps.gz

	Introduction
	Optimal transfer function neural networks
	Results
	Conclusions

